高中物理楞次定律详解
- 格式:docx
- 大小:389.90 KB
- 文档页数:6
楞次定律公式总结高中好的,以下是为您生成的关于“楞次定律公式总结高中”的文章:高中物理中的楞次定律,那可真是个让不少同学头疼,但又超级重要的知识点。
咱们今天就来好好说道说道这个楞次定律的公式。
楞次定律说的是“感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化”。
这话听起来有点绕,是不?其实简单理解,就是磁场变化时,产生的电流会“反抗”这种变化。
那楞次定律的公式到底是啥呢?其实楞次定律本身并没有一个像数学公式那样特别标准的表达式,但有个与之相关的重要公式——法拉第电磁感应定律,E = nΔΦ/Δt。
这里的 E 表示感应电动势,n 是线圈匝数,ΔΦ 是磁通量的变化量,Δt 是时间变化量。
我记得有一次在课堂上,给同学们讲楞次定律的时候,我拿了一个很大的线圈和一块磁铁。
我把磁铁快速地插进线圈,然后问同学们,这时候会产生什么样的电流。
大家都一脸懵,不知道该怎么回答。
我就慢慢地引导他们,让他们想想磁通量是怎么变化的,感应电流又会怎么去阻碍这种变化。
还有一个公式就是楞次定律的推论:“增反减同,来拒去留,增缩减扩”。
这几个字看起来简单,但是要真正理解和运用可不容易。
比如说“增反减同”,如果原来的磁通量增加,感应电流产生的磁场就和原来的磁场方向相反;要是磁通量减少,感应电流产生的磁场就和原来的磁场方向相同。
“来拒去留”呢,就是当磁铁靠近线圈时,线圈会产生一种抗拒磁铁靠近的力;当磁铁离开时,线圈又会有一种挽留磁铁的力。
“增缩减扩”是说,如果通过线圈的磁通量增加,线圈有缩小面积的趋势;磁通量减少,线圈就有扩大面积的趋势。
为了让同学们更好地理解这些,我又做了一个实验。
我把一个铝环放在一根竖直的磁铁上方,然后突然松开铝环。
当磁铁的 N 极向上移动时,铝环就会往上跳,来抗拒磁通量的增加;当磁铁的 N 极向下移动时,铝环就会往下落,表现出挽留的趋势。
在做题的时候,咱们得先判断磁通量是增加还是减少,然后再根据楞次定律的这些公式和推论去确定感应电流的方向和大小。
高中物理| 4.3楞次定律详解楞次定律1磁通量1.概念:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S与B的乘积。
2.公式:Φ=BS。
3.适用条件(1)匀强磁场。
(2)S为垂直磁场的有效面积。
4.磁通量是标量。
5.物理意义:相当于穿过某一面积的磁感线的条数.如图所示,矩形abcd、abb′a′、a′b′cd的面积分别为S1、S2、S3,匀强磁场的磁感应强度B与平面a′b′cd垂直,则:(1)通过矩形abcd的磁通量为BS1cosθ或BS3。
(2)通过矩形a′b′cd的磁通量为BS3。
(3)通过矩形abb′a′的磁通量为0。
6.磁通量变化:ΔΦ=Φ2-Φ1。
2电磁感应现象1.定义当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应。
2.条件(1)条件:穿过闭合电路的磁通量发生变化。
(2)例如:闭合电路的一部分导体在磁场内做切割磁感线的运动。
3.实质产生感应电动势,如果电路闭合,则有感应电流.如果电路不闭合,则只有感应电动势而无感应电流。
3感应电流方向的判定1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(2)适用范围:一切电磁感应现象。
2.右手定则(1)内容:如图,伸开右手,使拇指与其余四个手指垂直并且都与手掌在同一平面内,让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。
(2)适用情况:导线切割磁感线产生感应电流。
用右手定则时应注意①主要用于闭合回路的一部分导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定。
②右手定则仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直。
③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向。
④若形成闭合回路,四指指向感应电流方向;若未形成闭合回路,四指指向高电势。
⑤“因电而动”用左手定则;“因动而电”用右手定则。
易错点22 电磁感应现象楞次定律易错总结一、磁通量的变化磁通量的变化大致可分为以下几种情况:(1)磁感应强度B不变,有效面积S发生变化.如图(a)所示.(2)有效面积S不变,磁感应强度B发生变化.如图(b)所示.(3)磁感应强度B和有效面积S都不变,它们之间的夹角发生变化.如图(c)所示.二、感应电流的产生条件当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中就产生感应电流.三、对楞次定律的理解1.楞次定律中的因果关系楞次定律反映了电磁感应现象中的因果关系,磁通量发生变化是原因,产生感应电流是结果.2.对“阻碍”的理解问题结论谁阻碍谁感应电流的磁场阻碍引起感应电流的磁场(原磁场)的磁通量的变化为何阻碍(原)磁场的磁通量发生了变化阻碍什么阻碍的是磁通量的变化,而不是阻碍磁通量本身如何阻碍当原磁场磁通量增加时,感应电流的磁场方向与原磁场的方向相反;当原磁场磁通量减少时,感应电流的磁场方向与原磁场的方向相同,即“增反减同”结果如何阻碍并不是阻止,只是延缓了磁通量的变化,这种变化将继续进行,最终结果不受影响3.“阻碍”的表现形式从磁通量变化的角度看:感应电流的效果是阻碍磁通量的变化.从相对运动的角度看:感应电流的效果是阻碍相对运动.解题方法楞次定律的应用应用楞次定律判断感应电流方向的步骤(1)明确所研究的闭合回路,判断原磁场方向.(2)判断闭合回路内原磁场的磁通量变化.(3)依据楞次定律判断感应电流的磁场方向.(4)利用右手螺旋定则(安培定则)判断感应电流的方向.【易错跟踪训练】易错类型1:对物理概念理解不透彻1.(2020·江苏姜堰中学)学习物理除了知识的学习外,还要领悟并掌握处理物理问题的思想与方法。
下列关于物理学中的思想方法叙述正确的是()A.伽利略在研究自由落体运动时采用了微元法B.法拉第在研究电磁感应现象时利用了理想实验法C.在探究求合力方法的实验中使用了等效替代的思想D.在探究加速度与力、质量的关系实验中使用了理想化模型的思想方法【答案】C【详解】A.伽利略在研究自由落体运动时采用了实验和逻辑推理的方法。
高二物理楞次定律知识点楞次定律是电磁感应中的基本定律之一,描述了磁感应强度与通过闭合回路的磁通量的关系。
它由法国物理学家楞次在1834年提出,是电磁学的重要基石之一。
本文将介绍高二物理楞次定律的相关知识点。
1. 楞次定律的表述楞次定律可以用以下公式表述:ε = -ΔΦ/Δt其中,ε代表感应电动势,ΔΦ代表磁通量变化,Δt代表时间变化。
2. 磁通量的概念磁通量Φ是描述磁场穿过一个平面的数量的物理量。
它的大小与磁场的强度和面积有关,可以用以下公式计算:Φ = B·A·cosθ其中,B代表磁场强度,A代表平面面积,θ代表磁场线与平面法线之间的夹角。
3. 楞次定律的基本原理楞次定律的基本原理是磁场变化引起感应电动势的产生。
当磁通量发生变化时,闭合回路中会产生感应电动势,进而产生感应电流。
4. 楞次定律的应用楞次定律在实际应用中具有广泛的意义,包括以下几个方面:1) 可以解释电磁感应现象,如电磁感应发电机的工作原理。
2) 可以解释变压器的工作原理,即利用楞次定律实现电压的升降。
3) 可以解释电磁铁的工作原理,即通过改变电磁铁中的电流产生磁场,实现吸附和释放物体。
5. 楞次定律的扩展楞次定律还可以扩展到电场变化引起的感应电动势。
当电场发生变化时,也会产生感应电动势。
这一扩展称为法拉第电磁感应定律。
6. 楞次定律的实验验证楞次定律可以通过一系列实验来验证,如改变磁场强度、改变磁场方向以及改变回路形状等。
实验结果与楞次定律的预测一致,进一步验证了该定律的准确性。
总结:高二物理学习中楞次定律是一个重要的知识点,它可以用来解释电磁感应现象,如电磁感应发电机、变压器和电磁铁的工作原理。
楞次定律的实验验证也进一步证明了其准确性。
通过学习楞次定律,我们可以更好地理解电磁学的基本原理和应用,为进一步的物理学习奠定基础。
第3节楞次定律1.楞次定律的内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
2.楞次定律可广义地表述为:感应电流的“效果”总是要反抗(或阻碍)引起感应电流的“原因”,常见的有三种:①阻碍原磁通量的变化(“增反减同”);②阻碍导体的相对运动(“来拒去留”);③通过改变线圈面积来“反抗”(“增缩减扩”)。
3.闭合导体回路的一部分做切割磁感线运动时,可用右手定则判断感应电流的方向。
一、楞次定律1.探究感应电流的方向(1)实验器材:条形磁铁、电流表、线圈、导线、一节干电池(用来查明线圈中电流的流向与电流表中指针偏转方向的关系)。
(2)实验现象:如图所示,在四种情况下,将实验结果填入下表。
(3)实验分析:①线圈内磁通量增加时的情况②线圈内磁通量减少时的情况表述一:当穿过线圈的磁通量增加时,感应电流的磁场与原磁场的方向相反;当穿过线圈的磁通量减少时,感应电流的磁场与原磁场的方向相同。
表述二:当磁铁靠近线圈时,两者相斥;当磁铁远离线圈时,两者相吸。
2.楞次定律感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
二、右手定则1.内容伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。
如图所示。
2.适用范围适用于闭合电路部分导体切割磁感线产生感应电流的情况。
1.自主思考——判一判(1)感应电流的磁场总与原磁场方向相反。
(×)(2)感应电流的磁场总是阻碍原磁场的磁通量。
(×)(3)感应电流的磁场有可能阻止原磁通量的变化。
(×)(4)导体棒不垂直切割磁感线时,也可以用右手定则判断感应电流方向。
(√)(5)凡可以用右手定则判断感应电流方向的,均能用楞次定律判断。
(√)(6)右手定则即右手螺旋定则。
(×)2.合作探究——议一议(1)楞次定律中“阻碍”与“阻止”有何区别?提示:阻碍不是阻止,阻碍只是延缓了磁通量的变化,但这种变化仍将继续进行。
高二楞次定律知识点总结楞次定律(Faraday's Law)是电磁感应的基本定律之一,它描述了磁场变化时导线中感应电动势的产生。
高二学生在学习物理的过程中,需要掌握楞次定律的相关知识点。
本文将对楞次定律的重要概念、公式和应用进行总结。
1. 楞次定律的基本概念楞次定律是由英国物理学家迈克尔·法拉第在1831年提出的。
该定律表明,当一导体中的磁通量发生变化时,产生在导体中的感应电动势的大小与磁通量的变化速率成正比。
楞次定律的表达式为:ε = -dΦ/dt其中,ε表示感应电动势,dΦ表示磁通量的变化量,dt表示时间的变化量。
负号表示感应电动势的方向与磁通量变化的方向相反。
2. 楞次定律的公式楞次定律可以通过两种形式的公式来表达,一种是在闭合回路中的情况,另一种是在开放回路中的情况。
(1)在闭合回路中,根据法拉第电磁感应定律,感应电动势等于导线中的电流乘以闭合回路的环路积分:ε = -dΦ/dt = ∮ B·dl其中,ε表示感应电动势,dΦ表示磁通量的变化量,B表示磁感应强度,dl表示回路中的微小长度元素。
(2)在开放回路中,根据法拉第电磁感应定律,感应电动势等于磁感应强度与导线长度之积的变化率:ε = -dΦ/dt = B·l其中,ε表示感应电动势,dΦ表示磁通量的变化量,B表示磁感应强度,l表示导线长度。
3. 楞次定律的应用楞次定律在电磁感应以及电动机、发电机等方面有着广泛的应用。
(1)电磁感应:根据楞次定律,当一个磁场相对于一个导体发生变化时,会在导体中产生感应电动势,从而产生感应电流。
这是电磁感应的基本原理。
(2)电动机:电动机通过将动磁场与电流的交互作用转化为机械能。
当通电的导体在磁场中运动时,根据楞次定律,感应电动势会使导体受到力的作用,产生电流,从而驱动电机旋转。
(3)发电机:发电机利用楞次定律的原理将机械能转化为电能。
通过机械装置使导体在磁场中产生相对运动,产生感应电动势,从而产生电流。
高中物理“楞次定律”详解
磁通量
1.概念:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S与B的乘积。
2.公式:Φ=BS。
3.适用条件
(1)匀强磁场。
(2)S为垂直磁场的有效面积。
4.磁通量是标量。
5.物理意义:相当于穿过某一面积的磁感线的条数.如图所示,矩形abcd、abb′a′、a′b′cd的面积分别为S1、S2、S3,匀强磁场的磁感应强度B与平面a′b′cd垂直,则:
(1)通过矩形abcd的磁通量为BS1cosθ或BS3。
(2)通过矩形a′b′cd的磁通量为BS3。
(3)通过矩形abb′a′的磁通量为0。
6.磁通量变化:ΔΦ=Φ2-Φ1。
电磁感应现象
1.定义
当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应。
2.条件
(1)条件:穿过闭合电路的磁通量发生变化。
(2)例如:闭合电路的一部分导体在磁场内做切割磁感线的运动。
3.实质
产生感应电动势,如果电路闭合,则有感应电流.如果电路不闭合,则只有感应电动势而无感应电流。
感应电流方向的判定
1.楞次定律
(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(2)适用范围:一切电磁感应现象。
2.右手定则
(1)内容:如图,伸开右手,使拇指与其余四个手指垂直并且都与手掌在同一平面内,让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。
(2)适用情况:导线切割磁感线产生感应电流。
用右手定则时应注意
①主要用于闭合回路的一部分导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定。
②右手定则仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直。
③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向。
④若形成闭合回路,四指指向感应电流方向;若未形成闭合回路,四指指向高电势。
⑤“因电而动”用左手定则;“因动而电”用右手定则。
⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。
导体切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的一个特例.用右手定则能判定的,一定也能用楞次定律判定,只是对导体在磁场中切割磁感线而产生感应电流方向的判定用右手定则更为简便。
电磁感应现象的理解和判断
常见的产生感应电流的三种情况
感应电流方向的两种判断方法
1用楞次定律判断
(1)楞次定律中“阻碍”的含义:
(2)应用楞次定律的思路:
2用右手定则判断
该方法只适用于切割磁感线产生的感应电流,注意三个要点:
(1)掌心——磁感线垂直穿入;
(2)拇指——指向导体运动的方向;
(3)四指——指向感应电流的方向.
楞次定律推论的应用
楞次定律中“阻碍”的含义可以推广为:感应电流的效果总是阻碍引起感应电流的原因,列表说明如下:
三定则一定律的应用
安培定则、左手定则、右手定则、楞次定律的应用对比:
楞次定律的理解
(1)楞次定律(判断感应电流方向):感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
(感应电流的) 磁场 (总是) 阻碍 (引起感应电流的磁通量的) 变化原因产生结果;结果阻碍原因。
(2)对“阻碍”的理解注意“阻碍”不是阻止,这里是阻而未止。
阻碍磁通量变化指:
磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用);
磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用),简称“增反减同”。
(3)楞次定律另一种表达:感应电流的效果总是要阻碍(或反抗)产生感应电流的原因。
(F安方向就起到阻碍的效果作用)
即由电磁感应现象而引起的一些受力、相对运动、磁场变化等都有阻碍原磁通量变化的趋势。
①阻碍原磁通量的变化或原磁场的变化;
②阻碍相对运动,可理解为“来拒去留”;
③使线圈面积有扩大或缩小的趋势;
④阻碍原电流的变化。
楞次定律磁通量的变化表述:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起
感应电流的磁通量的变化。
能量守恒表述:I感的磁场效果总要反抗产生感应电流的原因
①从磁通量变化的角度:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
②从导体和磁场的相对运动:导体和磁体发生相对运动时,感应电流的磁场总是阻碍相对运动。
③从感应电流的磁场和原磁场:感应电流的磁场总是阻碍原磁场的变化。
(增反、减同)
④楞次定律的特例──右手定则
楞次定律的多种表述、应用中常见的两种情况:一磁场不变,导体回路相对磁场运动;二导体回路不动,磁场发生变化。
磁通量的变化与相对运动具有等效性:Φ↑相当于导体回路与磁场接近,Φ↓相当于导体回路与磁场远离。
(4)楞次定律判定感应电流方向的一般步骤基本思路可归结为:“一原、二感、三电流”
①明确闭合回路中引起感应电流的原磁场方向如何;
②确定原磁场穿过闭合回路中的磁通量如何变化(是增还是减)
③根据楞次定律确定感应电流磁场的方向。
④再利用安培定则,根据感应电流磁场的方向来确定感应电流方向.
注意
①楞次定律是普遍规律,适用于一切电磁感应现象.“总要”——指无一例外。
②当原磁场的磁通量增加时,感应电流的磁场与原磁场反向;当原磁场的磁通量减小时感应电流的磁场与原磁场方向相同。
③要分清产生感应电流的“原磁场”与感应电流的磁场。
④楞次定律实质是能的转化与守恒定律的一种具体表现形式。
习题演练
1. 如图所示,圆形金属环放在水平桌面上,有一带正电的微粒以水平速度v贴近环的上表面距环心d处飞过,则带电微粒在飞过环的过程中,环中感应电流方向是()
A.始终是沿顺时针方向
B.始终是沿逆时针方向
C.先沿顺时针方向,再沿逆时针方向
D.先沿逆时针方向,再沿顺时针方向
2. (多选)如图所示,导线框MNQP近旁有一个跟它在同一竖直平面内的矩形线圈abcd,下列说法正确的是()
A.当电阻变大时,abcd中有感应电流
B.当电阻变小时,abcd中无感应电流
C.电阻不变,将abcd在其原来所在的平面内向PQ靠近时,其中有感应电流
D.电阻不变,将abcd在其原来所在的平面内远离PQ时,其中有感应电流
3.如图所示,一铝制导体圆环竖直固定在水平光滑杆ab上,当把条形磁铁的N极向左插向圆环时,圆环中产生的感应电流方向如何?如果把条形磁铁从圆环中向右抽出时,圆环中产生的感应电流方向又如何呢?
习题解析
1. D 带电微粒靠近圆环过程中,穿过圆环的磁通量方向垂直纸面向里并增加,由楞次定律知,圆环中将产生逆时针方向的感应电流,当微粒远离圆环时,圆环中产生顺时针方向的感应电流。
2. ACD 当电阻变化或abcd靠近、远离PQ时,穿过abcd的磁通量发生变化,会产生感应电流。
3.当条形磁铁的N极向左插向圆环时,穿过圆环的磁通量逐渐增加,圆环产生感应电流。
感应电流的磁场要阻碍引起感应电流的磁通量的增加,故感应电流的磁场方向向右,用安培定则可判定感应电流的方向为:从右向左看为逆时针方向。
若条形磁铁从圆环中向右抽出时,穿过圆环的磁通量逐渐减少,圆环产生感应电流。
感应电流的磁场要阻碍引起感应电流的磁通量的减少,感应电流的磁场方向向左,用安培定则可判定感应电流的方向为:从右向左看为顺时针方向。