最新高中理科数学绝杀80题 解析几何模拟篇学生版
- 格式:pdf
- 大小:484.94 KB
- 文档页数:8
2023 解几大题热点50 题训练一.解答题(共50 小题)1.(2023•五华区校级模拟)已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为F ,C 的两条渐近线分别与直线2a x c=交于A ,B 两点,且AB 的长度恰好等于点F (1)求双曲线的离心率;(2)已知过点F 且斜率为1的直线l 与双曲线交于M ,N 两点,O 为坐标原点,若对于双曲线上任意一点P ,均存在实数λ,μ,使得OP OM ON λμ=+,试确定λ,μ的等量关系式.2.(2023•江西模拟)已知点F 为抛物线2:2(0)C y px p =>的焦点,点(4,)M a 在抛物线上,且||6FM =.(1)求抛物线C 的方程;(2)过点F 分别作两条互相垂直的直线与抛物线C 分别交于A ,B 与P ,Q ,记AFP ∆,BFQ ∆的面积分别为1S ,2S ,求12S S +的最小值.3.(2023•潍坊模拟)已知动点P 与两定点1(2,0)A -,2(2,0)A ,直线1PA 与2PA 的斜率之积为34-,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设(D a ,0)(12)a <<,E 为直线2x a =上一动点,直线DE 交曲线C 于G ,H 两点,若||GD 、||HE 、||GE 、||HD 依次为等比数列{}n b 的第m 、n 、p 、q 项,且m n p q +=+,求实数a 的值.4.(2023•西安模拟)已知椭圆2222:1(0)x y C a b a b +=>>的焦点为1F 、2F ,离心率为22,直线:0l x y m ++=,1F 、2F 在直线l 上的射影分别为M 、N ,且||MN =.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,(2,0)P -.求ABP ∆的面积的最大值.5.(2023•聊城一模)已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,一条渐近线的倾斜角为60︒,且C 上的点到F 的距离的最小值为1.(1)求C 的方程;(2)设点(0,0)O ,(0,2)M ,动直线:l y kx m =+与C 的右支相交于不同两点A ,B ,且AFM BFM ∠=∠,过点O 作OH l ⊥,H 为垂足,证明:动点H 在定圆上,并求该圆的方程.6.(2023•周至县二模)如图,已知椭圆2222:1(0)y x E a b a b +=>>的一个焦点为1(0,1)F ,离心率为22.(1)求椭圆E 的方程;(2)过点I F 作斜率为k 的直线交椭圆E 于A ,B 两点,AB 的中点为M .设O 为原点,射线OM 交椭圆E 于点C .当四边形OACB 为平行四边形时,求k的值.7.(2023•太原模拟)已知椭圆2222:1(0)x y C a b a b+=>>的右顶点为A ,上顶点为B ,其离心率12e =,直线AB 与圆22127x y +=相切.(1)求椭圆C 的方程;(2)过点M 的直线与椭圆C 相交于P ,Q 两个不同点,过点P 作x 轴的垂线分别与AB ,AQ 相交于点D 和N ,证明:D 是PN 中点.8.(2023•江苏模拟)已知直线l 与抛物线21:2C y x =交于两点1(A x ,1)y ,2(B x ,2)y ,与抛物线22:4C y x =交于两点3(C x ,3)y ,4(D x ,4)y ,其中A ,C 在第一象限,B ,D 在第四象限.(1)若直线l 过点(1,0)M,且11||||BM AM -=l 的方程;(2)①证明:12341111y y y y +=+;②设AOB ∆,COD ∆的面积分别为1S ,2(S O 为坐标原点),若||2||AC BD =,求12S S .9.(2022秋•滨江区校级期末)已知1F ,2F 为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点.点M 为椭圆上一点,当12F MF ∠取最大值3π时,121()6MF MF MF +⋅= .(1)求椭圆C 的方程;(2)点P 为直线4x =上一点(且P 不在x 轴上),过点P 作椭圆C 的两条切线PA ,PB ,切点分别为A ,B ,点B 关于x 轴的对称点为B ',连接AB '交x 轴于点G .设△2AF G ,△2BF G 的面积分别为1S ,2S ,求12||S S -的最大值.10.(2023春•广东月考)已知点(1,0)F ,点P 为平面上的动点,过点P 作直线:1l x =-的垂线,垂足为Q ,且QP QF FP FQ ⋅=⋅ .(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)设点P 的轨迹C 与x 轴交于点M ,点A ,B 是轨迹C 上异于点M 的不同的两点,且满足0MA AB ⋅=,求||MB的最小值.11.(2023春•商丘月考)已知动点P 到直线8y =-的距离比到点(0,1)的距离大7.(Ⅰ)求动点P 的轨迹方程;(Ⅱ)记动点P 的轨迹为曲线C ,点M 在直线1:1l y =-上运动,过点M 作曲线C 的两条切线,切点分别为A ,B ,点N 是平面内一定点,线段MA ,NA ,NB ,MB 的中点依次为E ,F ,G ,H ,若当M 点运动时,四边形EFGH 总为矩形,求定点N 的坐标.12.(2023•铜仁市模拟)已知双曲线2222:13x y C a a -=-的一条渐近线方程为20x y -=,若过点(0,3)E -的直线l 交C 于A ,B 两点.(1)求直线l 的斜率范围;(2)若l 交C 的两条渐近线于C ,D 两点且满足CA AB BD ==,求直线l 的斜率的大小.13.(2023•抚顺模拟)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点坐标为(1,0)-,A ,B 分别是椭圆的左、右顶点,点(,)D x y 在椭圆C 上,且直线AD 与BD 的斜率之积为34-.(1)求椭圆C 的标准方程;(2)设直线230x ty +-=与椭圆分别相交于M ,N 两点,直线(MO O 为坐标原点)与椭圆的另一个交点为E ,求MNE ∆的面积S 的最大值.14.(2023•湛江一模)已知1F ,2F 分别为椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,椭圆E 的离心率为12,过2F 且不与坐标轴垂直的直线l 与椭圆E 交于A ,B 两点,△1F AB 的周长为8.(1)求椭圆E 的标准方程;(2)过1F 且与l 垂直的直线l '与椭圆E 交于C ,D 两点,求四边形ACBD 面积的最小值.15.(2023•辽宁一模)如图,A ,B ,C ,D 是抛物线2:4E y x =上的四个点(A ,B 在x 轴上方,C ,D 在x 轴下方),已知直线AC 与BD 的斜率分别为63-和2,且直线AC 与BD 相交于点P .(1)若点A 的横坐标为6,则当ADC ∆的面积取得最大值时,求点D 的坐标.(2)试问||||||||PA PC PB PD ⋅⋅是否为定值?若是,求出该定值;若不是,请说明理由.16.(2023•咸阳二模)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,且椭圆C 过点(2,0)-,离心率为12.(1)求椭圆C 的方程;(2)若点1(M x ,1)y 是椭圆22221(0)x y m n m n+=>>上任一点,那么椭圆在点M 处的切线方程为11221x x y y m n +=.已知0(N x ,0)y 是(1)中椭圆C 上除顶点之外的任一点,椭圆C 在N 点处的切线和过N 点垂直于切线的直线分别与y 轴交于点P 、Q .求证:点P 、N 、Q 、1F 、2F 在同一圆上.17.(2023•赤峰三模)法国数学家加斯帕尔⋅蒙日是19世纪著名的几何学家,他创立了画法几何学,推动了空间解析几何学的独立发展,奠定了空间微分几何学的宽厚基础,根据他的研究成果,我们定义:给定椭圆2222:1(0)x y C a b a b +=>>,则称圆心在原点O 的圆为“椭圆C 的伴随圆”,已知椭圆22221(0)x y a b a b +=>>的一个焦点为F ,其短轴的一个端点到焦点F (1)若点A 为椭圆C 的“伴随圆”与x 轴正半轴的交点,B ,D 是椭圆C 的两相异点,且BD x ⊥轴,求AB AD ⋅的取值范围.(2)在椭圆C 的“伴随圆”上任取一点P ,过点P 作直线1l ,2l ,使得1l ,2l 与椭圆C 都只有一个交点,试判断1l ,2l 是否垂直?并说明理由.18.(2023•开封二模)如图,过抛物线2:2(0)E x py p =>的焦点F 作直线l 交E 于A ,B 两点,点A ,B 在x 轴上的射影分别为D ,C .当AB 平行于x 轴时,四边形ABCD 的面积为4.(1)求p 的值;(2)过抛物线上两点的弦和抛物线弧围成一个抛物线弓形,古希腊著名数学家阿基米德建立了这样的理论:以抛物线弓形的弦为底,以抛物线上平行于弦的切线的切点为顶点作抛物线弓形的内接三角形,则抛物线弓形的面积等于该内接三角形面积的43倍.已知点P 在抛物线E 上,且E 在点P 处的切线平行于AB ,根据上述理论,从四边形ABCD 中任取一点,求该点位于图中阴影部分的概率为12时直线l 的斜率.19.(2023•吉州区校级一模)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若C 过点3(1,2A ,且12|||4AF AF +=.(1)求C 的方程;(2)过点2F 且斜率为l 的直线与C 交于点M 、N ,求OMN ∆的面积.20.(2023•毕节市模拟)在圆22:1O x y +=上任取一点P ,过点P 作y 轴的垂线,垂足为D ,点Q 满足2DQ PQ =.当点P 在圆O 上运动时,点Q 的轨迹为曲线C .(1)求曲线C 的方程;(2)设曲线C 与y 轴正半轴交点为A ,不过点A 的直线l 与曲线C 交于M ,N 两点,若0AM AN ⋅=,试探究直线l 是否过定点.若过定点,求出该点的坐标;若不过定点,请说明理由.21.(2023•大庆模拟)已知椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,短轴长为.(1)求椭圆C 的方程;(2)已知经过定点(1,1)P 的直线l 与椭圆相交于A ,B 两点,且与直线34y x =-相交于点Q ,如果AQ AP λ= ,QB PB μ=,那么λμ+是否为定值?若是,请求出具体数值;若不是,请说明理由.22.(2023•成都模拟)已知中心为坐标原点O ,对称轴为坐标轴的椭圆C 经过P ,3,Q ,3两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点(0,1)的直线l 与椭圆C 相交于A ,B 两点,23OD OB = ,OE OD OA =+,且点E 在椭圆C 上,求直线l 的方程.23.(2023•湖南模拟)在平面直角坐标系xOy 中,双曲线2222:1(0,0)y x C a b a b-=>>的焦点到渐近线的距离(1)求C 的方程;(2)如图,点A 为双曲线的下顶点,点P 在y 轴上(位于原点与上顶点之间),过P 作x 轴的平行线l ,过P 的另一条直线交双曲线于G ,H 两点,直线AG ,AH 分别与l 交于M ,N 两点,若ANM AOM π∠+∠=,求点P 的坐标.24.(2023•贵州模拟)已知抛物线2:2(0)C x py p =>上的点0(2,)y 到其焦点F 的距离为2.(1)求抛物线C 的方程;(2)已知点D 在直线:3l y =-上,过点D 作抛物线C 的两条切线,切点分别为A ,B ,直线AB 与直线l 交于点M ,过抛物线C 的焦点F 作直线AB 的垂线交直线l 于点N ,当||MN 最小时,求||||AB MN 的值.25.(2023•广西模拟)已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)若P 为直线:2l x =-上的一动点,过P 作抛物线C 的切线PA ,PB ,A ,B 为切点,直线AB 与l 交于点M ,过F 作AB 的垂线交l 于点N ,当||MN 最小时.求||AB .26.(2023•昆明一模)已知过点(1,)e 的椭圆2222:1(0)x y E a b a b+=>>的焦距为2,其中e 为椭圆E 的离心率.(1)求E 的标准方程;(2)设O 为坐标原点,直线l 与E 交于A ,C 两点,以OA ,OC 为邻边作平行四边形OABC ,且点B 恰好在E 上,试问:平行四边形OABC 的面积是否为定值?若是定值,求出此定值;若不是,说明理由.27.(2023•全国一模)已知双曲线2222:1(0,0)x y C a b a b-=>>过点(3,A ,且渐近线方程为0x ±=.(1)求双曲线C 的方程;(2)如图,过点(1,0)B 的直线l 交双曲线C 于点M 、N .直线MA 、NA 分别交直线1x =于点P 、Q ,求||||PB BQ 的值.28.(2023•邯郸一模)已知椭圆2222:1(0)x y C a b a b+=>>的离心率与双曲线221x y -=的离心率互为倒数,点(2,2)A 在椭圆C 上,不过点A 的直线l 与椭圆C 交于P ,Q 两点.(1)求椭圆C 的标准方程;(2)若直线AP ,AQ 的斜率之和为1,试问直线l 是否过定点?若过定点,求出此定点;若不过定点,请说明理由.29.(2023•成都模拟)已知1F ,2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,与椭圆C 有相同焦点的双曲线2214x y -=在第一象限与椭圆C 相交于点P ,且2||1PF =.(1)求椭圆C 的方程;(2)设直线1y kx =+与椭圆C 相交于A ,B 两点,O 为坐标原点,且(0)OD mOB m =>.若椭圆C 上存在点E ,使得四边形OAED 为平行四边形,求m 的取值范围.30.(2023•商洛一模)已知1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,Q 是椭圆E 的右顶点,2||1F Q =,且椭圆E 的离心率为12.(1)求椭圆E 的方程.(2)过1F 的直线交椭圆E 于A ,B 两点,在x 轴上是否存在一定点P ,使得1()||||PA PBPF PA PB λ=+,λ为正实数.如果存在,求出点P 的坐标;如果不存在,说明理由.31.(2023•石景山区一模)已知椭圆2222:1(0)x y C a b a b+=>>过点,且离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点(1,1)P -且互相垂直的直线1l ,2l 分别交椭圆C 于M ,N 两点及S ,T 两点.求||||||||PM PN PS PT 的取值范围.32.(2023•西城区校级模拟)已知点A ,B 是椭圆2222:1(0)x y E a b a b+=>>的左,右顶点,椭圆E 的短轴长为2,离心率为32.(1)求椭圆E 的方程;(2)点O 是坐标原点,直线l 经过点(2,2)P -,并且与椭圆E 交于点M ,N ,直线BM 与直线OP 交于点T ,设直线AT ,AN 的斜率分别为1k ,2k ,求证:12k k 为定值.33.(2023•江西模拟)设椭圆E 的方程为2221(1)x y a a+=>,点O 为坐标原点,点A ,B 的坐标分别为(,0)a ,(0,1),点M 在线段AB 上,满足||2||BM MA =,直线OM 的斜率为14.(1)求椭圆的方程;(2)若动直线l 与椭圆E 交于P ,Q 两点,且恒有OP OQ ⊥,是否存在一个以原点O 为圆心的定圆C ,使得动直线l 始终与定圆C 相切?若存在,求圆C 的方程,若不存在,请说明理由.34.(2023•天津模拟)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,直线:1l x =与C 交于M ,N 两点,且||MN =(1)求C 的方程;(2)若C 的左、右顶点分别为A ,B ,点D (不同于M ,)N 为直线l 上一动点,直线AD ,BD 分别与C 交于点P ,Q ,证明:直线PQ 恒过定点,并求出该定点的坐标.35.(2023•江西模拟)已知椭圆2222:1(,02)x y C a b b a b+=><<的左、右焦点分别为1F ,2F ,点M 在椭圆上,212MF F F ⊥,若△12MF F 的周长为6,面积为32.(1)求椭圆C 的标准方程;(2)过点2F 的直线l 交椭圆于A ,B 两点,交y 轴于P 点,设1222,PA AF PB BF λλ==,试判断12λλ+是否为定值?请说明理由.36.(2023•兴庆区校级一模)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为2,经过点3(1,2,若点P 是椭圆C上一个动点(异于椭圆C 的左右顶点),点(3,0)N -,(2,0)E -,(2,0)F ,直线PN 与曲线C 的另一个公共点为Q ,直线EP 与FQ 交于点M .(1)求椭圆C 的标准方程;(2)求证:当点P 变化时,点M 恒在一条定直线上.37.(2023•渝中区校级模拟)已知椭圆2222:1x y C a b+=的焦点在x 轴上,它的离心率为12,且经过点23(3P .(1)求椭圆C 的方程;(2)若椭圆C 的左焦点为F ,过点F 的直线l 与椭圆C 交于A ,B 两点,且过点A ,B 和点2Q 的圆的圆心在x 轴上,求直线l 的方程及此圆的圆心坐标.38.(2023•兴庆区校级一模)如图所示,由半椭圆2212:1(0)4x y C y b += 和两个半圆222:(1)1(0)C x y y ++= 、223:(1)1(0)C x y y -+= 组成曲线:(,)0C F x y =,其中点1A ,2A 依次为1C 的左、右顶点,点B 为1C 的下顶点,点1F ,2F 依次为1C 的左、右焦点.若点1F ,2F 分别为曲线2C ,3C 的圆心.(1)求1C 的方程;(2)若过点1F ,2F 作两条平行线1l ,2l 分别与1C ,2C 和1C ,3C 交与M ,N 和P ,Q ,求||||MN PQ +的最小值.39.(2023•浙江模拟)已知双曲线E 的顶点为(1,0)A -,(1,0)B ,过右焦点F 作其中一条渐近线的平行线,与另一条渐近线交于点G ,且4OFG S ∆=.点P 为x 轴正半轴上异于点B 的任意点,过点P 的直线l 交双曲线于C ,D 两点,直线AC 与直线BD 交于点H .(1)求双曲线E 的标准方程;(2)求证:OP OH ⋅为定值.40.(2023•呼和浩特模拟)已知椭圆22221(0)x y a b a b +=>>的一个焦点为(2,0)F ,且离心率e =.(1)求椭圆的标准方程;(2)设点A 、B 是x 轴上的两个动点,1)M -且||||AM BM =,直线AM 、BM 分别交椭圆于点P 、Q (均异于)M ,证明:直线PQ 的斜率为定值.41.(2023•龙岩模拟)已知椭圆2222:1(0)x y K a b a b+=>>的左、右焦点分别为1(2,0)F -,2(2,0)F ,过右焦点2F 的直线l 交椭圆K 于M ,N 两点,以线段2||MF 为直径的圆C 与圆221:8C x y +=内切.(1)求椭圆K 的方程;(2)过点M 作ME x ⊥轴于点E ,过点N 作NQ x ⊥轴于点Q ,OM 与NE 交于点P ,是否存在直线l 截得PMN ∆的面积等于62若存在,求出直线l 的方程;若不存在,请说明理由.42.(2023•济宁一模)已知直线10x y ++=与抛物线2:2(0)C x py p =>相切于点A ,动直线l 与抛物线C 交于不同两点M ,(N M ,N 异于点)A ,且以MN 为直径的圆过点A .(1)求抛物线C 的方程及点A 的坐标;(2)当点A 到直线l 的距离最大时,求直线l 的方程.43.(2023•宁波模拟)已知双曲线2222:1(,0)x y C a b a b-=>的渐近线与曲线21:22E y x =+相切.横坐标为t 的点P 在曲线E 上,过点P 作曲线E 的切线l 交双曲线C 于不同的两点A ,B .(1)求双曲线C 的离心率;(2)记AB 的中垂线交x 轴于点M .是否存在实数t ,使得30APM ∠=︒?若存在,请求出t 的值;若不存在,请说明理由.44.(2023•沙坪坝区校级模拟)已知双曲线2222:1(0,0)x y C a b a b-=>>的实轴长为F 到双曲线C 的渐近线距离为1.(1)求双曲线C 的方程;(2)点P 在第一象限,P ,Q 在直线12y x =上,点P ,A ,B 均在双曲线C 上,且AQ x ⊥轴,M 在直线AQ 上,P ,M ,B 三点共线.从下面①②中选取一个作为条件,证明另外一个成立:①Q 是AM 的中点;②直线AB 过定点(0,1)T .45.(2023•石家庄模拟)已知点(4,3)P 在双曲线2222:1(0,0)x y C a b a b-=>>上,过P 作x 轴的平行线,分别交双曲线C 的两条渐近线于M ,N 两点,||||4PM PN ⋅=.(Ⅰ)求双曲线C 的方程;(Ⅱ)若直线:l y kx m =+与双曲线C 交于不同的两点A ,B ,设直线PA ,PB 的斜率分别为1k ,2k ,从下面两个条件中选一个(多选只按先做给分),证明:直线l 过定点.①121k k +=;②121k k =.46.(2023•广州模拟)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,以C 的短轴为直径的圆与直线6y ax =+相切.(1)求C 的方程;(2)直线:(1)(0)l y k x k =- 与C 相交于A ,B 两点,过C 上的点P 作x 轴的平行线交线段AB 于点Q ,直线OP 的斜率为(k O '为坐标原点),APQ ∆的面积为1.S BPQ ∆的面积为2S ,若21||||AP S BP S ⋅=⋅,判断k k '⋅是否为定值?并说明理由.47.(2023•南充模拟)如图,已知A ,B 分别为椭圆2222:1(0)x y M a b a b+=>>的左,右顶点,0(P x ,0)y 为椭圆M 上异于点A ,B 的动点,若4AB =,且ABP ∆面积的最大值为2.(1)求椭圆M 的标准方程;(2)已知直线l 与椭圆M 相切于点0(P x ,0)y ,且l 与直线x a =和x a =-分别相交于C ,D 两点,记四边形ABCD 的对角线AC ,BD 相交于点N .问:是否存在两个定点1F ,2F ,使得12||||NF NF +为定值?若存在,求1F ,2F 的坐标;若不存在,说明理由.48.(2023•赣州模拟)已知抛物线2:2(0)C y px p =>,F 为其焦点,点0(2,)M y 在C 上,且4(OFM S O ∆=为坐标原点).(1)求抛物线C 的方程;(2)若A ,B 是C 上异于点O 的两个动点,当90AOB ∠=︒时,过点O 作ON AB ⊥于,问平面内是否存在一个定点Q ,使得||NQ 为定值?若存在,请求出定点Q 及该定值;若不存在,请说明理由.49.(2023•杭州模拟)已知双曲线2222:1(0,0)x y E a b a b-=>>,并且经过点,2).(1)求双曲线E 的方程.(2)若直线l 经过点(2,0),与双曲线右支交于P 、Q 两点(其中P 点在第一象限),点Q 关于原点的对称点为A ,点Q 关于y 轴的对称点为B ,且直线AP 与BQ 交于点M ,直线AB 与PQ 交于点N ,证明:双曲线在点P 处的切线平分线段MN .50.(2023•浦东新区模拟)已知椭圆22122:1(0)x y C a b a b +=>>的离心率为2,且点(-在椭圆1C 上.(1)求椭圆1C 的方程;(2)过点(0,1)Q 的直线l 与椭圆1C 交于D ,E 两点,已知2DQ QE = ,求直线l 的方程;(3)点P 为椭圆1C 上任意一点,过点P 作1C 的切线与圆222:12C x y +=交于A ,B 两点,设直线OA ,OB 的斜率分别为1k ,2k .证明:12k k ⋅为定值,并求该定值.。
解析几何小题拔高练-新高考数学复习分层训练(新高考通用)一、单选题1.(2023·湖南常德·统考一模)已知椭圆E :x 2a 2+y 2b2=1(a >b >0),直线y =12x +a 与椭圆E 相切,则椭圆E 的离心率为()A.14B.12C.22D.322.(2023·湖北·校联考模拟预测)过点M -1,y 0 作抛物线y 2=2px (p >0)的两条切线,切点分别是A ,B ,若△MAB 面积的最小值为4,则p =()A.1B.2C.4D.163.(2023·山东青岛·统考一模)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,直线y=3x 与C 的左、右两支分别交于A ,B 两点,若四边形AF 1BF 2为矩形,则C 的离心率为()A.3+12B.3C.3+1D.5+14.(2023·湖北·校联考模拟预测)已知O 为坐标原点,F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,点P 在双曲线的右支上,若△POF 2是面积为23的正三角形,则b 2的值为()A.2B.6C.43D.8-435.(2023·湖南·校联考模拟预测)双曲线C :x 23-y 2=1的左焦点为F ,过点F 的直线l 与双曲线C 交于A ,B 两点,若过A ,B 和点M (7,0)的圆的圆心在y 轴上,则直线l 的斜率为()A.±22B.±2C.±1D.±326.(2023·湖南郴州·统考三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1,F 2,过F 1作直线与椭圆相交于A ,B 两点,若AF 1 =2BF 1 且BF 2 =AB ,则椭圆的C 的离心率为()A.13B.14C.33D.637.(2023·湖南常德·统考一模)已知抛物线的方程为x 2=4y ,过其焦点F 的直线与抛物线交于M 、N 两点,且MF =5,O 为坐标原点,则△MOF 的面积与△NOF 的面积之比为()A.15B.14C.5D.48.(2023·广东深圳·深圳中学校联考模拟预测)若圆(x -a )2+(y -3)2=20上有四个点到直线2x -y +1=0的距离为5,则实数a 的取值范围是()A.-∞,-132 ∪172,+∞ B.-132,172C.-∞,-32 ∪72,+∞ D.-32,729.(2023·浙江·校联考三模)在平面直角坐标系上,圆C :x 2+y -1 2=1,直线y =a x +1 与圆C 交于A ,B 两点,a ∈0,1 ,则当△ABC 的面积最大时,a =()A.22B.3-1C.2-3D.1210.(2023·江苏·统考一模)已知椭圆E :x 2a 2+y 2b2=1a >b >0 的两条弦AB ,CD 相交于点P (点P 在第一象限),且AB ⊥x 轴,CD ⊥y 轴.若PA :PB :PC :PD =1:3:1:5,则椭圆E 的离心率为()A.55B.105C.255D.210511.(2023·江苏南通·模拟预测)双曲线C 1:x 2a 2-y 2b 2=1(a >b >0)和椭圆C 2:x 2a 2+y 2b2=1的右焦点分别为F ,F ′,A (-a ,0),B (a ,0),P ,Q 分别为C 1,C 2上第一象限内不同于B 的点,若PA +PB=λQA +QB ,λ∈R ,PF =3QF ′ ,则四条直线PA ,PB ,QA ,QB 的斜率之和为()A.1B.0C.-1D.不确定值12.(2023·江苏宿迁·江苏省沭阳高级中学校考模拟预测)椭圆具有光学性质:从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线过椭圆的另一个焦点(如图).已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线与椭圆E 交与点A ,B ,过点A 作椭圆的切线l ,点B 关于l 的对称点为M ,若|AB |=3a 2,BF 1 MF 1 =57,则S △MAB S △AF 1F2=()A.8135B.3516C.95D.45二、多选题1.(2023·江苏南通·模拟预测)过平面内一点P 作曲线y =ln x 两条互相垂直的切线l 1、l 2,切点为P 1、P 2(P 1、P 2不重合),设直线l 1、l 2分别与y 轴交于点A 、B ,则()A.P 1、P 2两点的纵坐标之积为定值B.直线P 1P 2的斜率为定值C.线段AB 的长度为定值D.△ABP 面积的取值范围为0,12.(2023·江苏·统考一模)已知点A -1,0 ,B 1,0 ,点P 为圆C :x 2+y 2-6x -8y +17=0上的动点,则()A.△PAB 面积的最小值为8-42B.AP 的最小值为22C.∠PAB 的最大值为5π12D.AB ⋅AP的最大值为8+423.(2023·江苏·二模)已知椭圆x 216+y 212=1,点F 为右焦点,直线y =kx k ≠0 与椭圆交于P ,Q 两点,直线PF 与椭圆交于另一点M ,则()A.△PQM 周长为定值B.直线PM 与QM 的斜率乘积为定值C.线段PM 的长度存在最小值D.该椭圆离心率为124.(2023·湖北·荆州中学校联考二模)已知椭圆C :y 23+x 2b2=10<b <3 的两个焦点分别为F 10,-c ,F 20,c (其中c >0),点P 在椭圆C 上,点Q 是圆E :x 2+y -4 2=1上任意一点,PQ +PF 2 的最小值为2,则下列说法正确的是()A.椭圆C 的焦距为2B.过F 2作圆E 切线的斜率为±22C.若A 、B 为椭圆C 上关于原点对称且异于顶点和点P 的两点,则直线PA 与PB 的斜率之积为-15D.PQ -PF 2 的最小值为4-235.(2023·湖北武汉·华中师大一附中校联考模拟预测)已知P ,Q 是双曲线x 2a 2-y 2b2=1上关于原点对称的两点,过点P 作PM ⊥x 轴于点M ,MQ 交双曲线于点N ,设直线PQ 的斜率为k ,则下列说法正确的是()A.k 的取值范围是-b a <k <ba 且k ≠0 B.直线MN 的斜率为k2C.直线PN 的斜率为2b 2ka2D.直线PN 与直线QN 的斜率之和的最小值为b a6.(2023·湖南常德·统考一模)已知圆C :x -a 2+y 2=a 2(a >0)与圆M :x 2+y -4 2=4,P ,Q 分别为圆C 和圆M 上的动点,下列说法正确的是()A.过点(2,1)作圆M 的切线有且仅有一条B.存在实数a ,使得圆C 和圆M 恰有一条公切线C.若圆C 和圆M 恰有3条公切线,则a =3D.若PQ 的最小值为1,则a =17.(2023·浙江嘉兴·统考模拟预测)已知椭圆C :x 24+y 23=1,A 1,A 2分别为椭圆C 的左右顶点,B 为椭圆的上顶点.设M 是椭圆C 上一点,且不与顶点重合,若直线A 1B 与直线A 2M 交于点P ,直线A 1M 与直线A 2B 交于点Q ,则()A.若直线A 1M 与A 2M 的斜率分别为k 1,k 2,则k 1⋅k 2=-34B.直线PQ 与x 轴垂直C.BP =BQD.MP =MQ8.(2023·浙江温州·统考二模)已知圆的方程为(x -m )2+(y -m )2=m 2,对任意的m >0,该圆()A.圆心在一条直线上B.与坐标轴相切C.与直线y =-x 不相交D.不过点1,1三、填空题1.(2023·江苏·二模)设过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)左焦点F 的直线l 与C 交于M ,N 两点,若FN =3FM ,且OM ⋅FN =0(O 为坐标原点),则C 的离心率为2.(2023·江苏南通·模拟预测)弓琴(如图),也可称作“乐弓”,是我国弹弦乐器的始祖.古代有“后羿射十日”的神话,说明上古生民对善射者的尊崇,乐弓自然是弓箭发明的延伸.在我国古籍《吴越春秋》中,曾记载着:“断竹、续竹,飞土逐肉”.弓琴的琴身下部分可近似的看作是半椭球的琴腔,其正面为一椭圆面,它有多条弦,拨动琴弦,音色柔弱动听,现有某研究人员对它做出改进,安装了七根弦,发现声音强劲悦耳.下图是一弓琴琴腔下部分的正面图.若按对称建立如图所示坐标系,F 1(-c ,0)为左焦点,P i (i =1,2,3,4,5,6,7)均匀对称分布在上半个椭圆弧上,P i F 1为琴弦,记a i =|P i F 1|(i =1,2,3,4,5,6,7),数列{a n }前n 项和为S n ,椭圆方程为x 2a 2+y 2b2=1,且a +64c =4ac ,则S 7+a 7-128取最小值时,椭圆的离心率为.3.(2023·江苏南通·二模)已知点P 在抛物线C :y 2=2px p >0 上,过P 作C 的准线的垂线,垂足为H ,点F 为C 的焦点.若∠HPF =60°,点P 的横坐标为1,则p =.4.(2023·湖北·荆州中学校联考二模)在平面直角坐标系xOy 中,已知A 1,a ,B 3,a +4 ,若圆x 2+y 2=4上有且仅有四个不同的点C ,使得△ABC 的面积为5,则实数a 的取值范围是.5.(2023·湖北武汉·华中师大一附中校联考模拟预测)过点2,0 的直线与抛物线y 2=4x 交于A ,B 两点,若M 点的坐标为-1,0 ,则MA 2+MB 2的最小值为.6.(2023·湖南郴州·统考三模)已知点M 1,2 ,若过点N 3,0 的直线m 交圆C :(x -5)2+y 2=6于A ,B 两点,则MA +MB 的最小值为.7.(2023·湖南长沙·湖南师大附中校考一模)已知椭圆C 1与双曲线C 2有共同的焦点F 1、F 2,椭圆C 1的离心率为e1,双曲线C2的离心率为e2,点P为椭圆C1与双曲线C2在第一象限的交点,且∠F1PF2=π3,则1e1+1e2的最大值为.8.(2023·广东·校联考模拟预测)已知动圆N经过点A-6,0及原点O,点P是圆N与圆M:x2+(y-4)2 =4的一个公共点,则当∠OPA最小时,圆N的半径为.9.(2023·广东深圳·深圳中学校联考模拟预测)已知点M为抛物线y2=8x上的动点,点N为圆x2+(y-4)2=5上的动点,则点M到y轴的距离与点M到点N的距离之和最小值为..10.(2023·浙江金华·浙江金华第一中学校考模拟预测)已知O0,0、A3,0,直线l上有且只有一个点P 满足PA=2PO,写出满足条件的其中一条直线l的方程.。
解析几何选择压轴题1.(北京海淀区·高三期末)如图所示,在圆锥内放入两个球1O ,2O ,它们都与圆锥相切(即与圆锥的每条母线相切),切点圆(图中粗线所示)分别为1C ,2C .这两个球都与平面α相切,切点分别为1F ,2F ,丹德林(G ·Dandelin )利用这个模型证明了平面α与圆锥侧面的交线为椭圆,1F ,2F 为此椭圆的两若圆锥的母线与它的轴的夹角为30,1C ,2C 的半径分别为1,4,点M 为2C 上的一个定点,点P 为椭圆上的一个动点,则从点P 沿圆锥表面到达M 的路线长与线段1PF 的长之和的最小值是()A .6B .8C .D .2.(北京高三二模)点P 在函数y =e x 的图象上.若满足到直线y =x +a 的点P 有且仅有3个,则实数a 的值为( )A .B .C .3D .43.(北京延庆区·高三模拟)在平面直角坐标系xOy 中,直线l 的方程为(1)3y k x =++,以点(1,1)为圆心且与直线l 相切的所有圆中,半径最大的圆的半径为( )A .2B .C .4D .84.(北京延庆区·高三模拟)已知F 为抛物线C :24y x =的焦点,过点F 的直线l 交抛物线C 于,A B 两点,若8AB =,则线段AB 的中点M 的横坐标为( )A .2B .3C .4D .55.(北京西城区·高三一模)抛物线具有以下光学性质:从焦点出发的光线经抛物线反射后平行于抛物线的对称轴.该性质在实际生产中应用非常广泛.如图,从抛物线24y x =的焦点F 发出的两条光线a ,b 分别经抛物线上的A ,B 两点反射,已知两条入射光线与x 轴所成锐角均为60︒,则两条反射光线a '和b '之间的距离为( )A B .83 C D 6.(北京海淀区·高三期中)已知点()211,A x x ,()222,B x x ,10,4C ⎛⎫ ⎪⎝⎭,则“ABC 是等边三角形”是“直线AB 的斜率为0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.(北京东城区·高三一模)已知椭圆22122:1(0)x y C a b a b+=>>的右焦点F 与抛物线22:2(0)C y px p =>的焦点重合,P 为椭圆1C 与抛物线2C 的公共点,且PF x ⊥轴,那么椭圆1C 的离心率为( )A 1B .3C .2D 18.(北京石景山区·高三一模)瑞士著名数学家欧拉在1765年证明了定理:三角形的外心、重心、垂心位于同一条直线上,这条直线被后人称为三角形的“欧拉线”.在平面直角坐标系中作ABC ,4AB AC ==,点(1,3)B −,点(4,2)C −,且其“欧拉线”与圆222:()(3)M x a y a r −+−+=相切.则圆M 上的点到直线30x y −+=的距离的最小值为( )A .B .C .D .69.(北京朝阳区高三一模)已知抛物线:4C y x 的焦点为F ,准线为l ,点P 是直线l 上的动点.若点A 在抛物线C 上,且||5AF =,则||||PA PO +(O 为坐标原点)的最小值为( )A .8B .CD .610.(北京门头沟区·高三一模)在平面直角坐标系中,从点足为M ,则点(2,4)Q 与点M 的距离的最小值是( )A.5−B .C .D .1711.(北京大兴区一模)抛物线2:8=W y x 的焦点为F .对于W 上一点P ,若W 的准线上只存在一个点Q ,使得FPQ △为等腰三角形,则点P 的横坐标为( )A .2B .4C .5D .612.(北京海淀区·首都师大二附高三开学考试)曲线C 是平面内到定点(0,1)F 和定直线:1l y =−的距离之和等于4的点的轨迹,给出下列三个结论:①曲线C 关于y 轴对称;②若点(,)P x y 在曲线C 上,则||2y ≤;③若点P 在曲线C 上,则1||4PF ≤≤.其中真命题的个数是( )A .0B .1C .2D .313.(北京大兴区一模)已知直线:30+−=l ax by 经过点(),2a b −,则原点到点(),P a b 的距离可以是( )A .4B .2C .2D .1214.(北京朝阳区高三期末)在平面直角坐标系xOy 中,已知直线y mx =(0m >)与曲线3y x =从左至右依次交于A ,B ,C 三点.若直线l :30kx y −+=(k ∈R )上存在点P 满足2PA PC +=,则实数k 的取值范围是( )A .(2,2)−B .[−C (,2)(2,)−∞−+∞D (,)−∞−⋃+∞15.(北京房山区高三期末)众所周知的“太极图”,其形状如对称的阴阳两鱼互抱在一起,因而也被称为“阴阳鱼太极图”.如图是放在平面直角坐标系中的“太极图”,整个图形是一个圆形,其中黑色阴影区域在y 轴右侧部分的边界为一个半圆,已知直线():2l y a x =−.给出以下命题:①当0a =时,若直线l 截黑色阴影区域所得两部分面积记为12,S S ()12S S ≥,则12:3:1S S =;②当43a =−时,直线l 与黑色阴影区域有1个公共点;③当(]0,1a ∈时,直线l 与黑色阴影区域有2个公共点.其中所有正确命题的序号是( )A .①②B .①③C .②③D .①②③16.(北京丰台区·高三期末)在平面直角坐标系中,A ,B 是直线x y m +=上的两点,且10AB =.若对于任意点(cos ,sin )(02)P θθθπ≤<,存在A ,B 使90APB ︒∠=成立,则m 的最大值为( )A .B .4C .D .8 17.(北京朝阳区高三期末)已知双曲线2222:1x y C a b−=(0a >,0b >)的左焦点为F ,右顶点为A ,过F 作C 的一条渐近线的垂线FD ,D 为垂足.若||||DF DA =,则C 的离心率为( )A .B .2C D18.(北京东城区·高三期末)已知抛物线22y px =(0p >)的焦点F 到准线的距离为2,过焦点F 的直线与抛物线交于A ,B 两点,且3AF FB =,则点A 到y 轴的距离为( )A .5B .4C .3D .219.(北京人大附中高三月考)已知θ∈(0,π),直线l :sin cos 1x y θθ⋅+⋅=与圆C :22(cos )(sin )4x y θθ−+−=的公共点的个数是( )A .2个B .1个C .0个D .以上都不对20.(北京密云区·高三期中)函数()y f x =的图象如图所示,在区间[]0,a 上可找到()2,n n n N *≥∈个不同的数1x 、2x 、、n x ,使得()()()1212n n f x f x f x x x x ===,则n 的取值为( )A .{}2,3,4,5B .{}2,4,5C .{}3,4,5D .{}2,3,421.(北京市第一六一中学高三期中)以椭圆上任意一点与焦点所连接的线段为直径的圆与以长轴为直径的圆的位置关系是( )A .内切B .相交C .相离D .无法确定22.(四川宜宾四中模拟)若双曲线2222:1x y C a b−=()0,0a b >>的一条渐近线被圆()2224xy ++=所截得的弦长为2,则C 的离心率为()A.3 B C D .223.(北京人大附中模拟)若圆P 的半径为1,且圆心为坐标原点,过圆P 上一点作圆22(4)(3)4x y −+−=的切线,切点为Q ,则PQ的最小值为( )AB .C .2D .424.(北京丰台区·期末)已知点M 在椭圆221189x y +=上运动,点N 在圆22(1)1y x +−=上运动,则||MN 的最大值为A .1B .1+C .5D .11225.(北京平谷区·期末)已知点P 是圆224240x x y y −++−=上的动点,P 到直线210mx y +−=的距A .32B .52C .3D .11226.(北京101中学期中)已知1122(,),(,)A x y B x y 是不同的两点,点(cos ,sin )C θθ,且11,33OA OC OB OC ⋅=⋅=,则直线AB 与圆22x y +=A .相离 B .相切 C .相交 D .以上三种情况都有可能27.(北京市平谷区第五中学期中)已知焦点在x 轴上的椭圆的方程为222141x y a a +=−,随着a 的增大该椭圆的形状A .越扁B .越接近于圆C .先接近于圆后越扁D .先越扁后接近于圆 28.(北京市平谷区第五中学期中)设某曲线上一动点M 到点(3,0)F 与到直线3x =−的距离相等,经过点(2,1)P 的直线l 与该曲线相交于A 、B 两点,且点P 恰为AB 的中点,则||||+=AF BF ( ) A .6 B .8 C .9 D .1029.(天一大联考)在棱长为2的正四面体ABCD 中,点P 为ABC 所在平面内一动点,且满足433PA PB +=,则PD 的最大值为( )A .3B .3C .3D .230.(湖南岳阳市·高三一模)抛物线24y x =的焦点为F ,点(),P x y 为该抛物线上的动点,点A 是抛物线的准线与坐标轴的交点,则PA PF 的最大值是( )A .2BC .3D .231.(河南金太阳3月联考)已知双曲线22:1D x y −=,点M 在双曲线D 上,点N 在直线:l y kx=上,l 的倾斜角,42ππθ⎛⎫∈ ⎪⎝⎭,且222cos ||1cos ON θθ=+,双曲线D 在点M 处的切线与l 平行,则OMN 的面积的最大值为( )A .34B .32-C D。