六年级奥数题图形提高三
- 格式:doc
- 大小:1.40 MB
- 文档页数:16
六年级图形奥数练习题考题一:1. 在平面直角坐标系中,顶点为O(0,0),A(2,0),B(2,1),C(0,1)的四边形OABC是一个矩形。
请计算矩形OABC的周长和面积。
解答:首先,根据顶点坐标可以得知矩形OABC的边长,OA和OC的长度都为2,OB和OD的长度都为1.那么,矩形的周长为:2 + 1 + 2 + 1 = 6矩形的面积为:2 * 1 = 2考题二:2. 如图所示,矩形ABCD的长为3cm,宽为2cm,以BC为底边,以BC为轴将矩形顺时针旋转90度(即旋转一个直角),得到矩形BCDE。
求矩形BCDE的周长和面积。
(图略)解答:根据题意,矩形BCDE是由矩形ABCD顺时针旋转90度得到的,那么矩形BCDE的长就等于矩形ABCD的宽,宽就等于矩形ABCD的长。
所以,矩形BCDE的长为2cm,宽为3cm.矩形BCDE的周长为:2 + 3 + 2 + 3 = 10矩形BCDE的面积为:2 * 3 = 6考题三:3. 在平面直角坐标系中,有一个直角三角形,顶点为A(0,0),B(3,0),C(0,4)。
请问直角三角形ABC的斜边长度是多少?解答:根据题意,直角三角形ABC的斜边就是BC的长度。
根据两点间的距离公式,可以计算出BC的长度。
BC的长度= √((x2 - x1)^2 + (y2 - y1)^2)代入坐标值,BC的长度= √((3 - 0)^2 + (0 - 4)^2) = √(9 + 16) = √25 = 5考题四:4. 一个正方形内接在一个半径为r的圆中,且边与圆的切点分别是正方形的四个顶点,请计算正方形的面积。
解答:设正方形的边长为a,正方形的对角线长度为d。
根据题意,正方形的对角线d等于圆的直径,即2r。
而对角线d等于正方形的边长a乘以√2。
所以,a * √2 = 2r,得到a = 2r / √2 = r * √2正方形的面积等于边长的平方,即a^2 = (r * √2)^2 = 2r^2考题五:5. 如图所示,一个边长为10cm的正方形中内接着一个半径为r的圆。
三角形中的计算奥数思维拓展一.选择题(共8小题)1.三角形ABC(如图),D是AB边的中点,E是AC边的中点,阴影部分的面积是三角形ABC的面积的()A.B.C.D.2.如图,点E、F是所在边的中点,那么阴影部分的面积是平行四边形的()。
A.B.C.3.在如图等边三角形ABC中,D、E分别是AB、AC、的中点,阴影部分的面积是三角形ABC的面积的()A.B.C.D.无法确定4.如图,AE=EB,AC=3AF,那么,三角形AEF的面积是三角形ABC的面积的()A.B.C.D.5.如图,阴影部分的面积占大三角形ABC面积的()A.B.C.D.无法确定6.如图,把三角形ABC的一条边延长一倍到D,把它的另一条边延长2倍到E,得到一个较大的三角形,那么,三角形ABC的面积是三角形ADE的面积的()A.B.C.D.7.如图中,DE=2BE,那么阴影部分面积是长方形面积的()A.B.C.8.如图,在三角形ABC中,E、D、G分别是AB、BC、AD的中点,图中与三角形ADE面积相等的三角形还有()A.0个B.1个C.2个D.3个二.填空题(共8小题)9.如图中阴影部分的面积是12平方厘米,BD:CD=4:5,三角形ADC的面积是平方厘米。
10.如图,三角形ABC的面积27cm2,,三角形AED的面积是cm2。
11.如图,AD=DB,AE=EF=FC。
已知阴影部分的面积是5平方厘米,三角形ABC的面积是平方厘米。
12.如图,直角梯形ABCD的上底是5厘米,下底是7厘米,高是4厘米,且三角形ADE、ABF和四边形AECF的面积相等,则三角形AEF的面积是.13.如图每个小长方形的长2厘米,宽1厘米,阴影部分面积占长方形面积的%.14.在△ABC中,BD=2DC,AE=BE,已知△ABC的面积是18平方厘米,则四边形AEDC的面积等于平方厘米。
15.如图梯形中E是BC的中点,F是DC的中点,线段EF把梯形分成甲、乙两个部分,面积比是21:4,那么梯形的上底AB与下底CD的长度比是。
图形提高(三)【精典习题】1.如图,一长方形中画了些直线,已知其中的三块面积分 别为13平方分米、35平方分米、49平方分米,问阴影部分面积是多少2.长方形的长是8cm ,宽是6cm ,三角形AOB 的面积为16cm 2,求ODC ∆的面积。
3.如图,在长方形ABCD 中,AB 长8厘米,BC 长15厘米, 四边形EFGH 的面积是9平方厘米,那么阴影部分面积的和 是 平方厘米。
4.如图所示,在平行四边形ABCD 中,E 、F 与对角线B 、D 平行,问:与ADE ∆的面积相等的三角形在图中共有几个5.如图所示,平行四边形ABCD 中,ADG ∆面积是5平方厘米, DHC ∆面积是6.2平方厘米,PHF ∆的面积是3平方厘米,问 PEG ∆的面积是多少平方厘米6.如图所示,O 是平行四边形ABCD 内的一点,AD=3DE 。
已知 三个空白三角形面积分别是19,20,35平方厘米,三角形BOC 的 面积是多少平方厘米7.如下图,ABCD 是个长方形,DEFG 是个平行四边形,E 点在 边上,FG 过A 点,已知,三角形AKF 与三角形ADG 面积之和等 5平方厘米。
DC=CE=5厘米。
求BEK ∆的面积。
7.如图,ABCD 是长方形,图中的数字是各部分的面积数, 则图中阴影部分的面积为______。
8.如图,正方形中套着一个长方形,正方形的边长是12厘米, 长方形的四个角的顶点把正方形的四边各分成两段,其中长的一段是 短的2倍。
这个长方形的面积是多少9.有红、黄、绿三块大小一样的正方形纸片,放在一个正方 形盒内,它们之间互相叠合(如右图),已知露在外面的部分中, 红色面积是24,黄色面积是14,绿色面积是10,那么正方形盒ABC DEG F红黄绿 A E B C 493513子的面积是多少10.如图,下面△AOB 和△ DOC 的面积分别为20平方厘米 和24平方厘米,长方形AODE 的面积为30平方厘米,求△BOC 的面积为多少平方厘米10.这是一块正方形的地板砖示意图。
优秀师资 专业团队 个性辅导 青于蓝教育欢迎你!11图形提高(三)【精典习题】1.如图,一长方形中画了些直线,已知其中的三块面积分 别为13平方分米、35平方分米、49平方分米,问阴影部分面积是多少2.长方形的长是8cm ,宽是6cm ,三角形AOB 的面积为16cm 2, 求ODC ∆的面积。
3.如图,在长方形ABCD 中,AB 长8厘米,BC 长15厘米, 四边形EFGH 的面积是9平方厘米,那么阴影部分面积的和 是 平方厘米。
4.如图所示,在平行四边形ABCD 中,E 、F 与对角线B 、D 平行,问:与ADE ∆的面积相等的三角形在图中共有几个AB CDEG FA E BC493513优秀师资 专业团队 个性辅导 青于蓝教育欢迎你!225.如图所示,平行四边形ABCD 中,ADG ∆面积是5平方厘米,DHC ∆面积是平方厘米,PHF ∆的面积是3平方厘米,问 PEG ∆的面积是多少平方厘米6.如图所示,O 是平行四边形ABCD 内的一点,AD=3DE 。
已知 三个空白三角形面积分别是19,20,35平方厘米,三角形BOC 的 面积是多少平方厘米7.如下图,ABCD 是个长方形,DEFG 是个平行四边形,E 点在 BC 边上,FG 过A 点,已知,三角形AKF 与三角形ADG 面积之和等 于5平方厘米。
DC=CE=5厘米。
求BEK ∆的面积。
优秀师资 专业团队 个性辅导 青于蓝教育欢迎你!33 7.如图,ABCD 是长方形,图中的数字是各部分的面积数, 则图中阴影部分的面积为______。
8.如图,正方形中套着一个长方形,正方形的边长是12厘米, 长方形的四个角的顶点把正方形的四边各分成两段,其中长的一段是 短的2倍。
这个长方形的面积是多少9.有红、黄、绿三块大小一样的正方形纸片,放在一个正方 形盒内,它们之间互相叠合(如右图),已知露在外面的部分中, 红色面积是24,黄色面积是14,绿色面积是10,那么正方形盒 子的面积是多少红黄绿优秀师资 专业团队 个性辅导 青于蓝教育欢迎你!4410.如图,下面△AOB 和△ DOC 的面积分别为20平方厘米 和24平方厘米,长方形AODE 的面积为30平方厘米,求△BOC 的面积为多少平方厘米10.这是一块正方形的地板砖示意图。
一、拓展提优试题1.已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x=.2.(15分)一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的倍,求切割成小正方体中,棱长为1的小正方体的个数?3.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.4.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?5.已知三个分数的和是,并且它们的分母相同,分子的比是2:3:4.那么,这三个分数中最大的是.6.如图,一个直径为1厘米的圆绕边长为2厘米的正方形滚动一周后回到原来的位置.在这个过程中,圆面覆盖过的区域(阴影部分)的面积是平方厘米.(π取3)7.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.8.如图,一个底面直径是10厘米的圆柱形容器装满水.先将一个底面直径是8厘米的圆锥形铁块放入容器中,铁块全部浸入水中,再将铁块取出,这时水面的高度下降了3.2厘米.圆锥形铁块的高厘米.9.如图,一只玩具蚂蚁从O点出发爬行,设定第n次时,它先向右爬行n个单位,再向上爬行n个单位,达到点A n,然后从点A n出发继续爬行,若点O记为(0,0),点A1记为(1,1),点A2记为(3,3),点A3记为(6,6),…,则点A100记为.10.小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的与每支钢笔的售价相等,则1支钢笔的售价是元.11.若质数a,b满足5a+b=2027,则a+b=.12.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.13.小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.14.如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.15.甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行千米.16.请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是.17.小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有页.18.已知两位数与的比是5:6,则=.19.王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距千米.20.等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.21.如图,正方形ABCD和EFGH分别被互相垂直的直线分为两个小正方形和两个矩形,小正方形的面积的值已标在图中,分别为20和10,18和12,则正方形ABCD和EFGH中,面积较大的正方形是.22.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.23.张阿姨和李阿姨每月的工资相同,张阿姨每月把工资的30%存入银行,其余的钱用于日常开支,李阿姨每月的日常开支比张阿姨多10%,余下的钱也存入银行,这样过了一年,李阿姨发现,她12个月存入银行的总额比张阿姨少了5880元,则李阿姨的月工资是元.24.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.25.某小学的六年级有学生152人,从中选男生人数的和5名女生去参加演出,该年级剩下的男、女生人数恰好相等,则该小学的六年级共有男生名.26.宏富超市购进一批食盐,第一个月售出这批盐的40%,第二个月又售出这批盐的420袋,这时已售出的和剩下食盐的数量比是3:1,则宏富超市购进的这批食盐有袋.27.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.28.12013+22013+32013+42013+52013除以5,余数是.(a2013表示2013个a相乘)29.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.30.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.31.建筑公司建一条隧道,按原速度建成时,使用新设备,使修建速度提高了20%,并且每天的工作时间缩短为原来的80%,结果共用185天建完隧道,若没有新设备,按原速度建完,则需要天.32.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.33.某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,结果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需天.34.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.35.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.36.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.37.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了件.38.如图,已知AB=40cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是cm2.(π取3.14)39.快车和慢车同时从甲、乙两地相对开出,快车每小时行33千米,相遇行了全程的,已知慢车行完全程需要8小时,则甲、乙两地相距千米.40.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,店的售价更便宜,便宜元.【参考答案】一、拓展提优试题1.解:设原来的分数x是,则:=则:b=3(c+a)=3c+3a①=则:4c=a+b②①代入②可得:4c=a+3c+3a4c=4a+3c则:c=4a③③代入①可得:b=3c+3a=3×4a+3a=15a所以==即x=.故答案为:.2.解:大正方体表面积:6×6×6=216,体积是:6×6×6=216,切割后小正方体表面积总和是:216×=720,假设棱长为5的小正方体有1个,那么剩下的小正方体的棱长只能是1,个数是:(63﹣53)÷13=91(个),这时表面积总和是:52×6+12×6×91=696≠720,所以不可能有棱长为5的小正方体.(1)同理,棱长为4的小正方体最多为1个,此时,不可能有棱长为3的小正方体,剩下的只能是切割成棱长为2的小正方体或棱长为1的小正方体,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,则解得:(2)棱长为3的小正方体要少于(6÷3)×(6÷3)×(6÷3)=8个,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,棱长为3的小正方体有c个,化简:由上式可得:b=9c+24,a=,当c=0时,b24=,a=24,当c=1时,b=33,a=19.5,(不合题意舍去)当c=2时,b=42,a=15,当c=3时,b=51,a=10.5,(不合题意舍去)当c=4时,b=60,a=6,当c=5时,b=69,a=28.5,(不合题意舍去)当c=6时,b=78,a=﹣3,(不合题意舍去)当c=7时,a=负数,(不合题意舍去)所以,棱长为1的小正方体的个数只能是:56或24或42或60个.答:棱长为1的小正方体的个数只能是:56或24或42或60个.3.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.4.解:图1所示的长方体容器的容积:10×10×30=3000(立方厘米)接水口的面积为:10×30=300(平方厘米)接水口每平方厘米每小时可接水:3000÷300÷1=10(立方厘米)所以,图①需要:10×10×30÷(10×10×10)=3(小时)图②需要:(10×10×20+10×10×10)÷(10×10×20)=1.5(小时)图③需要:2÷2=1(厘米)3.14×1×1×20÷(3.14×1×10)=2(小时)答:容器①需要3小时,容器②需要1.5小时,容器③需要2小时.5.解:==,答:这三个分数中最大的一个是.故答案为:.6.解:2×1×4+3×12=8+3=11(平方厘米)答:阴影部分的面积是11平方厘米.故答案为:11.7.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.8.解:圆锥形铁块的体积是:3.14×(10÷2)2×3.2=3.14×25×3.2=251.2(cm3)铁块的高是:251.2×3÷[3.14×()2]=251.2×3÷50.24=15(cm)答:铁块的高是15cm.9.解:根据分析可知A100记为(1+2+3+…+100,1+2+3+…+100);因为1+2+3+…+100=(1+100)×100÷2=5050,所以A100记为(5050,5050);故答案为:A100记为(5050,5050).10.解:36.45÷(3+)=36.45=5.45.4×=20.25(元)答:1支钢笔的售价是 20.25元.故答案为:20.25.11.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.12.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.13.解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.14.解:依题意可知:将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.10米=100分米.体积为:10×100=1000(立方分米).故答案为:100015.解:依题意可知:根据甲乙两人的相遇点相同,那么他们的速度比例是不变的.当甲提高时,乙也同样需要提高,而乙提高的是每小时10千米.即10÷=40千米/小时.故答案为:4016.解:设这个数是a,[(a+5)×2﹣4]÷2﹣a=[2a+6]÷2﹣a=a+3﹣a=3,故答案为:3.17.解:设这本书的页码是从1到n的自然数,正确的和应该是1+2+…+n=n(n+1),由题意可知,n(n+1)>4979,由估算,当n=100,n(n+1)=×100×101=5050,所以这本书有100页.答:这本书共有100页.故答案为:100.18.解:因为(10a+b):(10b+a)=5:6,所以(10a+b)×6=(10b+a)×560a+6b=50b+5a所以55a=44b则a=b,所以b只能为5,则a=4.所以=45.故答案为:45.19.解:已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=50千米/小时;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时.设总路程为x千米,得:(x×+x×)﹣(x×+x×)=x﹣x=x=x=330答:王老师家与A地相距330千米.故答案为:330.20.解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.21.解:小正方形的面积之和为30时,两正方形的面积差最小,则大正方形的面积越大,即EFGH的面积较大;故答案为:EFGH.22.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.23.解:(1﹣30%)×(1+10%)=70%×110%,=77%;5880÷12÷[30%﹣(1﹣77%)]=490÷[30%﹣23%],=490÷7%,=7000(元).即李阿姨的月工资是 7000元.故答案为:7000.24.解:设A、B两校的男生、女生人数分别为8a、7a、30b、31b,由题意得:(8a+30b):(7a+31b)=27:26,27×(7a+31b)=26×(8a+30b),189a+837b=208a+780b,837b﹣780b=208a﹣189a,57b=19a,所以a=3b,所以A、B两校合并前人数的比是:(8a+7a):(30b+31b),=15a:61b,=45b:61b,=(45b÷b):(61b÷b)=45:61;答:A,B两校合并前人数比是45:61.故答案为:45:61.25.解:设男生有x人,(1﹣)x=152﹣x﹣5,x+x=147﹣x+x,x=147,x=77,答:该小学的六年级共有男生77名.故应填:77.26.解:420÷(1﹣40%﹣)=420÷0.35=1200(袋)答:宏富超市购进的这批食盐有1200袋.故答案为:1200.27.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.28.解:多个2相乘结果个位数字有一个规律:2、4、8、6每4个2相乘一个循环,多个3相乘结果个位数字有一个规律:3、9、7、1每4个3相乘一个循环,2013÷4=503…1,所以2013个2相乘后个位数字是2,2013个3相乘后个位数字是3,2013个4相乘后个位数字是4,1的任何次方都是1,5的任何次方的个位数字都是5,1+2+3+4+5=15所以12013+22013+32013+42013+52013的个位数字是5,所以除以5的余数是0;故答案为:0.29.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.30.解:1×2=2(平方厘米);答:六瓣花形阴影部分的面积是2平方厘米.故答案为:2.31.解:(1﹣)÷[(1+20%)×80%]=÷[120%×80%],=,=;185÷(+)=185÷,=180(天).答:按原速度建完,则需要180天.故答案为:180.32.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.故答案为:4,50.33.解:设计划用x天完成任务,那么原计划每天的工作效率是,提高后每天的工作效率是×(1+20%)=×=,前面完成工程的所用时间是天,提高工作效率后所用的实际是(185﹣)×天,所以,+(185﹣)××=1,+(185﹣)××﹣=1﹣,(185﹣)××=,(185﹣)×÷=÷,185﹣+=x+,x÷=185÷,x=180,答:工程队原计划180天完成任务.故答案为:180.34.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.35.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.36.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.37.解:189=3×3×3×7=27×7147=3×7×7=21×7正好是27×7=189中把27看成21×7=147所以这种商品的实际单价是21元,卖了7件.故答案为:21,7.38.解:40÷2=20(厘米)20÷2=10(厘米)3.14×202﹣3.14×102÷2×4=1256﹣628=628(平方厘米)答:阴影部分的面积是628平方厘米.故答案为:628.39.解:1﹣=×8=(小时)×33=(千米)÷=198(千米)答:甲、乙两地相距198千米.故答案为:198.40.解:甲商店:25×(1+10%)×(1﹣20%),=25×110%×80%,=27.5×0.8,=22(元);乙商店:25×(1﹣10%),=25×90%,=22.5(元);22.5﹣22=0.5(元);答:甲商店便宜,便宜了0.5元.故答案为:甲,0.5.。
平面图形计算(一) 经典图形:1 3 13 11.任意三角形 ABC 中,CD=-AC , EC= —BC ,则三角形CDE 的面积占总面积的=—(为什么?)343 4 42. 任意平行四边形中任意一点,分别连接四个顶点,构成的四个三角形中,上下两个三角形面积之和4.正方形的面积等于边长的平方,或者等于对角线的平方2,或者等于斜边的平方4.(为什么?)例题:例1 .如右图,三角形 ABC 的面积是10, BE=2AB , CD=3BC ,求三角形BDE 的面积。
例2.如图,已知三角形 ABC 的面积是1,延长AB 至D ,使BD=AB ,延长BC 至E ,使CE=2BC ,延 长CA 至F ,使AF=3AC ,求三角形 DEF 的面积。
FA B :C' DE等于左右两个三角形面积之和。
(为什么?) 3.任意梯形,连接对角线,构成四个三角形。
面积之积等于左右两个三角形面积之积。
(1)腰上的两个三角形面积相等; (2)上下两个三角形 (为什么?)2•等腰直角三角形面积等于直角边的平方例3.如图,三角形ABC的面积是180平方厘米,D是BC的中点,AE=ED , EF=2BF,求AEF的面积。
AKF与三角形ADG面积之和等于5平方厘米,DC=CE=3厘米。
求三角形BEK的面积。
例5.如图,三角形ABC的AB和AC两条边分别被分成5等分。
三角形ABC面积是500,求图中阴影部分的面积?4I%TTnnJkrn&^C例6.如图,设正方形ABCD的面积为120, E、F分别为边AB、AD的中点,FC=3GC,则阴影部分的面积是多少?例7.在如图所示的三角形AGH中,三角形ABC BCD CDE DEF,EFG FGH的面积分别是1 , 2, 3, 4, 5, 6平方厘米,那么三角形EFH的面积是多少平方厘米?例8.如图,在平行四边形ABCD中,AC为对角线,EF平行于AC如果三角形AED的面积为12平方厘米,,求三角形DCF的面积。
六年级奥数题及答案:图形(高等难度)1、如图,长方形ABCD中,E为的AD中点,AF与BE、B D分别交于G、H,OE垂直AD于E,交AF于O,已知A H=5cm,HF=3cm,求AG.2阴影面积:(高等难度)如右图,在以AB为直径的半圆上取一点C,分别以AC 和BC为直径在△ABC外作半圆AEC和BFC.当C点在什么位置时,图中两个弯月型(阴影部分)AEC和BFC的面积和最大。
3、巧克力豆:(高等难度)甲、乙、丙三人各有巧克力豆若干粒,要求互相赠送.先由甲给乙、丙,甲给乙、丙的豆数依次等于乙、丙原来各人所有豆数.依同办法,再由乙给甲、丙,所给豆数依次等于甲、丙各人现有的豆数.最后由丙给甲、乙,所给的豆数依次等于甲、乙各人现有的豆数.互赠后每人恰好各有豆32粒,问原来三人各有豆多少粒?4、得奖人数:(高等难度)六年级举行一次数学竞赛,共有若干名同学得奖,其中得一等奖的同学比余下的得奖人数的五分之一少三名,得二等奖的占领奖人数的三分之一,得三等奖的人数比二等奖的人数同学多21名,问得奖人数是多少?粮食问题:(高等难度)5、甲仓有粮80吨,乙仓有粮120吨,如果把乙仓的一部分粮调入甲仓,使乙仓存粮是甲仓的60%,需要从乙仓调入甲仓多少吨粮食?6、分苹果:(高等难度)有一堆苹果平均分给幼儿园大、小班小朋友,每人可得6个,如果只分给大班每人可得10个,问只分给小班时,每人可得几个?、7、巧算:(中等难度)计算:8、四位数:(中等难度)某个四位数有如下特点:①这个数加1之后是15的倍数;②这个数减去3是38的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除,求这个四位数.9跑步狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
问:狗再跑多远,马可以追上它?、10排队有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()、11路程A,B,C三地的距离(单位:千米)如左下图所示。
六年级举一反三b版奥数题及答案六年级奥数题目通常涉及一些基础的数学概念和技巧,比如分数、比例、几何、数列等。
以下是一些典型的六年级奥数题目及答案:1. 题目:一个长方体的长、宽、高分别为20厘米、15厘米和10厘米。
如果将这个长方体的长缩短5厘米,宽增加5厘米,高度不变,那么新长方体的体积是原来的多少倍?答案:首先计算原长方体的体积:20cm × 15cm × 10cm = 3000立方厘米。
然后计算新长方体的长、宽、高分别为15cm、20cm和10cm,体积为:15cm × 20cm × 10cm = 3000立方厘米。
新长方体的体积与原长方体的体积相同,所以是1倍。
2. 题目:一个数列的前三项是2、5、10,从第四项开始,每一项都是其前三项的和。
求这个数列的第10项。
答案:根据题意,数列为2、5、10、17、29、50、87、152、265、457。
第10项是457。
3. 题目:一个班级有40名学生,其中3/5的学生喜欢数学,2/3的学生喜欢英语。
如果喜欢数学和英语的学生人数之和是31人,那么既不喜欢数学也不喜欢英语的学生有多少人?答案:喜欢数学的学生有40 × 3/5 = 24人,喜欢英语的学生有40 × 2/3 = 26.67人,取整数为26人。
喜欢数学和英语的学生有24 + 26 - 31 = 19人。
因此,既不喜欢数学也不喜欢英语的学生有40 - 19 = 21人。
4. 题目:一个水池有A、B两个进水管,单独打开A管注满水池需要3小时,单独打开B管需要5小时。
如果A、B两管同时打开,需要多少时间才能注满水池?答案: A管每小时注水1/3池,B管每小时注水1/5池。
两管同时打开,每小时注水量为1/3 + 1/5 = 8/15池。
所以,注满水池需要的时间是1 ÷ (8/15) = 15/8 = 1.875小时,即1小时52.5分钟。
六下第三单元圆柱与圆锥提高题和奥数题(附答案)板块一圆柱的认识例题1.选择哪些材料恰好能做成一个圆柱形的盒子?d=2cm d=3cm d=4cmA B C练习1.在下面的材料中,选择()能做成圆柱。
3号4号 5号A.1号、2号和3号B.1号、4号和5号C.1号、2号和4号例题2.一个圆柱的底面直径是6.28cm,高是4.5cm.如果沿底面直径垂直于底面把这个圆柱切成完全相同的两半,那么切面的面积是多少?练习2.(1)一个底面周长是9.42厘米,商是5厘米的圆柱,沿底面直径垂直于底面把它切割成两个半圆柱后,切面的面积一共是多少平方厘米?(2)把一个圆柱的侧面沿高展开后得到一个正方形,这个圆柱的商与底面直径的比是多少?例题3.一个圆柱形蛋糕盒的底面直径是20厘米,高是15厘米,用彩绳将它捆扎(如右图),打结处在圆心,打结部分长30厘米。
求所用彩绳的全长是多少厘米?练习3.一个圆柱形蛋糕用彩绳捆扎,如果打结部分用了35厘米,打结处在圆心,一共用了多长彩绳?板块二圆柱的表面积例题1.一块长方形的钢板,利用图中阴影部分刚好能做成一个圆柱形的带盖水桶(接头处忽略不计),求这个水桶的表面积。
练习 1.(1)如下图,有一张长方形铁皮,剪下两个圆及一个长方形,正好可以做成一个圆柱,这个圆柱的底面半径为10厘米,原来这张长方形铁皮的面积是多少平方厘米?(2)有一张长方形铁皮(尺寸如图所示),剪下阴影部分正好能围成一个圆柱,求圆柱的表面积是多少。
例题2.工人师傅要在一个零件(如右图)的表面涂一层防锈材料。
这个零件是由两个圆柱构成的,小圆柱的直径是4厘米,高是2厘米;大圆柱的直径是6厘米,高是5厘米。
这个零件涂防锈材料的面积是多少?练习2.用3个高都是2分米,底面半径分别为2分米、1分米和0.5分米的圆柱组成一个物体(如图),求该物体的表面积。
例题3.如图,是长为8,宽为4的长方形,以长方形的长为轴旋转一周。
求所形成的立体图形的表面积。
平面图形计算(一)经典图形:1. 任意三角形ABC 中,CD=31AC ,EC=43BC ,则三角形CDE 的面积占总面积的31⨯43=41(为什么?)2. 任意平行四边形中任意一点,分别连接四个顶点,构成的四个三角形中,上下两个三角形面积之和等于左右两个三角形面积之和。
(为什么?)3. 任意梯形,连接对角线,构成四个三角形。
(1)腰上的两个三角形面积相等;(2)上下两个三角形面积之积等于左右两个三角形面积之积。
(为什么?)4. 正方形的面积等于边长的平方,或者等于对角线的平方÷2.等腰直角三角形面积等于直角边的平方÷2,或者等于斜边的平方÷4.(为什么?)例题: 例1. 如右图,三角形ABC 的面积是10,BE=2AB ,CD=3BC ,求三角形BDE 的面积。
例2. 如图,已知三角形ABC 的面积是1,延长AB 至D ,使BD=AB ,延长BC 至E ,使CE=2BC ,延长CA 至F ,使AF=3AC ,求三角形DEF 的面积。
例3. 如图,三角形ABC 的面积是180平方厘米,D 是BC 的中点,AE=ED ,EF=2BF ,求AEF 的面积。
例4. 如图,ABCD 是个长方形,DEFG 是个平行四边形,E 点在BC 边上,FG 过A 点,已知,三角形AKF 与三角形ADG 面积之和等于5平方厘米,DC=CE=3厘米。
求三角形BEK 的面积。
FK BEC DGA例5. 如图,三角形ABC 的AB 和AC 两条边分别被分成5等分。
三角形ABC 面积是500,求图中阴影部分的面积?例6. 如图,设正方形ABCD 的面积为120,E 、F 分别为边AB 、AD 的中点,FC=3GC ,则阴影部分的面积是多少?ABC DFEG例7. 在如图所示的三角形AGH 中,三角形ABC ,BCD ,CDE ,DEF,EFG ,FGH 的面积分别是1,2,3,4,5,6平方厘米,那么三角形EFH 的面积是多少平方厘米?ABCD EFG H例8. 如图,在平行四边形ABCD 中,AC 为对角线,EF 平行于AC ,如果三角形AED 的面积为12平方厘米,,求三角形DCF 的面积。
图形提高(三)【精典习题】1.如图,一长方形中画了些直线,已知其中的三块面积分别为13平方分米、35平方分米、49平方分米,问阴影部分面积是多少2.长方形的长是8cm,宽是6cm,三角形AOB的面积为16cm2,求ODC∆的面积。
3.如图,在长方形ABCD中,AB长8厘米,BC长15厘米,四边形EFGH的面积是9平方厘米,那么阴影部分面积的和是平方厘米。
4.如图所示,在平行四边形ABCD中,E、F与对角线B、D平行,问:与ADE∆的面积相等的三角形在图中共有几个5.如图所示,平行四边形ABCD中,ADG∆面积是5平方厘米,ABDEGFAEB4913∆的面积是3平方厘米,问∆面积是平方厘米,PHFDHC∆的面积是多少平方厘米PEG6.如图所示,O是平行四边形ABCD内的一点,AD=3DE。
已知三个空白三角形面积分别是19,20,35平方厘米,三角形BOC的面积是多少平方厘米7.如下图,ABCD是个长方形,DEFG是个平行四边形,E点在BC边上,FG过A点,已知,三角形AKF与三角形ADG面积之和等于5平方厘米。
DC=CE=5厘米。
求BEK∆的面积。
7.如图,ABCD是长方形,图中的数字是各部分的面积数,则图中阴影部分的面积为______。
8.如图,正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四边各分成两段,其中长的一段是短的2倍。
这个长方形的面积是多少9.有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合(如右图),已知露在外面的部分中,红色面积是24,黄色面积是14,绿色面积是10,那么正方形盒子的面积是多少10.如图,下面△AOB和△ DOC的面积分别为20平方厘米和24平方厘米,长方形AODE的面积为30平方厘米,求△BOC的面积为多少平方厘米10.这是一块正方形的地板砖示意图。
其中AA1=AA2=BB1=BB2=CC1=CC2=DD1=DD2。
红色小正方形的面积是4,绿色的四块面积和是18。
求这个大正方形ABCD的面积。
请说明理由。
绿绿绿红D CC1C2D2D1红黄绿EODCBA10.如图,四边形ABCD被AC和BD分成甲、乙、丙、丁四部分,已知BE=60厘米,CE=40厘米,DE=30厘米,AE=80厘米。
问丙、丁两个三角形的面积之和是甲、乙两个三角形的面积之和多少倍11.如图:梯形ABCD的面积为34cm2,AE=BF,CE与DF相交于O,OCD∆的面积为11cm2,求蝶形(阴影部分)的面积。
12.如图,正方形的边长为10厘米,四边形ABCD的面积为6平方厘米。
那么阴影部分的面积为多少平方厘米13.如图长方形ABCD中,已知SABG∆=17平方厘米,SDCH∆=23平方厘米,求四边形EHFG的面积。
OEFFA14.如右图,在梯形ABCD中,对角线AC、BD相交于O点,OE平行于AB交腰BC于E点,如果三角形OBC的面积是9平方厘米,那么三角形ADE的面积是__________平方厘米。
15.如图,边长为5的正方形与另一个小正方形并排放在一起,问阴影AEG∆的面积是多少16.两个形状和大小都一样的直角三角形∆ABC与∆DEF,如图,它们的面积都是2003平方厘米,而每一个三角形直角的顶点都恰好落在另一个直角三角形的斜边上。
这两个直角三角形的重叠部分是一个长方形,那么四边形ADEC的面积为平方厘米。
17.如图,ABCD是长方形,ACGD为梯形,求阴影部分面积。
(单位:厘米)DA BG18.如图,BD,CF 将长方形ABCD 分成4块,红色三角形 面积是4平方厘米,黄色三角形面积是6平方厘米,问绿色 四边形面积是多少平方厘米图形提高(四)1.图中外侧的四边形是一边长为10厘米的正方形, 求阴影部分的面积.2.在一个9 6的长方形内,有一个四边形EFGH (如右图)。
DF 比CH 少1,AG 比DE 少1,求四边形 EFGH 的面积3.长方形的广告牌长为10米,宽为8米,A ,B ,C , D 分别在四条边上,并且C 比A 低5米,D 在B 的左边 2米,求四边形ABCD 的面积4.在一个正方形水池的四周,环绕着一条宽2米的路(如图), 这条路的面积是120平方米,那么水池的面积是______ 平方米。
CBDAFE红黄ADCCA GB E5.2002年将在北京召开国际数学家大会,大会会标如图所示,它是由四个相同的直角三角形撑拼成的(直角边长分别为2和3),问:大正方形的面积是多少6.一个斜边是40厘米的直角三角形,两条直角边之差是6厘米,则这个直角三角形的面积是多少平方厘米7.如图,大正方形面积为27平方厘米,小正方形面积为3平方厘米,求A、C两个梯形的面积之和是多少8.有4个相同的非等腰直角三角形,每个三角形的两条直角边的长都是大于1的整厘米数,面积为9平方厘米,用这四个AB DC8228直角三角形不重叠、不剪拼,围成含有两个正方形的图案的图形, 这种图形中最小的正方形面积是多少最大的正方形面积是多少9.下图中5个阴影所示的图形都是正方形,所标的数字是邻近线段的长度。
那么,阴影所示的5个正方形的面积之和是 。
10.在直角边为3与4的直角三角形各边上向外 分别作正方形,三个正方形顶点顺次连接如图所示的六边 形ABCDEF 。
求这个六边形的面积是多少11.如图,CDEF 是正方形,ABCD 是等腰梯形, 它的上底AD=23cm ,下底BC=35cm 。
求三角形ADE 的面积。
12.有一个长方形,它的长与宽的比是5:2,对角 线长29cm ,求这个长方形的面积。
ABCDEF 43 DABC EF2913.从一个正方形的木板上锯下宽0.5m的一个长方形木条后,剩下的长方形面积为5m2,问锯下的长方形木条面积是多少14.一张长14厘米,宽11厘米的长方形纸片最多能栽出多少个长4厘米,宽1厘米的纸条怎样栽请画图说明。
15.P是正方形ABCD外面一点,PB=12厘米。
APB∆的面积是90平方厘米,CPB∆的面积是48平方厘米。
请你回答:正方形ABCD的面积是多少平方厘米16.如图所示,直角三角形PQR的直角边为5厘米,9厘米。
问图中3个正方形面积之和比4个三角形面积之和大多少17.在直角梯形ABCD中,AD=3厘米,AB=4厘米,BC=6厘米,BE将梯形分成面积相等的两部分,求DE的长。
18.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米。
一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少米19.图中是一个直圆柱形状的玻璃杯,一个长为12厘米的直棒状细吸管(不考虑吸管精细)放在玻璃杯内。
当吸管一端接触圆柱下底面时,另一端沿吸管最少可露出上底面边缘2厘米,最多能露出4厘米。
则这个玻璃杯底面上的AB= 厘米。
(取14π)=.320.长方体的三条棱长分别为3、4、12,对角线AC的长度为多少21.三角形ABC为直角三角形,分别以三边为直径画半圆,其中从AB为直径的半圆面积为36,求另外两个半圆的面积。
图形提高(五)【知识要点】等底等高的两个平行四边形的面积相等;等底等高的两个三角形面积相等;两底之和相等,且高相等的两个梯形面积相等;等底等高的平行四边形面积是三角形面积的2倍。
在解题中,若能灵活运用这些知识,可使解题妙趣横生,简单易行。
【精典习题】1.如图,直角梯形ABCD的上底和高相等,正方形DEFG的边长等于6厘米,阴影部分的面积是多少平方厘米2.右图中,AFCD是一个长方形,AB=10厘米,AD=4厘米,E、F分别是BC、AD的中点,G是线段CD上任意一点。
阴影部分的面积是多少平方厘米AB C3.如图,已知长方形的长是8厘米,宽是4厘米,图中阴影部分面积是10平方厘米,求OD长多少厘米4.如图,长方形ABCD中,E,F,G分别是BC,CD,DA边上的中点,已知长方形ABCD的面积是30平方厘米,求阴影部分面积。
5.如下图所示,有一个宽4cm,长6cm的长方形ABCD。
在各个边上取点E、F、G、H,在连结H、F的线上取点P,与点E与点G相连。
当四边形AEPH的面积是5cm2时,求四边形PFCG的面积。
6.如图,长正方形的面积是120平方厘米,点D,E分别是两边的中点,求阴影部分的面积。
DEAB CGEDFAG CEB7.如图,△ABC 是一个等边三角形,D 是AB 的中点,三角形BDE 的面积是5平方厘米,求△ABC 的面积。
8.如图,已知△ABC 的面积是36平方厘米,是平行四边行CDEF 面积的2倍。
求阴影部分三角形的面积。
9.如图,△ABC 中,如果BD=DE=EC ,BF=FA ,△FDE 面积是1 平方厘米,△ABC 的面积是多少平方厘米10.图中三角形ABC 的面积是180平方厘米,D 是BC 的中点, AD 的长是AE 长的3倍, EF 的长是BF 长的3倍.那么三角形AEF 的面积是多少平方厘米11.如图,把四边形ABCD 的各边都延长2倍,得到一个新四边形 EFGH 如果ABCD 的面积是5平方厘米,则EFGH 的面积是多少平方厘米ABC DEFAF BD E CADBC12.如图,平行四边形ABCD周长为75厘米.以BC为底时高是14厘米;以CD为底时高是16厘米.求平行四边形ABCD的面积.13.如图,在△ABC中,AD垂直于BC,CE垂直于AB,AD=8厘米,CE=7厘米,AB+BC=21厘米,求△ABC的面积。
14.如图,一个正方形被分成4个小长方形,它们的面积分别是1 10平方米、15平方米、310平方米和25平方米.已知图中的阴影部分是正方形,那么它的面积是多少平方米15.图中大长方形分别由面积为12平方厘米、24平方厘米、36平方厘米、48平方厘米的四个小长方形组成,那么图中的阴影面积为。
CDB16.如图所示,三角形ABC被线段DE分成三角形BDE和四边形ACDE两部分,问:三角形BDE的面积是四边形ACDE面积的几分之几17.如图所示,长方形AEGH与正方形BFGH的面积比为3:2,则正方形ABCD的面积是正方形BFGH的面积的______ 倍(结果写成小数)18.边长为10和15的两个正方形并放在一起,求三角形ABC(阴影部分)的面积。
19.图中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角形的面积分别是6公顷和7公顷.那么最大的一个三角形的面积是多少公顷20.三条边长分别为5厘米,12厘米,13厘米的直角三角形纸片,如图(a),将短直角边对折到斜边,且与斜边对齐,图(b),求三角形未被覆盖部分的面积,即图中的白区的面积ABCD1015为平方厘米。
(a)(b)。