与电磁式同步电动机相比较,稀土永磁同步电动机的优点
- 格式:doc
- 大小:24.00 KB
- 文档页数:1
电机使用稀土的原因
稀土是指元素周期表中的一组元素,这些元素具有相似的物理和化学性质。
在电机中
使用稀土是为了提高电机的性能,提高其能耗和效率。
下面是电机使用稀土的原因。
1. 稀土磁体使用的性能更优
稀土元素具有高磁性,能够在相对较小的体积内产生更大的磁力,这意味着在同样大
小的电机中,稀土磁体可以提供比传统磁体更大的磁力。
另外,稀土磁体具有更高的抗氧
化性和抗腐蚀性,能够更好地保护磁体结构,从而延长电机的使用寿命。
2. 稀土提高了电机效率
使用稀土磁体的电机可以大幅提高能量效率。
稀土磁体能够在低电压和低频率下工作,这导致电机的能耗降低。
稀土磁体还具有更高的矫顽力,这意味着电机可以提供更大的转
矩而不会过载,从而提高了电机的效率。
3. 稀土减少了电机的体积和重量
稀土磁体可以更好地利用电机的空间。
因为稀土磁体的比重较小,所以使用稀土磁体
的电机可以比传统磁体更小,更轻。
对于需要紧凑设计的应用(如汽车电机和无人机电机),这使得电机设计更加灵活高效。
4. 稀土促进了电机的多样化
使用稀土磁体的电机具有更高的适应性和多样性。
电机的转速和功率可以更高,同时
也可以更轻松地实现可调节性。
这使得电机可以配合多种应用需求,例如,可以设计出更
小更高效的风能和太阳能电机,从而促进能源可持续发展。
总之,稀土在电机中的应用具有广泛的优势,已成为电机设计中不可或缺的重要组成
部分。
未来随着技术的进步和应用场景的变化,稀土在电机中的应用前景将会更加广泛。
稀土永磁同步电机发展优势首先,稀土永磁同步电机具有高效节能的特点。
传统的感应电机在运行过程中会有一定的机械损耗和电磁损耗,导致能量的浪费。
而稀土永磁同步电机采用了新型稀土永磁材料,其具有高磁能积和高剩磁,能够产生更强的磁场,进而提高电机的转矩和功率密度。
此外,稀土永磁同步电机的转子采用了较少的铁损耗材料,使得电机的铜损耗大大减少,从而提高了电机的效率。
相比之下,稀土永磁同步电机的效率一般能达到95%以上,远高于传统的感应电机,具有很大的节能潜力。
其次,稀土永磁同步电机具有较低的噪音和振动水平。
由于稀土永磁同步电机在运行过程中可以产生更强的磁场,因此可以采用更小尺寸的电机来实现相同的功率输出。
这就使得稀土永磁同步电机在转子转速较高的情况下也能够保持较低的噪音和振动水平。
同时,稀土永磁同步电机的结构紧凑,重量轻,能够大大降低电机的自身振动,减少了对机械设备的振动干扰,提高了设备的稳定性。
第三,稀土永磁同步电机具有优异的响应性能和调速性能。
稀土永磁同步电机的转子速度与电磁磁场同步运动,具有较大的转矩稳定性和转速精度。
这使得稀土永磁同步电机在需要快速响应和高精度控制的领域具有广泛的应用前景,如机械制造、机器人、高速列车等。
此外,由于稀土永磁同步电机具有较高的功率因数和较低的电流失真率,可以提供更多的可用功率,并减小了对电网的冲击,提高了电网的电能质量。
最后,稀土永磁同步电机具有良好的可靠性和可维护性。
稀土永磁材料具有较高的矫顽力和耐腐蚀性,使得电机的寿命和可靠性得到保障。
与此同时,稀土永磁同步电机的结构简单,无需使用传统电机中的滑动环和碳刷,减少了机械磨损和电刷故障的发生概率。
这就大大降低了电机的维护成本和维修频率,提高了电机的可维护性。
综上所述,稀土永磁同步电机具有高效节能、低噪音、低振动、优异的响应性能和调速性能、良好的可靠性和可维护性等发展优势。
随着稀土永磁材料的不断改进和应用技术的不断突破,稀土永磁同步电机在各个领域的应用将得到进一步推广和发展。
内蒙古科技与经济Inner Mongolia Science Technology&EconomyMay2020 No.9TotalNo.45120205第9期总第451期01rp st电机的技术优势$b用n w陈浩维(华北电力大学电气与电子工程学院,北京102206)摘要:永磁同步电机基于节能高'、结构相对简单、体积小、运行平稳可靠,将来可广泛应用于家电、航空、医疗器械、电梯以及汽车等领域。
中国因拥有丰富的稀土资源,对以此为永磁材料的永磁同步电机更进一步的技术研究,意义重大深远。
近年来,内置式磁路结构的设计、仿真及控制等扌支术日渐成熟,永磁同步电机因具有独特的技术优势,社会需求日益增1!支术发展更加深入,应用b景广阔。
关键词:永磁同步电机;扌支术优势;应用b景中图分类号:F407.61文献标识码:A文章编号1007—6921(2020)09—0081—02近年来世界能源紧张问题明显,最大能源消费的中国更加突出,政府重视节能减排,对于设备和技术研究给予资金支持&由于永磁同步电机在设计环节中改进,具有更为小巧的传动系统,减少能耗,提升了效率,平均节电率高大10%以上(1)&同时优化其他元器件的设计,使设备的稳定性得到明显的改善,优越的性能,在各领域应用中日益体现,是一种当前最有发展潜力的电机技术&1研究高速永磁同步电机的意义节能、高效、量轻是永磁同步电机拥有的独特优势,因具有巨大的发展潜力,广阔的应用领域#自然成为电机行业发展的风向标&转子、定子、机座及端盖等部件是组成部分,永磁体、转子铁心及转轴构成转子&目前永磁体使用最常见的稀土永磁材料是汝铁硼,稀土资源最多的是我国,大约占世界的80%储存量,中国当前资源相对缺乏条件下,对永磁同步电机进行技术研究,对于促进我国经济的发展,影响意义重大&2永磁同步电动机技术发展的基础2.1高性能稀土永磁材料的发现P铁硼是目前应用得最为广泛,它的发展推动了永磁电机的发展&相比于传统的电励磁三相感应电机,电激磁磁极被永磁彳代替,结构得到简化,没有了转子的滑环及电刷,无刷结构得到完成,转子体积变小,大幅度提高电机功率密度、转矩密度及工作效率&2.2新型控制理论的获得应用由于矢量控制算法很好地解决了交流电机的驱动策略理论问题,交流电机于是具备了比较完善的控制性能&直接转矩控制方法的实现,控制结构变得更为简单,同时对参数变化具备电路棒、性能强及转矩动态响应迅速的特性&间接转矩控制方法的实现,顺利解决了直接转矩在低速时转矩脉动大的问题缺陷,提升了电机的转速及控制精度&2.3高性能电力电子器件及处理器的应用信息和传统产业是通过现代电力电子技术得以连接,在弱电和被控强电之间的起到桥梁作用&由于电力电子技术的发展完善,导致驱动控制策略的完成实现&20世纪70年代的通用变频器系列产品,可把工频电源改变为变频电源,由于频率具有连续及可调特性,使得同步电动机的启动问题得以解决&3永磁同步电动机技术优勢3.1设计扌支术内置式结构设计由于存在高效率、大功率、大密度、大的弱速及速的能力,它自然是驱动电机的最佳选择&永磁电机的所有励磁磁场来源于永磁体,齿槽转矩导致电机工作时的震动及噪声增大&齿槽转矩过分增大可导致电机速度控制系统的低速性能受到影响,同样也影响到位置控制系统的高精度定位,因此,在进行电机结构设计时,应该采取电机优化方法,尽可能缩小齿槽转矩&减小齿槽转矩,目前常见是通过以下方法来实现的,更改极弧系数,缩小定子的槽口宽度,斜槽、极槽配合,变更磁极位置、尺寸及形状等&值得注意的是,缩小齿槽转矩,电机的其他性能有可能受到影响,常见的如,电磁转矩有可能相应变小&因此在结构设计时,各种因素必须尽可能做到平衡,使得电机性能实现最大化&电机的磁路结构及尺寸、永磁体体积的估算、定子的设定、转子于冲片及绕组的数据是确定永磁同步电机电磁设计方案的难点及关键#运用旋转电机磁场数值解析法,电磁场解析法及电磁场数值计算法,可做到优化设计⑵&3.2仿真由于永磁彳的存在,在给电机的计算参数设计时有了难度,例如空载漏磁系数的设计及极弧系数的设计&计算优化永磁电机的各种参数,通常采取有限元分析软件方法进行,它能精确计算电机参数#在分析电机参数对性能的影响时,凭借它同样也存在极高的可信度&3.3控在工业控制领域方面,完善发展技术从而提升电机驱动系统性能,一样存在着重大意义,它让系统的性能驱动实现最佳状态,基本特性表现在比较低收稿日期!020—01—10作者简介:陈浩维(1999—),男,福建龙岩人,本科,电气工程及其自动化专业°・81・总第451期内蒙古科技与经济的速度情况下,特别是在快速启动及静止加速等情形中,可以完成较大转矩输出;在高速运行状态,使得大范围内的恒功率调速控制的目标得以实现&4永磁同步电动机的未来发展趋勢国内外近阶段,在永磁同步电机本体基础上涌现了不少高端电机,六相永磁同步电动机为典型代表,应用于舰船动力的提供,相比传统的直流电机#体积缩小了60%左右,损耗也大约减少20%;在舰船推进使用的永磁同步电机安装容量最大功率可达38MW;我国目前已经成功研制了功率达到3MW 的高速永磁风力发电机&调速范围变得更大及进一步提高精度控制是永磁同步电机目前发展趋势,具备高性能的永磁材料自然引起广泛重视&目前,永磁同步电机的技术研究变得日益成熟,正朝高速度#大转矩、大功率、高效率以及微型化、智能化趋势发展⑶&永磁同步电机还有一些技术瓶颈依然无法突破,①控制问题,永磁发电机要通过外部来调节改变其输出电压及功率因数是非常困难的,永磁直流电动机不能再用改变励磁的办法来调节其转速&②退磁问题,稀土永磁电机对于工作环境要求比较苛刻#如果温度超过180°C的稀土永磁材料将发生不可逆的退磁及失效;剧烈振动或较大温差易产生断裂现象;材料也易受到氧化腐蚀,需要表面涂装;同时不耐受过载#一旦发生将发生退磁&③成本问题,稀土永磁价格相对比较昂贵,成本通常高电励磁电机,必须通过发挥它的高性能及节省运行费用方法来得以补偿,故永磁电机在小功率的方面应用比较适合&比如,想解决此类问题,实现技术的升级及广泛应用#国家还必须鼎力扶持和投入足够量的科研经费& 5永磁同步电机技术的市场应用及前景5.1大功率机械设备研究朝着列车、新能源汽车、电梯、机器人等机械设备方向发展&当前我国新能源客车大部分使用交流异步电机,而新能源乘用车基本使用永磁同步电机&以往一部分企业驱动电机曾经使用的是开关磁阻电机,目前次项技术已渐被市场淘汰,我国未来在新能源汽车驱动电机选择上,主流是采用永磁同步电机&5.2航空领域稀土永磁双凸极结构电机是基于开关磁阻电机而研发出来的一种新型的电机,由于定子或转子被植入了稀土永磁体,使其拥有更大的输出转矩,且存在着高度的可靠性和容错性,所以能够在航空领域中显示出良好的应用前景,特别是稀土永磁电机&除此之外,稀土永磁具备了无刷直流电机的优势,如高度可靠性、体积重量变小及具有大功率等,显著提高了在航空领域上的应用速度,功能及性能均朝着更为高级方向发展&5.3宇航设备磁同步电机所用材料因有耐高温的特性,同时体积小,故非常适应高温、真空等特殊环境需求&适合应用于宇航设备的机械中,成为将来技术重要的一个研究方向&5.4医疗器械由于永磁同步电机寿命长、噪音低和体积小的特性,很适合延伸应用到手术用机器人及微型医疗机器等医疗设备方面,也成为该电机的一个技术研究的重要方向&近阶段,随着医疗器械产业快速发展,对于医疗器械用的永磁电机产品市场需求量显著增加,其市场发展受益匪浅&5.5国防军工应用于军用通信设备方面有激光测距仪设备、雷达和战车制造及军用弹道计算机等,应用于武器制造方面有火炮、导弹、宇宙飞船、人造卫星、飞机、坦克、舰艇及火箭等&在将来较长的时间内,我国的军费预算将维持比较快增速,永磁电机具备的寿命长、高速、高效及耐冲击等特性,未来在国防军工领域将得到广泛应用,前景十分广阔&5.6全融机具多见的有ATM机及纸币售货机等自动机器#还有一些高精尖的银行点钞机和捆钞机等设备&金融机具在金融信息化中存在不可替代作用,由于内涵及外延的持续扩大延伸,它的地位同样持续提升#应用市场的发展势头也能够得到良好保持&6永磁同步电机的特点是节能高效、结构相对简单、体积小、运行平稳可靠&近年来,内置式磁路结构的设计、仿真及控制等技术日渐成熟,永磁同步电机因具有独特的技术优势,社会需求日益增加,技术发展更加深入,在家电、航空、医疗器械、电梯以及汽车等领域的方面具有广阔的应用前景&[参考文献$「1"陈义中.稀土永磁同步电机取代普通电机的节能改I!"电机技术#017#2):42〜43. !"高峰.永磁同步电机设计关键技术与方法研究工程技术(引文版)#017#(1):162. !"王建设,徐荣,孙友增.永磁同步电动机发展现状综述科技与创新#016#16):5〜6.(上接第47页$根据国资委下发《关于国有控股混合所有制企业开展员工持股试点的意见1对国有企业员工持股有关事项进行约定,其中也明确规定试点企业必须是处于主业处于充分竞争行业和领域,公司董事会中有非公有资本股东推荐的董事&通过员工持股或符合要求的管理层持股,能够将员工或管理层利益和企业的成长绑在一起,成为利益共同体,有效激发企业活力,提高企业的市场竞争力&3国有企业通过混合所有制改革,形成合理的股权结构,改组科学合理的董事会、监事会,能够极大提高企业的市场竞争力,有效放大各方资本功能,实现国有资本的保值增值&[参考文献$「1"于国平.国有企业混合所有制改革方向!"商业会计,2016,(5):12〜15.!"杨红英,童露.混合所有制改革下的国有企业公司治理!".宏观经济研究,2015,(1):42〜51.!"李济广•国有企业混合所有制的目的、形式与治理保障!".社会科学2015,(2):4*〜58.・82・。
浅谈稀土永磁同步电动机的优化设计稀土永磁同步电动机是一种超高效节能电机。
稀土永磁同步电机有损耗小、效率高、节能效果显著、运行好等特点。
因此应用前景非常广阔,但是如果没有合理设计方案、得体的工艺技术和优质的电磁材料,也不会生产出高品质的产品。
在稀土稀土永磁电动机的设计上,应该首先满足其所要达到的性能指标,降低使用的成本,只有提升使用效率,降低成本,才能达到设计需求。
文章根据目前此种电动机的设计特点,进行了一定的改进,并将其进行优化,也在文章中具体讨论了此类电动机的性能特征以及设计方法。
标签:稀土永磁同步电动机;优化设计;永磁体引言在日益严重的能源短缺的背景下,不断进行新的技术开发,提升电动机的使用效率已经成为了很多国家希望达成的重要目标。
稀土永磁高效电机在使用效率方面远胜于其他类型的发电机,在稀土永磁高效电机投入使用以后,其就以各种使用指标稳定吸引了各国的眼球,在国际市场上具有相当大的竞争能力,我国稀土资源居世界第一位,应该充分利用这一优势,对此种发电机进行推广使用,此举对处于发展中的中国具有重要的现实意义。
1 稀土永磁高效电机和异步动永磁同步电动机的不同之处稀土永磁高效电机的设计建立在异步电机基础之上,不同之处在于其将转子边鼠笼内侧镶入稀土钢,与异步动永磁同步电动机相比,励磁电流以及内部的转子上的金属使用量(铜、铁)等使用量降低,无功电流减少,提升了电机的使用效率,设备的使用温度降低。
并且,与普通的励磁电机比较,降低了摩擦,使整个结构简化。
2 提升电机功率的若干措施2.1 利用空截反电动势与因数之间的曲线关系普通的电动机定子上的电流I1和If在平面直角坐标系上是一条“V”型的曲线,如我们保持其他的参数不发生变化,只改变磁体的性能和用量,那么此时定子电流I1=fE0的曲线同样是一个V形曲线,因此,在这种情况下,我们给予空载反电动势E0一个合适的值,以此来提升电动机的使用效率,整个方案实施的关键在于合理赋予E0的值。
电机使用稀土的原因
1.稀土具有良好的磁性能:稀土元素的原子结构使其具有良好的磁性能,可以作为电机磁体材料使用。
常用的稀土元素有钕、铁、硼等,它们可以制成永磁体材料,具有高能量密度和强磁性能,可以提高电机的效率和性能。
2. 稀土可以提高电机的热稳定性:稀土元素可以提高永磁体材
料的热稳定性,使得电机在高温环境下仍能保持稳定的性能。
这对于一些高功率电机来说尤为重要。
3. 稀土可以减小电机的体积和重量:稀土元素制成的永磁体材
料具有高能量密度和强磁性能,可以在小体积内获得较大的磁场强度,从而减小电机的体积和重量。
4. 稀土可以提高电机的效率:稀土元素制成的永磁体材料具有
较高的磁导率和较低的磁阻,可以使得电机的磁路更加通畅,从而提高电机的效率。
5. 稀土是稀缺资源:稀土是一种稀缺资源,具有很高的经济价值。
电机使用稀土可以促进稀土资源的开发和利用,对于保障国家的能源安全和经济发展具有重要意义。
- 1 -。
稀土永磁同步电动机
首先,从结构上来看,稀土永磁同步电动机通常由定子和转子两部分组成。
定子上绕有三相对称的绕组,而转子则由稀土永磁材料构成。
这种结构使得稀土永磁同步电动机在运行时能够产生强大的磁场,从而实现高效的能量转换。
其次,从工作原理来看,稀土永磁同步电动机利用定子绕组通以交流电产生旋转磁场,而转子上的稀土永磁材料受到定子磁场的作用而产生磁力,从而驱动电机转动。
相比传统的感应电动机,稀土永磁同步电动机不需要外部励磁,因此具有更高的效率和动态响应特性。
此外,从应用角度来看,稀土永磁同步电动机由于其高效、轻量化和高功率密度的特点,被广泛应用于电动汽车、风力发电机、工业生产线等领域。
在电动汽车领域,稀土永磁同步电动机因其高效率和高功率密度,能够提供更好的动力输出和续航里程,因而备受青睐。
总的来说,稀土永磁同步电动机以其独特的结构、工作原理和
广泛的应用前景,成为当今电动机领域备受关注的一种新型电动机。
希望以上回答能够全面地解答你的问题。
永磁电机的优势有哪些?永磁电机是利用永磁体的磁场来完成能量转换的电机。
相对于传统的串励电动机,永磁电机具有很多优势。
高效率由于永磁电机不需要外界的电场激励,因此能够实现非常高的电机效率。
早期的串励电动机效率很低,往往只有50%左右。
而永磁电机由于不需要电枢感应电磁场,因此转子铁心的磁通密度可以设定更高,这就可以使得电机达到更高的转矩密度和效率。
根据实验数据,在恰当的工作点下,永磁电机的效率可以达到80%以上。
体积小、重量轻由于永磁电机只需要电枢和永磁体,而串励或感应电动机需要电枢、电枢铁心、励磁线圈等其他部分。
因此,同样的功率下永磁电机的体积和重量会更小。
对于一些对体积和重量要求都比较高的设备,比如无人机、无人车等,永磁电机可能是更好的选择。
能够实现高速和高功率密度永磁体材料的磁性比较稳定,因此对永磁电机的功率密度和高速工作能力有很好的支持。
目前,永磁电机的功率密度和高速能力已经超过了传统电机。
特别是在小型马达应用中,往往只有永磁电机才有足够的能力。
超长寿命永磁材料一般都是具有耐腐蚀性、耐高温性和耐老化性等特点的稀土永磁体,因此能够使永磁电机拥有超长的使用寿命。
通过合理的设计,永磁电机的使用寿命可以达到数十年甚至数百年。
相较于传统电机,永磁电机更加适合长期并且没有维护的应用场景。
精度高永磁电机的响应速度非常快,可以达到亚毫秒级别。
因此,永磁电机响应速度非常快,可以实现精度更高的控制。
对于一些需要精度控制和快速响应的应用场景,比如医学机器人、航天器、高速切割机等领域,永磁电机可以实现更好的性能表现。
总结永磁电机不断优化和创新,在工业、军事、医疗、民用等领域广泛应用,并取得了很好的效果。
相信在未来,永磁电机在更多领域中都会得到广泛的应用。
稀土永磁电机具有结构简单,运行可靠;体积小,质量轻;损耗小,
效率高;电机的形状和尺寸可以灵活多样等显著优点,因而应用
范围极为广泛,几乎遍及航空航天、国防、工农业和产和日常生活
的各个领域。
无铁芯阻力小,不短路的情况下基本可以视为只有轴承的阻力。
本产品亮点如下:
1.无铁芯,无磁滞和齿槽效应,起动转矩低
2.无铁损耗,效率高
3.采用独特的无铁心精密绕组技术设计高精度线圈
4.采用稀土类永磁,多极,小气隙,功率密度高,输出功率大
5.低速直驱,无转矩波动
6.结构紧凑,高体积功率比
7.由于无铁损耗,发热量低,温升小
备注:2018款升级后,磁钢耐受温度提升到270度,宽输出范围。
一、永磁同步电机的优点1、取消了励磁系统损耗,提高了效率;2、取消了励磁绕组和励磁电源,结构简单,运行可靠;3、稀土永磁电机结构紧凑、体积小、重量轻;4、电机尺寸和形状灵活多样。
5、大大减少对环境的污染。
二、应用(用途)工业配套:工业驱动装置,如纺织机械,减速机配套,水泵配套,风机配套,矿采业设备等以及材料加工系统,自动化设备,机器人等;交通运输:电动汽车,电车,飞机辅助设备,舰船等;航天领域:火箭,飞机,宇宙飞船,航天飞机等;国防领域:坦克,导弹,潜艇,飞机等;工业发电:风力发电,余热发电,水力发电,内燃发电机组用发电机以及大型发电机的副励磁机等。
三、永磁同步电机的发展趋势永磁同步电机是众多高新技术和高新技术产业的基础,它与电力电子技术和微电子控制技术相结合,可以制造出许多新型的、性能优异的机电一体化产品和装备,代表了21世纪电机发展的方向。
永磁同步电机相比交流异步电机优势1、效率高、更加省电: (1)、由于永磁同步电机的磁场是由永磁体产生的,从而避免通过励磁电流来产生磁场而导致的励磁损耗(铜耗); (2)、永磁同步电机的外特性效率曲线相比异步电机,其在轻载时效率值要高很多,这是永磁同步电机在节能方面,相比异步电机最大的一个优势。
因为通常电机在驱动负载时,很少情况是在满功率运行,这是因为:一方面用户在电机选型时,一般是依据负载的极限工况来确定电机功率,而极限工况出现的机会是很少的,同时,为防止在异常工况时烧损电机,用户也会进一步给电机的功率留裕量;另一方面,设计者在设计电机时,为保证电机的可靠性,通常会在用户要求的功率基础上,进一步留一定的功率裕量,这样导致在实际运行的电机90%以上是工作在额定功率的70%以下,特别是在驱动风机或泵类负载,这样就导致电机通常工作在轻载区。
对异步电机来讲,其在轻载时效率很低,而永磁同步电机在轻载区,仍能保持较高的效率,其效率要高于异步电机20%以上。
(3)、由于永磁同步电机功率因数高,这样相比异步电机其电机电流更小,相应地电机的定子铜耗更小,效率也更高。
稀土永磁电机的主要优点1.高效节能稀土永磁电机是一种高效节能产品,平均节电率高达10%以上,专用稀土永磁电机的节电率可高达15%~20%。
美国GM公司研制的钕铁硼永磁起动电机与老式串激直流起动电机相比,效率提高了45%。
在水泵、风机、压缩机采用永磁电机及变频调速技术后可节电率30%以上。
2.轻型化采用稀土永磁体可以明显减轻电机重量,缩小体积。
例如10 kW发电机,常规发电机重量为220 kg,而永磁发电机重量仅为92 kg,相当于常规发电机重量的45.8%。
3.高性能化高性能化也是稀土永磁电机的突出优点,有些性能是传统标准电机所不能及的。
例如,数控机床用稀土永磁伺服电机,调速比高达1:10000。
现已研制成宽调速范围、高恒功率调速比的钕铁硼永磁同步电动机和驱动系统,调速比高达1:22 500,极限转速达到9 000 r/min。
稀土永磁电机实现精密控制驱动,转速控制精度可达到0.1‰。
主要应用于高控制精度和高可靠性的场合,如航空、航天、数控机床、加工中心、机器人、电动汽车、计算机外围设备等。
4.结构简单永磁电机与传统的电机相比,结构简单。
采用稀土永磁铁后还可以增大气隙磁密,并把电机转速调整到最佳值,提高功率质量比。
现代航空、航天用发电机几乎全部采用稀土永磁发电机。
其典型产品为美国通用电气公司制造的150 kVA 14 极12 000 r/min~21 000 r/min 和100 kVA 60 000 r/min的稀土钴永磁同步发电机。
国内研发的第一台稀土永磁电机即为3 kW 20 000 r/min的永磁发电机。
稀土永磁电机的主要缺点:1.控制问题。
永磁电机制成后不需外界能量即可维持其磁场,但也造成从外部调节、控制其磁场极为困难。
永磁发电机难以从外部调节其输出电压和功率因数,永磁直流电动机不能再用改变励磁的办法来调节其转速。
这些使永磁电机的应用范围受到了限制。
2.不可逆退磁问题。
稀土永磁发电机在温度过高时,在冲击电流产生的电枢反应作用下,或在剧烈的机械振动时有可能产生不可逆退磁,或叫失磁,使电机性能降低,甚至无法使用。
与电磁式同步电动机相比较,稀土永磁同步电动机的优点
河南全新稀土永磁同步电机的优点
1、稀土永磁同步电动机无需电流励磁,不设电刷和肩环,因此结构简单、使用方便、可靠性高。
2、由于上述结构的特点,使得稀土永磁同步电动机转子上无励磁损耗,无电刷和滑环之间的磨擦损耗和接触电损耗。
因此,稀土永磁同步电动机的效率比电磁式同步电动机要高,并且其功率因数可以设计在1.0附近。
3、稀土永磁同步电动机转子结构多样、结构灵活,而且不同的转子结构往往带来自身性能上的特点,因而稀土永磁同步电动机可根据使用需要选择不同的转子结构形式。
4、稀土永磁同步电动机在一定功率范围内,可以比电磁式同步电动机具有更小的体积和重量。