信息论与编码理论基础第六章
- 格式:ppt
- 大小:380.50 KB
- 文档页数:69
第六章:信道 (本章复大我重新修改了一下,尤其要关注色内容 )1、基本概念:差符号、差比特;差:随机差、突差;分:和、分和卷、性与非性、随机差和突差;矢量空、空及其偶空;有离散信道的定理:P e e- NE ( R)(掌握信道定理的内容及减小差概率的方法);形分的展与短(掌握奇偶校及短的校矩、生成矩与原形分的关系)。
2、性分 (封性 ):生成矩及校矩、系形式的 G 和 H、伴随式与准列表、距与能力、完(明 )、循的生成多式及校多式、系形式的循。
作: 6-1、6-3、6-4、6-5 和 6-6 一、 6-7 6-8 和 6-9 一6-1 二元域上 44重失量空的元素个数共有24=16 个,它分是(0,0,0,0),(0,0,0,1)⋯ (1,1,1,1),它的一个自然基底是(0,0,0,1),(0,0,1,0),(0,1,0,0)和(1,0,0,0);其中一个二子空含有的元素个数 22个,取其中一个自然基底(0,0,0,1)和(0,0,1,0),其二子空中所包含的全部矢量(0,0,0,0,),(0,0,0,1),(0,0,1,0)和(0,0,1,1)(注不唯一 );上述子空的偶子空可以有三种不同的:(0,0,0,0) ,(0,1,0,0),(1,0,0,0),(1,1,0,0)或(0,0,0,0) ,(0,1,0,0)或(0,0,0,0) (1,0,0,0)。
(注意本中所包含的关于矢量空的一些基本概念 )6-3 由可以写出系 (8,4)的形方程如下:v 7 u 3 v 6 u 2 v 5 u 1v 4 u 0(注:系统码高四位与信息位保持一致, u i 为信息位 )v 3 u 3 u 2 u 0 v 2 u 3 u 1 u 0 v 1 u 2 u 1 u 0 v 0 u 3 u 2 u 1把上述方程组写成矩阵形式, 可以表示为 V=UG ,其中 V 为码字构成的矢量,即 V=(v 7,v 6,v 5,v 4,v 3,v 2,v 1,v 0),U 为信息位构成的矢量,即U=( u 3,u 2,u 1,u 0),观察方程组可得系统生成矩阵为:1 0 0 0 1 1 0 10 1 0 0 1 0 1 1 4| P4*4G0 1 0 0 1 1 I 0 1 0 0 0 1 1 1 1 0由系统生成矩阵和校验矩阵的关系可得:1 1 0 1 1 0 0 0 HP 4*4T1 0 1 1 0 1 0 0| I 41 1 1 0 0 1 01 1 1 0 0 0 0 1由校验矩阵可以看出,矩阵 H 的任意三列都是线性无关的 (任意三列之和不为 0),但存在四列线性相关的情况 (如第 1、5、6、8 列,这四列之和为 0),即校验矩阵 H 中最小的线性相关的列数为 4,从而得该线性分组码的最小码距为 4。
第六章:信道编码(本章复习大纲我重新修改了一下,尤其要关注红色内容)1、基本概念:差错符号、差错比特;差错图样:随机差错、突发差错;纠错码分类:检错和纠错码、分组码和卷积码、线性码与非线性码、纠随机差错码和纠突发差错码;矢量空间、码空间及其对偶空间; 有扰离散信道的编码定理:-()NE R e P e (掌握信道编码定理的内容及减小差错概率的方法);线形分组码的扩展与缩短(掌握奇偶校验码及缩短码的校验矩阵、生成矩阵与原线形分组码的关系)。
2、线性分组码(封闭性):生成矩阵及校验矩阵、系统形式的G 和H 、伴随式与标准阵列译码表、码距与纠错能力、完备码(汉明码)、循环码的生成多项式及校验多项式、系统形式的循环码。
作业:6-1、6-3、6-4、6-5和6-6选一、6-7 6-8和6-9选一 6-1 二元域上4维4重失量空间的元素个数总共有24=16个,它们分别是(0,0,0,0),(0,0,0,1)…(1,1,1,1),它的一个自然基底是(0,0,0,1),(0,0,1,0),(0,1,0,0)和(1,0,0,0);其中一个二维子空间含有的元素个数为22个,选取其中一个自然基底为(0,0,0,1)和(0,0,1,0),则其二维子空间中所包含的全部矢量为(0,0,0,0,),(0,0,0,1),(0,0,1,0)和(0,0,1,1)(注选择不唯一);上述子空间对应的对偶子空间可以有三种不同的选择:(0,0,0,0) ,(0,1,0,0),(1,0,0,0),(1,1,0,0)或(0,0,0,0) ,(0,1,0,0)或(0,0,0,0) (1,0,0,0)。
(注意本题中所包含的关于矢量空间的一些基本概念)6-3 由题设可以写出该系统(8,4)码的线形方程组如下:736251403320231012100321v u v u v u v u v u u u v u u u v u u u v u u u=⎧⎪=⎪⎪=⎪=⎪⎨=++⎪⎪=++⎪=++⎪⎪=++⎩(注:系统码高四位与信息位保持一致,u i 为信息位) 把上述方程组写成矩阵形式,可以表示为 V =U G ,其中V 为码字构成的矢量,即V =(v 7,v 6,v 5,v 4,v 3,v 2,v 1,v 0),U 为信息位构成的矢量,即U =( u 3,u 2,u 1,u 0),观察方程组可得系统生成矩阵为:[]44*41000110101001011G I |P 0010011100011110⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦由系统生成矩阵和校验矩阵的关系可得:4*441101100010110100H P |I 0111001011100001T ⎡⎤⎢⎥⎢⎥⎡⎤==⎣⎦⎢⎥⎢⎥⎣⎦由校验矩阵可以看出,矩阵H 的任意三列都是线性无关的(任意三列之和不为0),但存在四列线性相关的情况(如第1、5、6、8列,这四列之和为0),即校验矩阵H 中最小的线性相关的列数为4,从而得该线性分组码的最小码距为4。