山东17地市近三年中考真题分类汇编-----扇形
- 格式:doc
- 大小:194.50 KB
- 文档页数:5
二0一一年东营市初中学生学业考试数 学 试 题(总分120分,考试时问l20分钟)洼意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第l 卷3页为选择题.36分;第Ⅱ卷8页为非选择题,84分;1全卷共11页.2.答第Ⅰ卷前.考生务必将自己的姓名、考号、考试科目涂写在答题卡上.考试结束.试题和答题卡一并收回,3.第Ⅰ卷每题选出答案后.必须用2B 铅笔把答题卡上对应题目的答秦标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案. 4.考试时.不允许使用科学计算器.第Ⅰ卷(选择题 共36分)一、选择题:本大题共l2小题.在每小题给出的四个选项中.只有一项是正确的.请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1. (东营3分)12的倒效是 A .2 B ,2- C .12- D .12【答案】A 。
2.(东营3分)下列运算正确的是A .336x x x +=B .824x x x ÷=C .m n mn x x x ⋅=D .5420()x x -= 【答案】D 。
3.(东营3分)一个几何体的三视图如图所示.那么这个几何体是【答案】C 。
4. (东营3分)方程组31x y x y +=⎧⎨-=-⎩的解是A .12x y =⎧⎨=⎩B .12x y =⎧⎨=-⎩C .21x y =⎧⎨=⎩D .01x y =⎧⎨=-⎩【答案】A 。
5.(东营3分)一副三角板,如图所示叠放在一起.则图中∠α的度敦是 A .75° B .60° C .65° D .55° 【答案】A 。
6.(东营3分)分式方程312422x x x -=--的解为 A .52x = B .53x = C .5x = D .无解【答案】B 。
7.(东营3分)一个圆锥的侧面展开图是半径为l 的半圆,则该圆锥的底面半径是 A . 1 B .34 C .12 D .13【答案】C 。
山东省各地市2023-中考数学真题分类汇编-01选择题(容易题)知识点分类②一.相反数(共2小题)1.(2023•东营)﹣2的相反数是( )A.﹣2B.2C.D.2.(2023•滨州)﹣3的相反数是( )A.B.C.﹣3D.3二.倒数(共1小题)3.(2023•烟台)﹣的倒数是( )A.B.C.﹣D.﹣三.有理数大小比较(共1小题)4.(2023•枣庄)下列各数中比1大的数是( )A.0B.2C.﹣1D.﹣3四.有理数的减法(共1小题)5.(2023•临沂)计算(﹣7)﹣(﹣5)的结果是( )A.﹣12B.12C.﹣2D.2五.科学记数法—表示较大的数(共1小题)6.(2023•枣庄)随着全球新一轮科技革命和产业变革的蓬勃发展,新能源汽车已经成为全球汽车产业转型发展的主要方向,根据中国乘用车协会的统计数据,2023年第一季度,中国新能源汽车销量为159万辆,同比增长26.2%,其中159万用科学记数法表示为( )A.1.59×106B.15.9×105C.159×104D.1.59×102六.实数与数轴(共1小题)7.(2023•菏泽)实数a,b,c在数轴上对应点的位置如图所示,下列式子正确的是( )A.c(b﹣a)<0B.b(c﹣a)<0C.a(b﹣c)>0D.a(c+b)>0七.估算无理数的大小(共1小题)8.(2023•临沂)设m=5﹣,则实数m所在的范围是( )A.m<﹣5B.﹣5<m<﹣4C.﹣4<m<﹣3D.m>﹣3八.同底数幂的除法(共2小题)9.(2023•滨州)下列计算,结果正确的是( )A.a2•a3=a5B.(a2)3=a5C.(ab)3=ab3D.a2÷a3=a 10.(2023•烟台)下列计算正确的是( )A.a2+a2=2a4B.(2a2)3=6a6C.a2•a3=a5D.a8÷a2=a4九.完全平方公式(共1小题)11.(2023•济宁)下列各式运算正确的是( )A.x2•x3=x6B.x12÷x2=x6C.(x+y)2=x2+y2D.(x2y)3=x6y3一十.平方差公式(共1小题)12.(2023•东营)下列运算结果正确的是( )A.x3•x3=x9B.2x3+3x3=5x6C.(2x2)3=6x6D.(2+3x)(2﹣3x)=4﹣9x2一十一.因式分解-十字相乘法等(共1小题)13.(2023•济宁)下列各式从左到右的变形,因式分解正确的是( )A.(a+3)2=a2+6a+9B.a2﹣4a+4=a(a﹣4)+4C.5ax2﹣5ay2=5a(x+y)(x﹣y)D.a2﹣2a﹣8=(a﹣2)(a+4)一十二.零指数幂(共1小题)14.(2023•聊城)(﹣2023)0的值为( )A.0B.1C.﹣1D.﹣一十三.同类二次根式(共1小题)15.(2023•烟台)下列二次根式中,与是同类二次根式的是( )A.B.C.D.一十四.根的判别式(共1小题)16.(2023•聊城)若一元二次方程mx2+2x+1=0有实数解,则m的取值范围是( )A.m≥﹣1B.m≤1C.m≥﹣1且m≠0D.m≤1且m≠0一十五.反比例函数的定义(共1小题)17.(2023•临沂)正在建设中的临滕高速是我省“十四五”重点建设项目.一段工程施工需要运送土石方总量为105m3,设土石方日平均运送量为V(单位:m3/天),完成运送任务所需要的时间为t(单位:天),则V与t满足( )A.反比例函数关系B.正比例函数关系C.一次函数关系D.二次函数关系一十六.角的概念(共1小题)18.(2023•临沂)如图中用量角器测得∠ABC的度数是( )A.50°B.80°C.130°D.150°一十七.平行线的性质(共1小题)19.(2023•东营)如图,AB∥CD,点E在线段BC上(不与点B,C重合),连接DE.若∠D=40°,∠BED=60°,则∠B=( )A.10°B.20°C.40°D.60°一十八.关于x轴、y轴对称的点的坐标(共1小题)20.(2023•临沂)某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了8棵桂花,如图所示.若A,B两处桂花的位置关于小路对称,在分别以两条小路为x,y轴的平面直角坐标系内,若点A的坐标为(﹣6,2),则点B的坐标为( )A.(6,2)B.(﹣6,﹣2)C.(2,6)D.(2,﹣6)一十九.中心对称图形(共2小题)21.(2023•菏泽)剪纸文化是我国最古老的民间艺术之一.下列剪纸图案中既是轴对称图形又是中心对称图形的是( )A.B.C.D.22.(2023•烟台)下列四种图案中,是中心对称图形的是( )A.B.C.D.二十.简单组合体的三视图(共4小题)23.(2023•菏泽)如图所示的几何体是由5个大小相同的小正方体组成的,它的主视图是( )A .B .C .D .24.(2023•聊城)如图所示几何体的主视图是( )A .B .C .D .25.(2023•滨州)如图所示摆放的水杯,其俯视图为( )A .B .C .D .26.(2023•枣庄)榫卯是古代中国建筑、家具及其他器械的主要结构方式,是我国工艺文化精神的传承,凸出部分叫榫,凹进部分叫卯.如图是某个部件“卯”的实物图,它的主视图是( )A.B.C.D.二十一.由三视图判断几何体(共1小题)27.(2023•济宁)一个几何体的三视图如图,则这个几何体的表面积是( )A.39πB.45πC.48πD.54π二十二.总体、个体、样本、样本容量(共1小题)28.(2023•聊城)4月15日是全民国家安全教育日.某校为了摸清该校1500名师生的国家安全知识掌握情况,从中随机抽取了150名师生进行问卷调查.这项调查中的样本是( )A.1500名师生的国家安全知识掌握情况B.150C.从中抽取的150名师生的国家安全知识掌握情况D.从中抽取的150名师生山东省各地市2023-中考数学真题分类汇编-01选择题(容易题)知识点分类②参考答案与试题解析一.相反数(共2小题)1.(2023•东营)﹣2的相反数是( )A.﹣2B.2C.D.【答案】B【解答】解:﹣2的相反数是2,故选:B.2.(2023•滨州)﹣3的相反数是( )A.B.C.﹣3D.3【答案】D【解答】解:﹣3的相反数是3.故选:D.二.倒数(共1小题)3.(2023•烟台)﹣的倒数是( )A.B.C.﹣D.﹣【答案】D【解答】解:﹣的倒数是﹣.故选:D.三.有理数大小比较(共1小题)4.(2023•枣庄)下列各数中比1大的数是( )A.0B.2C.﹣1D.﹣3【答案】B【解答】解:∵|﹣1|=1,|﹣3|=3,1<3,∴2>1>0>﹣1>﹣3,则比1大的数是2,故选:B.四.有理数的减法(共1小题)5.(2023•临沂)计算(﹣7)﹣(﹣5)的结果是( )A.﹣12B.12C.﹣2D.2【答案】C【解答】解:原式=(﹣7)+5=﹣2.故选:C.五.科学记数法—表示较大的数(共1小题)6.(2023•枣庄)随着全球新一轮科技革命和产业变革的蓬勃发展,新能源汽车已经成为全球汽车产业转型发展的主要方向,根据中国乘用车协会的统计数据,2023年第一季度,中国新能源汽车销量为159万辆,同比增长26.2%,其中159万用科学记数法表示为( )A.1.59×106B.15.9×105C.159×104D.1.59×102【答案】A【解答】解:159万=1590000=1.59×106,故选:A.六.实数与数轴(共1小题)7.(2023•菏泽)实数a,b,c在数轴上对应点的位置如图所示,下列式子正确的是( )A.c(b﹣a)<0B.b(c﹣a)<0C.a(b﹣c)>0D.a(c+b)>0【答案】C【解答】解:由数轴可得a<0<b<c,则b﹣a>0,c﹣a>0,b﹣c<0,c+b>0,那么c(b﹣a)>0,b(c﹣a)>0,a(b﹣c)>0,a(c+b)<0,则A,B,D均不符合题意,C符合题意,故选:C.七.估算无理数的大小(共1小题)8.(2023•临沂)设m=5﹣,则实数m所在的范围是( )A.m<﹣5B.﹣5<m<﹣4C.﹣4<m<﹣3D.m>﹣3【答案】B【解答】解:m=5﹣=﹣3=﹣3=﹣2=﹣,∵16<20<25,∴<<,即4<<5,那么﹣5<﹣<﹣4,则﹣5<m<﹣4,故选:B.八.同底数幂的除法(共2小题)9.(2023•滨州)下列计算,结果正确的是( )A.a2•a3=a5B.(a2)3=a5C.(ab)3=ab3D.a2÷a3=a 【答案】A【解答】解:A.a2•a3=a3+2=a5,则A符合题意;B.(a2)3=a2×3=a6,则B不符合题意;C.(ab)3=a3b3,则C不符合题意;D.a2÷a3=a2﹣3=a﹣1,则D不符合题意;故选:A.10.(2023•烟台)下列计算正确的是( )A.a2+a2=2a4B.(2a2)3=6a6C.a2•a3=a5D.a8÷a2=a4【答案】C【解答】解:A.a2+a2=2a2,故此选项不合题意;B.(2a2)3=8a6,故此选项不合题意;C.a2•a3=a5,故此选项符合题意;D.a8÷a2=a6,故此选项不合题意.故选:C.九.完全平方公式(共1小题)11.(2023•济宁)下列各式运算正确的是( )A.x2•x3=x6B.x12÷x2=x6C.(x+y)2=x2+y2D.(x2y)3=x6y3【答案】D【解答】解:A:x2•x3=x2+3=x5,故选项A错误,B:x12÷x2=x12﹣2=x10,故选项B错误,C:(x+y)2=x2+y2+2xy,故选项C错误,D:(x2y)3=x2×3y3=x6y3.故选:D.一十.平方差公式(共1小题)12.(2023•东营)下列运算结果正确的是( )A.x3•x3=x9B.2x3+3x3=5x6C.(2x2)3=6x6D.(2+3x)(2﹣3x)=4﹣9x2【答案】D【解答】解:A.x3•x3=x6,则A不符合题意;B.2x3+3x3=5x3,则B不符合题意;C.(2x2)3=8x6,则C不符合题意;D.(2+3x)(2﹣3x)=22﹣(3x)2=4﹣9x2,则D符合题意;故选:D.一十一.因式分解-十字相乘法等(共1小题)13.(2023•济宁)下列各式从左到右的变形,因式分解正确的是( )A.(a+3)2=a2+6a+9B.a2﹣4a+4=a(a﹣4)+4C.5ax2﹣5ay2=5a(x+y)(x﹣y)D.a2﹣2a﹣8=(a﹣2)(a+4)【答案】C【解答】解:A:(a+3)2=a2+6a+9是完全平方公式,不是因式分解的形式,故选项A 错误,B:a2﹣4a+4=(a﹣2)2,故选项B错误,C:5ax2﹣5ay2=5a(x2﹣y2)=5a(x+y)(x﹣y),故选项C正确,D:a2﹣2a﹣8=(a+2)(a﹣4),故选项D错误.故答案为:C.一十二.零指数幂(共1小题)14.(2023•聊城)(﹣2023)0的值为( )A.0B.1C.﹣1D.﹣【答案】B【解答】解:(﹣2023)0=1,故选:B.一十三.同类二次根式(共1小题)15.(2023•烟台)下列二次根式中,与是同类二次根式的是( )A.B.C.D.【答案】C【解答】解:A.=2,和不是同类二次根式,故本选项不符合题意;B.和不是同类二次根式,故本选项不符合题意;C.=2,和是同类二次根式,故本选项符合题意;D.=2,和不是同类二次根式,故本选项不符合题意;故选:C.一十四.根的判别式(共1小题)16.(2023•聊城)若一元二次方程mx2+2x+1=0有实数解,则m的取值范围是( )A.m≥﹣1B.m≤1C.m≥﹣1且m≠0D.m≤1且m≠0【答案】D【解答】解:∵一元二次方程mx2+2x+1=0有实数解,∴Δ=22﹣4m≥0,且m≠0,解得:m≤1且m≠0,故选:D.一十五.反比例函数的定义(共1小题)17.(2023•临沂)正在建设中的临滕高速是我省“十四五”重点建设项目.一段工程施工需要运送土石方总量为105m3,设土石方日平均运送量为V(单位:m3/天),完成运送任务所需要的时间为t(单位:天),则V与t满足( )A.反比例函数关系B.正比例函数关系C.一次函数关系D.二次函数关系【答案】A【解答】解:根据题意得:Vt=105,∴V=,V与t满足反比例函数关系;故选:A.一十六.角的概念(共1小题)18.(2023•临沂)如图中用量角器测得∠ABC的度数是( )A.50°B.80°C.130°D.150°【答案】C【解答】解:根据∠ABC起始位置BA,另一条边BC可得:∠ABC=130°.故选:C.一十七.平行线的性质(共1小题)19.(2023•东营)如图,AB∥CD,点E在线段BC上(不与点B,C重合),连接DE.若∠D=40°,∠BED=60°,则∠B=( )A.10°B.20°C.40°D.60°【答案】B【解答】解:∵∠C+∠D=∠BED=60°,∴∠C=60°﹣∠D=60°﹣40°=20°.又∵AB∥CD,∴∠B=∠C=20°.故选:B.一十八.关于x轴、y轴对称的点的坐标(共1小题)20.(2023•临沂)某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了8棵桂花,如图所示.若A,B两处桂花的位置关于小路对称,在分别以两条小路为x,y轴的平面直角坐标系内,若点A的坐标为(﹣6,2),则点B的坐标为( )A.(6,2)B.(﹣6,﹣2)C.(2,6)D.(2,﹣6)【答案】A【解答】解:若A,B两处桂花的位置关于小路对称,在分别以两条小路为x,y轴的平面直角坐标系内,若点A的坐标为(﹣6,2),则点B的坐标为(6,2).故选:A.一十九.中心对称图形(共2小题)21.(2023•菏泽)剪纸文化是我国最古老的民间艺术之一.下列剪纸图案中既是轴对称图形又是中心对称图形的是( )A.B.C.D.【答案】A【解答】解:A.原图既是轴对称图形,又是中心对称图形,故此选项符合题意;B.原图是轴对称图形,不是中心对称图形,故此选项不合题意;C.原图既不是轴对称图形,也不是中心对称图形,故此选项不合题意;D.原图是中心对称图形,不是轴对称图形,故此选项不合题意.故选:A.22.(2023•烟台)下列四种图案中,是中心对称图形的是( )A.B.C.D.【答案】B【解答】解:A.原图不是中心对称图形,故此选项不合题意;B.原图是中心对称图形,故此选项符合题意;C.原图不是中心对称图形,故此选项不合题意;D.原图不是中心对称图形,故此选项不合题意.故选:B.二十.简单组合体的三视图(共4小题)23.(2023•菏泽)如图所示的几何体是由5个大小相同的小正方体组成的,它的主视图是( )A.B.C.D.【答案】A【解答】解:从正面看有三列,从左到右小正方形的个数分别为2、1、1.故选:A.24.(2023•聊城)如图所示几何体的主视图是( )A.B.C.D.【答案】D【解答】解:由题意知,该几何体的主视图为,故选:D.25.(2023•滨州)如图所示摆放的水杯,其俯视图为( )A.B.C.D.【答案】D【解答】解:如图所示摆放的水杯,其俯视图为:.故选:D.26.(2023•枣庄)榫卯是古代中国建筑、家具及其他器械的主要结构方式,是我国工艺文化精神的传承,凸出部分叫榫,凹进部分叫卯.如图是某个部件“卯”的实物图,它的主视图是( )A.B.C.D.【答案】C【解答】解:如图所示的几何体的主视图如下:.故选:C.二十一.由三视图判断几何体(共1小题)27.(2023•济宁)一个几何体的三视图如图,则这个几何体的表面积是( )A.39πB.45πC.48πD.54π【答案】B【解答】解:由三视图可知,原几何体是由一个圆锥和一个圆柱构成的几何体,其中圆柱底面圆的直径为6,高为4,圆锥底面圆的直径为6,母线长为4,所以几何体的表面积为:,故选:B.二十二.总体、个体、样本、样本容量(共1小题)28.(2023•聊城)4月15日是全民国家安全教育日.某校为了摸清该校1500名师生的国家安全知识掌握情况,从中随机抽取了150名师生进行问卷调查.这项调查中的样本是( )A.1500名师生的国家安全知识掌握情况B.150C.从中抽取的150名师生的国家安全知识掌握情况D.从中抽取的150名师生【答案】C【解答】解:样本是所抽取的150名师生的国家安全知识掌握情况.故选:C.。
山东省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类③一.一元二次方程的应用(共1小题)1.(2023•东营)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.二.解一元一次不等式组(共1小题)2.(2023•菏泽)解不等式组.三.反比例函数与一次函数的交点问题(共1小题)3.(2023•菏泽)如图,已知坐标轴上两点A(0,4),B(2,0),连接AB,过点B作BC⊥AB,交反比例函数y=在第一象限的图象于点C(a,1).(1)求反比例函数y=和直线OC的表达式;(2)将直线OC向上平移个单位,得到直线l,求直线l与反比例函数图象的交点坐标.四.二次函数综合题(共1小题)4.(2023•菏泽)已知抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,4),其对称轴为x=﹣.(1)求抛物线的表达式;(2)如图1,点D是线段OC上的一动点,连接AD,BD,将△ABD沿直线AD翻折,得到△AB′D,当点B'恰好落在抛物线的对称轴上时,求点D的坐标;(3)如图2,动点P在直线AC上方的抛物线上,过点P作直线AC的垂线,分别交直线AC,线段BC于点E,F,过点F作FG⊥x轴,垂足为G,求FG+FP的最大值.五.平行四边形的性质(共1小题)5.(2023•菏泽)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,CF平分∠BCD,交AD于点F.求证:AE=CF.六.切线的判定与性质(共1小题)6.(2023•东营)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,DE⊥AC,垂足为E.(1)求证:DE是⊙O的切线;(2)若∠C=30°,CD=2,求的长.七.圆的综合题(共1小题)7.(2023•菏泽)如图,AB为⊙O的直径,C是圆上一点,D是的中点,弦DE⊥AB,垂足为点F.(1)求证:BC=DE;(2)P是上一点,AC=6,BF=2,求tan∠BPC;(3)在(2)的条件下,当CP是∠ACB的平分线时,求CP的长.八.作图—基本作图(共1小题)8.(2023•济宁)如图,BD是矩形ABCD的对角线.(1)作线段BD的垂直平分线(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)设BD的垂直平分线交AD于点E,交BC于点F,连接BE,DF.①判断四边形BEDF的形状,并说明理由;②若AB=5,BC=10,求四边形BEDF的周长.九.解直角三角形的应用-仰角俯角问题(共1小题)9.(2023•菏泽)无人机在实际生活中的应用越来越广泛.如图所示,某人利用无人机测量大楼的高度BC,无人机在空中点P处,测得点P距地面上A点80米,点A处的俯角为60°,楼顶C点处的俯角为30°,已知点A与大楼的距离AB为70米(点A,B,C,P在同一平面内),求大楼的高度BC(结果保留根号).一十.频数(率)分布直方图(共1小题)10.(2023•菏泽)某班学生以跨学科主题学习为载体,综合运用体育、数学、生物学等知识,研究体育课的运动负荷.在体育课基本部分运动后,测量统计了部分学生的心率情况,按心率次数x(次/分钟),分为如下五组:A组:50≤x<75,B组:75≤x<100,C组100≤x<125,D组:125≤x<150,E组:150≤x<175.其中A组数据为:73,65,74,68,74,70,66,56.根据统计数据绘制了不完整的统计图(如图所示),请结合统计图解答下列问题:(1)A组数据的中位数是 ,众数是 ;在统计图中B组所对应的扇形圆心角是 度;(2)补全学生心率频数分布直方图;(3)一般运动的适宜心率为100≤x<150(次/分钟),学校共有2300名学生,请你依据此次跨学科研究结果,估计大约有多少名学生达到适宜心率?一十一.列表法与树状图法(共2小题)11.(2023•东营)随着新课程标准的颁布,为落实立德树人根本任务,东营市各学校组织了丰富多彩的研学活动,得到家长、社会的一致好评.某中学为进一步提高研学质量,着力培养学生的核心素养,选取了A.“青少年科技馆”,B.“黄河入海口湿地公园”,C.“孙子文化园”,D.“白鹭湖营地”四个研学基地进行研学.为了解学生对以上研学基地的喜欢情况,随机抽取部分学生进行调查统计(每名学生只能选择一个研学基地),并将调查结果绘制成了两幅不完整的统计图(如图所示).请根据统计图中的信息解答下列问题:(1)在本次调查中,一共抽取了 名学生,在扇形统计图中A所对应圆心角的度数为 ;(2)将上面的条形统计图补充完整;(3)若该校共有480名学生,请你估计选择研学基地C的学生人数;(4)学校想从选择研学基地D的学生中选取两名学生了解他们对研学活动的看法,已知选择研学基地D的学生中恰有两名女生,请用列表法或画树状图的方法求出所选2人都是男生的概率.12.(2023•济宁)某学校为扎实推进劳动教育,把学生参与劳动教育情况纳人积分考核.学校抽取了部分学生的劳动积分(积分用x表示)进行调查,整理得到如下不完整的统计表和扇形统计图.等级劳动积分人数A x≥904B80≤x<90mC70≤x<8020D60≤x<708E x<603请根据图表信息,解答下列问题:(1)统计表中m= ,C等级对应扇形的圆心角的度数为 ;(2)学校规定劳动积分大于等于80的学生为“劳动之星”.若该学校共有学生2000人,请估计该学校“劳动之星”大约有多少人;(3)A等级中有两名男同学和两名女同学,学校从A等级中随机选取2人进行经验分享,请用列表法或画树状图法,求恰好抽取一名男同学和一名女同学的概率.山东省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类③参考答案与试题解析一.一元二次方程的应用(共1小题)1.(2023•东营)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.【答案】(1)当羊圈的长为40m,宽为16m或长为32m,宽为20m时,能围成一个面积为640m2的羊圈;(2)不能,理由见解答.【解答】解:(1)设矩形ABCD的边AB=xm,则边BC=70﹣2x+2=(72﹣2x)m.根据题意,得x(72﹣2x)=640,化简,得x2﹣36x+320=0,解得x1=16,x2=20,当x=16时,72﹣2x=72﹣32=40;当x=20时,72﹣2x=72﹣40=32.答:当羊圈的长为40m,宽为16m或长为32m,宽为20m时,能围成一个面积为640m2的羊圈;(2)答:不能,理由:由题意,得x(72﹣2x)=650,化简,得x2﹣36x+325=0,Δ=(﹣36)2﹣4×325=﹣4<0,∴一元二次方程没有实数根.∴羊圈的面积不能达到650m2.二.解一元一次不等式组(共1小题)2.(2023•菏泽)解不等式组.【答案】x≤.【解答】解:,解不等式①,得:x<2.5,解不等式②,得:x≤,∴该不等式组的解集是x≤.三.反比例函数与一次函数的交点问题(共1小题)3.(2023•菏泽)如图,已知坐标轴上两点A(0,4),B(2,0),连接AB,过点B作BC⊥AB,交反比例函数y=在第一象限的图象于点C(a,1).(1)求反比例函数y=和直线OC的表达式;(2)将直线OC向上平移个单位,得到直线l,求直线l与反比例函数图象的交点坐标.【答案】(1);;(2)或(2,2).【解答】解:(1)如图,过点C作CD⊥x轴于点D,∴∠BDC=90°,∵∠AOB=90°,∴∠BDC=∠AOB,∵BC⊥AB,∴∠ABC=90°,∴∠ABO+∠CBD=90°,∵∠AOB=90°,∴∠ABO+∠BAO=90°,∴∠CBD=∠BAO,∴△CBD∽△BAO,∴,∵A(0,4),B(2,0),C(a,1),∴AO=4,BO=2,CD=1,∴,∴BD=2,∴OD=BO+BD=4,∴a=4,∴点C的坐标是(4,1),∵反比例函数过点C,∴k=4×1=4,∴反比例函数的解析式为;设直线OC的解析式为y=mx,∵其图象经过点C(4,1),∴4m=1,解得,∴直线OC的解析式为;(2)将直线OC向上平移个单位,得到直线l,∴直线l的解析式为,由题意得,,解得,,∴直线l与反比例函数图象的交点坐标为或(2,2).四.二次函数综合题(共1小题)4.(2023•菏泽)已知抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,4),其对称轴为x=﹣.(1)求抛物线的表达式;(2)如图1,点D是线段OC上的一动点,连接AD,BD,将△ABD沿直线AD翻折,得到△AB′D,当点B'恰好落在抛物线的对称轴上时,求点D的坐标;(3)如图2,动点P在直线AC上方的抛物线上,过点P作直线AC的垂线,分别交直线AC,线段BC于点E,F,过点F作FG⊥x轴,垂足为G,求FG+FP的最大值.【答案】(1)y=﹣x2﹣3x+4;(2)D(0,);(3).【解答】解:(1)抛物线与y轴交于点C(0,4),∴c=4,∵对称轴为,∴,b=﹣3,∴抛物线的解析式为y=﹣x2﹣3x+4;(2)如图,过B'作x轴的垂线,垂足为H,令﹣x2﹣3x+4=0,解得:x1=1,x2=﹣4,∴A(﹣4,0),B(1,0),∴AB=1﹣(﹣4)=5,由翻折可得AB′=AB=5,∵对称轴为x=﹣,∴AH=﹣﹣(﹣4)=,∴AB'=AB=5=2AH,∴∠AB'H=30°,∠B'AB=60°,∴∠DAB=∠B'AB=30°,在Rt△AOD中,,∴D(0,);(3)如图2,PF交x轴于Q,设BC所在直线的解析式为y1=k1x+b1,把B、C坐标代入得:,解得:,∴y1=﹣4x+4,∵OA=OC,∴∠CAO=45°,∵∠AEF=90°,∴直线PE与x轴所成夹角为45°,即∠PQO=45°,设P(m,﹣m2﹣3m+4),设PE所在直线的解析式为:y2=﹣x+b2,把点P代入得b2=﹣m2﹣2m+4,∴y2=﹣x﹣m2﹣2m+4,令y1=y2,则﹣4x+4=﹣x﹣m2﹣2m+4,解得:x=,∴FG=y F=+4,PF==••(x F﹣x P)=,∴FG+FP=+4+=+,∵点P在直线AC上方,∴﹣4<m<0,∴当m=时,FG+FP的最大值为.五.平行四边形的性质(共1小题)5.(2023•菏泽)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,CF平分∠BCD,交AD于点F.求证:AE=CF.【答案】证明见解析.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∠BAD=∠BCD,∵AE平分∠BAD,交BC于点E,CF平分∠BCD,交AD于点F,∴∠BAE=∠FCD,在△ABE与△CDF中,,∴△ABE≌△CDF(ASA),∴AE=CF.六.切线的判定与性质(共1小题)6.(2023•东营)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,DE⊥AC,垂足为E.(1)求证:DE是⊙O的切线;(2)若∠C=30°,CD=2,求的长.【答案】(1)证明见解答;(2)的长是.【解答】(1)证明:连接OD,则OD=OB,∴∠ODB=∠B,∵AB=AC,∴∠C=∠B,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC于点E,∴∠ODE=∠CED=90°,∵OD是⊙O的半径,DE⊥OD,∴DE是⊙O的切线.(2)解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,CD=2,∴BD=CD=2,∵∠B=∠C=30°,∴AD=BD•tan30°=2×=2,∵OD=OA,∠AOD=2∠B=60°,∴△AOD是等边三角形,∴OD=AD=2,∵∠BOD=180°﹣∠AOD=120°,∴==,∴的长是.七.圆的综合题(共1小题)7.(2023•菏泽)如图,AB为⊙O的直径,C是圆上一点,D是的中点,弦DE⊥AB,垂足为点F.(1)求证:BC=DE;(2)P是上一点,AC=6,BF=2,求tan∠BPC;(3)在(2)的条件下,当CP是∠ACB的平分线时,求CP的长.【答案】(1)见解答;(2)tan∠BPC=;(3)7.【解答】(1)证明:∵D是的中点,∴,∵DE⊥AB且AB为⊙O的直径,∴,∴,∴BC=DE;(2)解:连接OD,∵,∴∠CAB=∠DOB,∵AB为⊙O的直径,∴∠ACB=90°,∵DE⊥AB,∴∠DFO=90°,∴△ACB∽△OFD,∴,设⊙O的半径为r,则,解得r=5,经检验,r=5是方程的根,∴AB=2r=10,∴,∴,∵∠BPC=∠CAB,∴;(3)解:如图,过点B作BG⊥CP交CP于点G,∴∠BGC=∠BGP=90°,∵∠ACB=90°,CP是∠ACB的平分线,∴∠ACP=∠BCP=45°,∴∠CBG=45°,∴,∴,∴,∴.八.作图—基本作图(共1小题)8.(2023•济宁)如图,BD是矩形ABCD的对角线.(1)作线段BD的垂直平分线(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)设BD的垂直平分线交AD于点E,交BC于点F,连接BE,DF.①判断四边形BEDF的形状,并说明理由;②若AB=5,BC=10,求四边形BEDF的周长.【答案】(1)见解答;(2)①四边形BEDF是菱形,理由见解答;②25.【解答】解:(1)如图,直线MN就是线段BD的垂直平分线,(2)①四边形BEDF是菱形,理由如下:∵EF垂直平分BD,∴BE=DE,∠DEF=∠BEF,∵AD∥BC,∴∠DEF=∠BFE,∵∠BEF=∠BFE,∴BE=BF,∴BF=DF,∴BE=ED=DF=BF,∴四边形BEDF是菱形;②∵四边形ABCD是矩形,BC=10,∴∠A=90°,AD=BC=10,由①可设BE=ED=x,则AE=10﹣x,∵AB=5,∴AB2+AE2=BE2,即25+(10﹣x)2=x2,解得x=6.25,∴四边形BEDF的周长为:6.25×4=25.九.解直角三角形的应用-仰角俯角问题(共1小题)9.(2023•菏泽)无人机在实际生活中的应用越来越广泛.如图所示,某人利用无人机测量大楼的高度BC,无人机在空中点P处,测得点P距地面上A点80米,点A处的俯角为60°,楼顶C点处的俯角为30°,已知点A与大楼的距离AB为70米(点A,B,C,P 在同一平面内),求大楼的高度BC(结果保留根号).【答案】30m.【解答】解:如图所示:过P作PH⊥AB于H,过C作CG⊥PH于Q,而CB⊥AB,则四边形CQHB是矩形,∴QH=BC,BH=CQ,由题意可得:AP=80,∠PAH=60°,∠PCQ=30°,AB=70,∴PH=AP sin60°=80×=40,AH=AP cos60°=40,∴CQ=BH=70﹣40=30,∴PQ=CQ•tan30°=10,∴BC=QH=40﹣10=30,∴大楼的高度BC为30m.一十.频数(率)分布直方图(共1小题)10.(2023•菏泽)某班学生以跨学科主题学习为载体,综合运用体育、数学、生物学等知识,研究体育课的运动负荷.在体育课基本部分运动后,测量统计了部分学生的心率情况,按心率次数x(次/分钟),分为如下五组:A组:50≤x<75,B组:75≤x<100,C组100≤x<125,D组:125≤x<150,E组:150≤x<175.其中A组数据为:73,65,74,68,74,70,66,56.根据统计数据绘制了不完整的统计图(如图所示),请结合统计图解答下列问题:(1)A组数据的中位数是 69 ,众数是 74 ;在统计图中B组所对应的扇形圆心角是 54 度;(2)补全学生心率频数分布直方图;(3)一般运动的适宜心率为100≤x<150(次/分钟),学校共有2300名学生,请你依据此次跨学科研究结果,估计大约有多少名学生达到适宜心率?【答案】(1)69,74,54;(2)见解答;(3)1725名.【解答】解:(1)把A组数据从小到大排列为:56,65,66,68,70,73,74,74,故A组数据的中位数是:=69,众数是74;由题意得,样本容量为:8÷8%=100,在统计图中B组所对应的扇形圆心角是:360°×=54°.故答案为:69,74,54;(2)C组频数为:100﹣8﹣15﹣45﹣2=30,补全学生心率频数分布直方图如下:(3)2300×(30%+)=1725(名),答:估计大约有1725名学生达到适宜心率.一十一.列表法与树状图法(共2小题)11.(2023•东营)随着新课程标准的颁布,为落实立德树人根本任务,东营市各学校组织了丰富多彩的研学活动,得到家长、社会的一致好评.某中学为进一步提高研学质量,着力培养学生的核心素养,选取了A.“青少年科技馆”,B.“黄河入海口湿地公园”,C.“孙子文化园”,D.“白鹭湖营地”四个研学基地进行研学.为了解学生对以上研学基地的喜欢情况,随机抽取部分学生进行调查统计(每名学生只能选择一个研学基地),并将调查结果绘制成了两幅不完整的统计图(如图所示).请根据统计图中的信息解答下列问题:(1)在本次调查中,一共抽取了 24 名学生,在扇形统计图中A所对应圆心角的度数为 30° ;(2)将上面的条形统计图补充完整;(3)若该校共有480名学生,请你估计选择研学基地C的学生人数;(4)学校想从选择研学基地D的学生中选取两名学生了解他们对研学活动的看法,已知选择研学基地D的学生中恰有两名女生,请用列表法或画树状图的方法求出所选2人都是男生的概率.【答案】(1)24,30°;(2)图形见解析;(3)估计选择研学基地C的学生人数约为120名;(4).【解答】解:(1)在本次调查中,一共抽取的学生人数为:12÷50%=24(名),在扇形统计图中A所对应圆心角的度数为:360°×=30°,故答案为:24,30°;(2)C的人数为:24×25%=6(名),∴D的人数为:24﹣12﹣6﹣2=4(名),将条形统计图补充完整如下:(3)480×25%=120(名),答:估计选择研学基地C的学生人数约为120名;(4)学基地D的学生中恰有两名女生,则有2名男生,画树状图如下:共有12种等可能的结果,其中所选2人都是男生的结果有2种,∴所选2人都是男生的概率为=.12.(2023•济宁)某学校为扎实推进劳动教育,把学生参与劳动教育情况纳人积分考核.学校抽取了部分学生的劳动积分(积分用x表示)进行调查,整理得到如下不完整的统计表和扇形统计图.等级劳动积分人数A x≥904B80≤x<90mC70≤x<8020D60≤x<708E x<603请根据图表信息,解答下列问题:(1)统计表中m= 15 ,C等级对应扇形的圆心角的度数为 144° ;(2)学校规定劳动积分大于等于80的学生为“劳动之星”.若该学校共有学生2000人,请估计该学校“劳动之星”大约有多少人;(3)A等级中有两名男同学和两名女同学,学校从A等级中随机选取2人进行经验分享,请用列表法或画树状图法,求恰好抽取一名男同学和一名女同学的概率.【答案】(1)15,144°;(2)估计该学校“劳动之星”大约有760人;(3).【解答】解:(1)抽取的学生人数为:8÷16%=50(人),∴m=50﹣4﹣20﹣8﹣3=15,C等级对应扇形的圆心角的度数为:360°×=144°,故答案为:15,144°;(2)2000×=760(人),答:估计该学校“劳动之星”大约有760人;(3)画树状图如下:共有12种等可能的结果,其中恰好抽取一名男同学和一名女同学的结果有8种,∴恰好抽取一名男同学和一名女同学的概率为=.。
山东省各地市2023-中考数学真题分类汇编-03解答题(容易题)知识点分类一.实数的运算(共1小题)1.(2023•济南)计算:|﹣|+()﹣1+(π+1)0﹣tan60°.二.列代数式(共1小题)2.(2023•青岛)如图①,正方形ABCD的面积为1.(1)如图②,延长AB到A1,使A1B=BA,延长BC到B1,使B1C=CB,则四边形AA1B1D 的面积为 ;(2)如图③,延长AB到A2,使A2B=2BA,延长BC到B2,使B2C=2CB,则四边形AA2B2D的面积为 ;(3)延长AB到A n,使A n B=nBA,延长BC到B n,使B n C=nCB,则四边形AA n B n D的面积为 .三.规律型:图形的变化类(共1小题)3.(2023•枣庄)(1)观察分析:在一次数学综合实践活动中,老师向同学们展示了图①,图②,图③三幅图形,请你结合自己所学的知识,观察图中阴影部分构成的图案,写出三个图案都具有的两个共同特征: , ;(2)动手操作:请在图④中设计一个新的图案,使其满足你在(1)中发现的共同特征.四.分式的混合运算(共2小题)4.(2023•青岛)(1)解不等式组:;(2)计算:(m﹣)•.5.(2023•泰安)(1)化简:(2﹣)÷;(2)解不等式组:.五.分式的化简求值(共2小题)6.(2023•日照)(1)化简:﹣|1﹣|+2﹣2﹣2sin45°;(2)先化简,再求值:(﹣x)÷,其中x=﹣.7.(2023•菏泽)先化简,再求值:(+)÷,其中x,y满足2x+y﹣3=0.六.分式方程的应用(共1小题)8.(2023•泰安)为进行某项数学综合与实践活动,小明到一个批发兼零售的商店购买所需工具.该商店规定一次性购买该工具达到一定数量后可以按批发价付款,否则按零售价付款.小明如果给学校九年级学生每人购买一个,只能按零售价付款,需用3600元;如果多购买60个,则可以按批发价付款,同样需用3600元,若按批发价购买60个与按零售价购买50个所付款相同,求这个学校九年级学生有多少人?七.一元一次不等式组的整数解(共1小题)9.(2023•济南)解不等式组:,并写出它的所有整数解.八.反比例函数与一次函数的交点问题(共1小题)10.(2023•东营)如图,在平面直角坐标系中,一次函数y=ax+b(a<0)与反比例函数y=(k≠0)交于A(﹣m,3m),B(4,﹣3)两点,与y轴交于点C,连接OA,OB.(1)求反比例函数和一次函数的表达式;(2)求△AOB的面积;(3)请根据图象直接写出不等式<ax+b的解集.九.平行四边形的性质(共1小题)11.(2023•济南)已知:如图,点O为▱ABCD对角线AC的中点,过点O的直线与AD,BC分别相交于点E,F.求证:DE=BF.一十.作图—复杂作图(共1小题)12.(2023•青岛)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:△ABC.求作:点P,使PA=PC,且点P在△ABC边AB的高上.一十一.频数(率)分布直方图(共1小题)13.(2023•济南)2023年,国内文化和旅游行业复苏势头强劲.某社团对30个地区“五一”假期的出游人数进行了调查,获得了它们“五一”假期出游人数(出游人数用m表示,单位:百万)的数据,并对数据进行统计整理.数据分成5组:A组:1≤m<12;B组:12≤m<23;C组:23≤m<34;D组:34≤m<45;E组:45≤m<56.下面给出了部分信息:a .B 组的数据:12,13,15,16,17,17,18,20.b .不完整的“五一”假期出游人数的频数分布直方图和扇形统计图如图:请根据以上信息完成下列问题:(1)统计图中E 组对应扇形的圆心角为 度;(2)请补全频数分布直方图;(3)这30个地区“五一”假期出游人数的中位数是 百万;(4)各组“五一”假期的平均出游人数如表:组别A 1≤m <12B 12≤m <23C 23≤m <34D 34≤m <45E 45≤m <56平均出游人数(百万)5.51632.54250求这30个地区“五一”假期的平均出游人数.山东省各地市2023-中考数学真题分类汇编-03解答题(容易题)知识点分类参考答案与试题解析一.实数的运算(共1小题)1.(2023•济南)计算:|﹣|+()﹣1+(π+1)0﹣tan60°.【答案】3.【解答】解:|﹣|+()﹣1+(π+1)0﹣tan60°==3.二.列代数式(共1小题)2.(2023•青岛)如图①,正方形ABCD的面积为1.(1)如图②,延长AB到A1,使A1B=BA,延长BC到B1,使B1C=CB,则四边形AA1B1D 的面积为 2.5 ;(2)如图③,延长AB到A2,使A2B=2BA,延长BC到B2,使B2C=2CB,则四边形AA2B2D的面积为 5 ;(3)延长AB到A n,使A n B=nBA,延长BC到B n,使B n C=nCB,则四边形AA n B n D的面积为 (n2+2n+2) .【答案】(1)2.5;(2)5;(3)(n2+2n+2).【解答】解:(1)∵正方形ABCD的面积为1,∴AB=BC=CD=AD=1,∵A1B=BA,B1C=CB,∴BB1=BC+CB1=2,A1B=1,∵A1B⊥BB1,∴S△ABB1=A1B×BB1=×1×2=1,∵AD⊥AB,∴S梯形ABB1D=(BB1+AD)×AB=(2+1)×1=,∵S四边形AA1B1D=S△ABB1+S梯形ABB2D,∴S四边形AA1B1D=1+=2.5,故答案为:2.5;(2))∵正方形ABCD的面积为1,∴AB=BC=CD=AD=1,∵A2B=2BA=2,B2C=2CB=2,∴BB2=BC+CB2=2+1=3,A2B=2,∵A2B⊥BB2,∴=A 2B×BB2=×2×(2+1)=×2×(2+1)=3,∵AD⊥AB,∴=(BB 2+AD)×AB=(2+1+1)×1=2,∵=+,∴=3+2=5,故答案为:5;(3)∵正方形ABCD的面积为1,∴AB=BC=CD=AD=1,∵A n B=nBA=n,B n C=nCB=n,∴BB n=BC+CB n=n+1,A n B=n,∵A n B⊥BB n,∴=An B×BB n=×n×(n+1)=n(n+1),∵AD⊥AB,∴=(BB n+AD)×AB=(n+1+1)×1=(n+2),∵=+,∴=n(n+1)+(n+2)=(n2+2n+2),故答案为:(n2+2n+2).三.规律型:图形的变化类(共1小题)3.(2023•枣庄)(1)观察分析:在一次数学综合实践活动中,老师向同学们展示了图①,图②,图③三幅图形,请你结合自己所学的知识,观察图中阴影部分构成的图案,写出三个图案都具有的两个共同特征: 轴对称图形 , 面积相等 ;(2)动手操作:请在图④中设计一个新的图案,使其满足你在(1)中发现的共同特征.【答案】(1)轴对称图形,面积相等.(2)见解析.【解答】解:(1)观察图形可知:三个图形都为轴对称图形且面积相等,故答案为:轴对称图形,面积相等.(2)如图:(答案不唯一)四.分式的混合运算(共2小题)4.(2023•青岛)(1)解不等式组:;(2)计算:(m﹣)•.【答案】(1)1≤x<3;(2)m+1.【解答】解:(1)解第一个不等式得:x<3,解第二个不等式得:x≥1,故原不等式组的解集为:1≤x<3;(2)原式=•=•=m+1.5.(2023•泰安)(1)化简:(2﹣)÷;(2)解不等式组:.【答案】(1);(2)﹣2<x<5.【解答】解:(1)原式=•=•=•=;(2),解①得:x>﹣2;解②得:x<5,故不等式组的解集为:﹣2<x<5.五.分式的化简求值(共2小题)6.(2023•日照)(1)化简:﹣|1﹣|+2﹣2﹣2sin45°;(2)先化简,再求值:(﹣x)÷,其中x=﹣.【答案】(1);(2)2x﹣4,原式=﹣5.【解答】解:(1)﹣|1﹣|+2﹣2﹣2sin45°=2﹣(﹣1)+﹣2×=2﹣+1+﹣=;(2)(﹣x)÷=•=•=•=2(x﹣2)=2x﹣4,当x=﹣时,原式=2×(﹣)﹣4=﹣1﹣4=﹣5.7.(2023•菏泽)先化简,再求值:(+)÷,其中x,y满足2x+y﹣3=0.【答案】2(2x+y),6.【解答】解:(+)÷===2(2x+y),∵2x+y﹣3=0,∴2x+y=3,∴原式=2×3=6.六.分式方程的应用(共1小题)8.(2023•泰安)为进行某项数学综合与实践活动,小明到一个批发兼零售的商店购买所需工具.该商店规定一次性购买该工具达到一定数量后可以按批发价付款,否则按零售价付款.小明如果给学校九年级学生每人购买一个,只能按零售价付款,需用3600元;如果多购买60个,则可以按批发价付款,同样需用3600元,若按批发价购买60个与按零售价购买50个所付款相同,求这个学校九年级学生有多少人?【答案】300人.【解答】解:设这个学校九年级学生有x人,根据题意得:×50=×60,解得:x=300,经检验,x=300是所列方程的解,且符合题意.答:这个学校九年级学生有300人.七.一元一次不等式组的整数解(共1小题)9.(2023•济南)解不等式组:,并写出它的所有整数解.【答案】0,1,2.【解答】解:解不等式①,得x>﹣1,解不等式②,得x<3,在数轴上表示不等式①②的解集如下:∴原不等式组的解集是﹣1<x<3,∴它的所有整数解有:0,1,2.八.反比例函数与一次函数的交点问题(共1小题)10.(2023•东营)如图,在平面直角坐标系中,一次函数y=ax+b(a<0)与反比例函数y=(k≠0)交于A(﹣m,3m),B(4,﹣3)两点,与y轴交于点C,连接OA,OB.(1)求反比例函数和一次函数的表达式;(2)求△AOB的面积;(3)请根据图象直接写出不等式<ax+b的解集.【答案】(1)反比例函数的表达式为y=﹣,一次函数的表达式为y=﹣;(2)9;(3)x<﹣2或0<x<4.【解答】解:(1)∵点B(4,﹣3)在反比例函数的图象上,∴.∴k=﹣12.∴反比例函数的表达式为y=﹣.∵A(﹣m,3m)在反比例函数y=﹣的图象上,∴.∴m1=2,m2=﹣2 (舍去).∴点A的坐标为(﹣2,6).∵点A,B在一次函数y=ax+b的图象上,把点A(﹣2,6),B(4,﹣3)分别代入,得,∴.∴一次函数的表达式为y=﹣.(2)∵点C为直线AB与y轴的交点,∴OC=3.∴S△AOB=S△AOC+S△BOC=•OC•|x A|+•OC•|x B|=×3×2+×3×4=9.(3)由题意得,x<﹣2或0<x<4.九.平行四边形的性质(共1小题)11.(2023•济南)已知:如图,点O为▱ABCD对角线AC的中点,过点O的直线与AD,BC分别相交于点E,F.求证:DE=BF.【答案】证明见解答过程.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠EAO=∠FCO,∠OEA=∠OFC,∵点O为对角线AC的中点,∴AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴AE=CF,∴AD﹣AE=BC﹣CF,∴DE=BF.一十.作图—复杂作图(共1小题)12.(2023•青岛)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:△ABC.求作:点P,使PA=PC,且点P在△ABC边AB的高上.【答案】见解答.【解答】解:如图,点P为所作.一十一.频数(率)分布直方图(共1小题)13.(2023•济南)2023年,国内文化和旅游行业复苏势头强劲.某社团对30个地区“五一”假期的出游人数进行了调查,获得了它们“五一”假期出游人数(出游人数用m表示,单位:百万)的数据,并对数据进行统计整理.数据分成5组:A组:1≤m<12;B组:12≤m<23;C组:23≤m<34;D组:34≤m<45;E组:45≤m<56.下面给出了部分信息:a.B组的数据:12,13,15,16,17,17,18,20.b.不完整的“五一”假期出游人数的频数分布直方图和扇形统计图如图:请根据以上信息完成下列问题:(1)统计图中E 组对应扇形的圆心角为 36 度;(2)请补全频数分布直方图;(3)这30个地区“五一”假期出游人数的中位数是 15.5 百万;(4)各组“五一”假期的平均出游人数如表:组别A 1≤m <12B 12≤m <23C 23≤m <34D 34≤m <45E 45≤m <56平均出游人数(百万)5.51632.54250求这30个地区“五一”假期的平均出游人数.【答案】(1)36;(2)见解答;(3)15.5;(4)20百万.【解答】解:(1)统计图中E 组对应扇形的圆心角为360°×=36°,故答案为:36;(2)D 组个数为30×10%=3(个),所以C 组地区个数为30﹣(12+8+3+3)=4(个),补全图形如下:(3)这30个地区“五一”假期出游人数的中位数是=15.5(百万),故答案为:15.5;(4)(百万),答:这30个地区“五一”假期的平均出游人数是20百万.。
2024年中考数学真题汇编专题17 几何图形初步及相交线、平行线+答案详解(试题部分)一、单选题1.(2024·河南·中考真题)如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为()A.60︒B.50︒C.40︒D.30︒2.(2024·陕西·中考真题)如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是()A.B.C.D.∠的大3.(2024·北京·中考真题)如图,直线AB和CD相交于点O,OE OC∠=︒,则EOBAOC⊥,若58小为()A.29︒B.32︒C.45︒D.58︒4.(2024·广西·中考真题)如图,2时整,钟表的时针和分针所成的锐角为()A .20︒B .40︒C .60︒D .80︒5.(2024·四川内江·中考真题)如图,AB CD ∥,直线EF 分别交AB 、CD 于点E 、F ,若64EFD ∠=︒,则BEF ∠的大小是( )A .136︒B .64︒C .116︒D .128︒6.(2024·湖北·中考真题)如图,直线AB CD ∥,已知1120∠=︒,则2∠=( )A .50︒B .60︒C .70︒D .80︒7.(2024·陕西·中考真题)如图,AB DC ∥,BC DE ∥,145B ∠=︒,则D ∠的度数为( )A .25︒B .35︒C .45︒D .55︒8.(2024·黑龙江齐齐哈尔·中考真题)将一个含30︒角的三角尺和直尺如图放置,若150∠=︒,则2∠的度数是( )A .30︒B .40︒C .50︒D .60︒9.(2024·广东·中考真题)如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A .120︒B .90︒C .60︒D .30︒10.(2024·青海·中考真题)生活中常见的路障锥通常是圆锥的形状,它的侧面展开图是( )A.B.C.D.11.(2024·四川德阳·中考真题)走马灯,又称仙音烛,据史料记载,走马灯的历史起源于隋唐时期,盛行于宋代,是中国特色工艺品,常见于除夕、元宵、中秋等节日,在一次综合实践活动中,一同学用如图所示的纸片,沿折痕折合成一个棱锥形的“走马灯”,正方形做底,侧面有一个三角形面上写了“祥”字,当灯旋转时,正好看到“吉祥如意”的字样.则在A、B、C处依次写上的字可以是()A.吉如意B.意吉如C.吉意如D.意如吉12.(2024·四川广安·中考真题)将“共建平安校园”六个汉字分别写在某正方体的表面上,下图是它的一种展开图,则在原正方体上,与“共”)A.校B.安C.平D.园13.(2024·江苏盐城·中考真题)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.湿B.地C.之D.都14.(2024·江西·中考真题)如图是43的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有( )A .1种B .2种C .3种D .4种15.(2024·江苏扬州·中考真题)如图是某几何体的表面展开后得到的平面图形,则该几何体是( )A .三棱锥B .圆锥C .三棱柱D .长方体16.(2024·河北·中考真题)如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是( )A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥17.(2024·福建·中考真题)在同一平面内,将直尺、含30︒角的三角尺和木工角尺(CD ⊥DE )按如图方式摆放,若AB CD ,则1∠的大小为( )A .30︒B .45︒C .60︒D .75︒18.(2024·江苏苏州·中考真题)如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为( )A .45︒B .55︒C .60︒D .65︒19.(2024·内蒙古包头·中考真题)如图,直线AB CD ∥,点E 在直线AB 上,射线EF 交直线CD 于点G ,则图中与AEF ∠互补的角有( )A .1个B .2个C .3个D .4个20.(2024·广东深圳·中考真题)如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为( )A .40︒B .50︒C .60︒D .70︒21.(2024·吉林·中考真题)如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A .50︒B .100︒C .130︒D .150︒22.(2024·重庆·中考真题)如图,AB CD ∥,若1125∠=︒,则2∠的度数为( )A .35︒B .45︒C .55︒D .125︒23.(2024·吉林长春·中考真题)如图,在ABC 中,O 是边AB 的中点.按下列要求作图:①以点B 为圆心、适当长为半径画弧,交线段BO 于点D ,交BC 于点E ;②以点O 为圆心、BD 长为半径画弧,交线段OA 于点F ;③以点F 为圆心、DE 长为半径画弧,交前一条弧于点G ,点G 与点C 在直线AB 同侧;④作直线OG ,交AC 于点M .下列结论不一定成立的是( )A .AOMB ∠=∠B .180OMC C ∠+∠= C .AM CM =D .12OM AB = 24.(2024·青海·中考真题)如图,一个弯曲管道AB CD ,120ABC ∠=︒,则BCD ∠的度数是( )A .120︒B .30︒C .60︒D .150︒25.(2024·吉林长春·中考真题)在剪纸活动中,小花同学想用一张矩形纸片剪出一个正五边形,其中正五边形的一条边与矩形的边重合,如图所示,则α∠的大小为( )A .54oB .60C .70D .7226.(2024·内蒙古赤峰·中考真题)将一副三角尺如图摆放,使有刻度的两条边互相平行,则1∠的大小为( )A .100︒B .105︒C .115︒D .120︒27.(2024·四川达州·中考真题)如图,正方体的表面展开图上写有“我们热爱中国”六个字,还原成正方体后“我”的对面的字是( )A .热B .爱C .中D .国28.(2024·四川宜宾·中考真题)如图是正方体表面展开图.将其折叠成正方体后,距顶点A 最远的点是( )A .B 点 B .C 点 C .D 点 D .E 点29.(2024·四川泸州·中考真题)把一块含30︒角的直角三角板按如图方式放置于两条平行线间,若145∠=︒,则2∠=( )A .10︒B .15︒C .20︒D .30︒30.(2024·江苏盐城·中考真题)小明将一块直角三角板摆放在直尺上,如图,若155∠=︒,则2∠的度数为( )A .25︒B .35︒C .45︒D .55︒31.(2024·甘肃·中考真题)若55A ∠=︒,则A ∠的补角为( )A .35︒B .45︒C .115︒D .125︒32.(2024·内蒙古呼伦贝尔·中考真题)如图,,AD BC AB AC ⊥∥,若135.8∠=,则B ∠的度数是( )A .3548'︒B .5512'︒C .5412'︒D .5452'︒二、填空题33.(2024·吉林·中考真题)如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .34.(2024·广西·中考真题)已知1∠与2∠为对顶角,135∠=︒,则2∠= °.35.(2024·广东广州·中考真题)如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为 .36.(2024·四川乐山·中考真题)如图,两条平行线a 、b 被第三条直线c 所截.若160∠=︒,那么2∠= .37.(2024·黑龙江绥化·中考真题)如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠= ︒.38.(2024·山东威海·中考真题)如图,在正六边形ABCDEF 中,AH FG ∥,BI AH ⊥,垂足为点I .若20EFG ∠=︒,则ABI ∠= .39.(2024·河北·中考真题)如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为 ;(2)143B C D △的面积为 .三、解答题40.(2024·福建·中考真题)在手工制作课上,老师提供了如图1所示的矩形卡纸ABCD ,要求大家利用它制作一个底面为正方形的礼品盒.小明按照图2的方式裁剪(其中AE FB =),恰好得到纸盒的展开图,并利用该展开图折成一个礼品盒,如图3所示.图1 图2 图3(1)直接写出AD AB的值; (2)如果要求折成的礼品盒的两个相对的面上分别印有“吉祥”和“如意”,如图4所示,那么应选择的纸盒展开图图样是( )图4A.B.C.D.(3)现以小明设计的纸盒展开图(图2)为基本样式,适当调整AE,EF的比例,制作棱长为10cm的正方体礼品盒,如果要制作27个这样的礼品盒,请你合理选择上述卡纸(包括卡纸的型号及相应型号卡纸的张数),并在卡纸上画出设计示意图(包括一张卡纸可制作几个礼品盒,其展开图在卡纸上的分布情况),给出所用卡纸的总费用.(要求:①同一型号的卡纸如果需要不止一张,只要在一张卡纸上画出设计方案;②没有用到的卡纸,不要在该型号的卡纸上作任何设计;③所用卡纸的数量及总费用直接填在答题卡的表格上;④本题将综合考虑“利用卡纸的合理性”和“所用卡纸的总费用”给分,总费用最低的才能得满分;⑤试卷上的卡纸仅供作草稿用)2024年中考数学真题汇编专题17 几何图形初步及相交线、平行线+答案详解(答案详解)一、单选题1.(2024·河南·中考真题)如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为( )A .60︒B .50︒C .40︒D .30︒ 【答案】B 【分析】本题主要考查了方向角,平行线的性质,利用平行线的性质直接可得答案.【详解】解:如图,由题意得,50BAC ∠=︒,AB CD ∥,∴150BAC ∠=∠=︒,故选:B .2.(2024·陕西·中考真题)如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是( )A .B .C .D .【答案】C【分析】本题主要考查了点、线、面、体问题.根据旋转体的特征判断即可.【详解】解:将一个半圆绕它的直径所在的直线旋转一周得到的几何体是球,故选:C .3.(2024·北京·中考真题)如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A .29︒B .32︒C .45︒D .58︒ 【答案】B 【分析】本题考查了垂直的定义,平角的定义,熟练掌握知识点,是解题的关键.根据OE OC ⊥得到90COE ∠=︒,再由平角180AOB ∠=︒即可求解.【详解】解:∵OE OC ⊥,∴90COE ∠=︒,∵180AOC COE BOE ∠+∠+∠=︒,58AOC ∠=︒,∴180905832EOB ∠=︒−︒−=︒,故选:B .4.(2024·广西·中考真题)如图,2时整,钟表的时针和分针所成的锐角为( )A .20︒B .40︒C .60︒D .80︒【答案】C 【分析】本题考查了钟面角,用30︒乘以两针相距的份数是解题关键.根据钟面的特点,钟面平均分成12份,每份是30︒,根据时针与分针相距的份数,可得答案.【详解】解:2时整,钟表的时针和分针所成的锐角是30260︒⨯=︒,故选:C .5.(2024·四川内江·中考真题)如图,AB CD ∥,直线EF 分别交AB 、CD 于点E 、F ,若64EFD ∠=︒,则BEF ∠的大小是( )A .136︒B .64︒C .116︒D .128︒ 【答案】C 【分析】本题考查了平行线的性质,根据两直线平行,同旁内角互补求解即可.【详解】解:∵AB CD ∥,∴180BEF EFD ∠+∠=︒,∵64EFD ∠=︒,∴116180EFD BEF ∠︒∠==︒−,故选:C .6.(2024·湖北·中考真题)如图,直线AB CD ∥,已知1120∠=︒,则2∠=( )A .50︒B .60︒C .70︒D .80︒ 【答案】B 【分析】本题主要考查了平行线的性质,解题的关键是熟练掌握平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.根据同旁内角互补,1120∠=︒,求出结果即可.【详解】解:∵AB CD ∥,∴12180∠+∠=︒,∵1120∠=︒,∴218012060∠=︒−︒=︒, 故选:B .7.(2024·陕西·中考真题)如图,AB DC ∥,BC DE ∥,145B ∠=︒,则D ∠的度数为( )A .25︒B .35︒C .45︒D .55︒【答案】B 【分析】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.先根据“两直线平行,同旁内角互补”,得到35C ∠=︒,再根据“两直线平行,内错角相等”,即可得到答案.【详解】AB DC ∥,180B C ∠+∠=︒∴,145B ∠=︒,18035C B ∴∠=︒−∠=︒,∥Q BC DE ,35D C ∴∠=∠=︒.故选B .8.(2024·黑龙江齐齐哈尔·中考真题)将一个含30︒角的三角尺和直尺如图放置,若150∠=︒,则2∠的度数是( )A .30︒B .40︒C .50︒D .60︒由题意得3150∠=∠=︒,590∠=∴2418090390∠=∠=︒−︒−∠=︒故选:B .9.(2024·广东·中考真题)如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A .120︒B .90︒C .60︒D .30︒【答案】C【分析】本题考查了平行线的性质.熟练掌握平行线的性质是解题的关键.由题意知,AC DE ∥,根据ACE E ∠=∠,求解作答即可.【详解】解:由题意知,AC DE ∥,∴60ACE E ∠=∠=︒,故选:C . 10.(2024·青海·中考真题)生活中常见的路障锥通常是圆锥的形状,它的侧面展开图是( )A .B .C .D .【答案】D【分析】本题考查了立体图形的侧面展开图.熟记常见立体图形的侧面展开图的特征是解决此类问题的关键.由圆锥的侧面展开图的特征知它的侧面展开图为扇形.【详解】解:圆锥的侧面展开图是扇形.故选:D .11.(2024·四川德阳·中考真题)走马灯,又称仙音烛,据史料记载,走马灯的历史起源于隋唐时期,盛行于宋代,是中国特色工艺品,常见于除夕、元宵、中秋等节日,在一次综合实践活动中,一同学用如图所示的纸片,沿折痕折合成一个棱锥形的“走马灯”,正方形做底,侧面有一个三角形面上写了“祥”字,当灯旋转时,正好看到“吉祥如意”的字样.则在A 、B 、C 处依次写上的字可以是( )A .吉 如 意B .意 吉 如C .吉 意 如D .意 如 吉【答案】A 【分析】本题考查的是简单几何体的展开图,利用四棱锥的展开图的特点可得答案.【详解】解:由题意可得:展开图是四棱锥,∴A、B、C处依次写上的字可以是吉,如,意;或如,吉,意;故选A12.(2024·四川广安·中考真题)将“共建平安校园”六个汉字分别写在某正方体的表面上,下图是它的一种展开图,则在原正方体上,与“共”字所在面相对的面上的汉字是()A.校B.安C.平D.园【答案】A【分析】此题考查正方体相对面上的字.根据正方体相对面之间间隔一个正方形解答.【详解】解:与“共”字所在面相对面上的汉字是“校”,故选:A.13.(2024·江苏盐城·中考真题)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.湿B.地C.之D.都【答案】C【分析】本题主要考查了正方体相对两个面上的文字,对于正方体的平面展开图中相对的面一定相隔一个小正方形,由此可解.【详解】解:由正方体表面展开图的特征可得:“盐”的对面是“之”,“地”的对面是“都”,“湿”的对面是“城”,故选C.14.(2024·江西·中考真题)如图是43的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有()A.1种B.2种C.3种D.4种【答案】B【分析】此题主要考查了几何体的展开图,关键是掌握正方体展开图的特点.依据正方体的展开图的结构特征进行判断,即可得出结论.【详解】解:如图所示:共有2种方法,故选:B.15.(2024·江苏扬州·中考真题)如图是某几何体的表面展开后得到的平面图形,则该几何体是()A.三棱锥B.圆锥C.三棱柱D.长方体【答案】C【分析】本题考查了常见几何体的展开图,掌握常见几何体展开图的特点是解题的关键.根据平面图形的特点,结合立体图形的特点即可求解.【详解】解:根据图示,上下是两个三角形,中间是长方形,∴该几何体是三棱柱,故选:C .16.(2024·河北·中考真题)如图,AD与BC交于点O,ABO和CDO关于直线PQ对称,点A,B的对称点分别是点C,D.下列不一定正确的是()A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥ 【答案】A 【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键.根据轴对称图形的性质即可判断B 、C 选项,再根据垂直于同一条直线的两条直线平行即可判断选项D .【详解】解:由轴对称图形的性质得到ABO CDO △≌△,,AC PQ BD PQ ⊥⊥,∴AC BD ∥,∴B 、C 、D 选项不符合题意,故选:A .17.(2024·福建·中考真题)在同一平面内,将直尺、含30︒角的三角尺和木工角尺(CD ⊥DE )按如图方式摆放,若AB CD ,则1∠的大小为( )A .30︒B .45︒C .60︒D .75︒ 【答案】A【分析】本题考查了平行线的性质,由ABCD ,可得60CDB ∠=︒,即可求解.【详解】∵AB CD , ∴60CDB ∠=︒, ∵CD ⊥DE ,则90CDE ∠=︒,∴118030CDB CDE ∠=︒−∠−∠=︒,故选:A .18.(2024·江苏苏州·中考真题)如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为( )A .45︒B .55︒C .60︒D .65︒ 【答案】B 【分析】题目主要考查根据平行线的性质求角度,根据题意得出60BAD ∠=︒,再由平角即可得出结果,熟练掌握平行线的性质是解题关键【详解】解:∵AB CD ,2120∠=︒,∴2180BAD ∠+∠=︒,∴60BAD ∠=︒,∵165∠=︒,∴3180155BAD ∠=︒−∠−∠=︒,故选:B19.(2024·内蒙古包头·中考真题)如图,直线AB CD ∥,点E 在直线AB 上,射线EF 交直线CD 于点G ,则图中与AEF ∠互补的角有( )A .1个B .2个C .3个D .4个 【答案】C 【分析】本题考查了平行线的性质,对顶角的性质,补角的定义等知识,利用平行线的性质得出180AEF CGE +∠=︒∠,得出结合对顶角的性质180AEF DGF ∠+∠=︒,根据邻补角的定义得出180AEF BEG ∠+∠=︒,即可求出中与AEF ∠互补的角,即可求解.【详解】解∶∵AB CD ∥,∴180AEF CGE +∠=︒∠,∵CGE DGF ∠=∠,∴180AEF DGF ∠+∠=︒,又180AEF BEG ∠+∠=︒,∴图中与AEF ∠互补的角有CGE ∠,DGF ∠,BEG ∠,共3个.故选∶C .20.(2024·广东深圳·中考真题)如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为( )A .40︒B .50︒C .60︒D .70︒ DE GF ,450=∠=︒故选:B .21.(2024·吉林·中考真题)如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A .50︒B .100︒C .130︒D .150︒【答案】C【分析】本题考查了平行线的性质,圆的内接四边形的性质,熟练掌握知识点是解题的关键.先根据BE AD ∥得到50D BEC ∠=∠=︒,再由四边形ABCD 内接于O 得到180ABC D ∠+∠=︒,即可求解.【详解】解:∵BE AD ∥,50BEC ∠=︒,∴50D BEC ∠=∠=︒,∵四边形ABCD 内接于O ,∴180ABC D ∠+∠=︒,∴18050130ABC ∠=︒−︒=︒,故选:C .22.(2024·重庆·中考真题)如图,AB CD ∥,若1125∠=︒,则2∠的度数为( )A .35︒B .45︒C .55︒D .125︒【答案】C 【分析】本题考查了平行线的性质,邻补角的定义,根据邻补角的定义求出3∠,然后根据平行线的性质求解即可.【详解】解:如图,∵1125∠=︒,∴3180155∠=︒−∠=︒,∵AB CD ∥,∴2355∠=∠=︒,故选:C .23.(2024·吉林长春·中考真题)如图,在ABC 中,O 是边AB 的中点.按下列要求作图:①以点B 为圆心、适当长为半径画弧,交线段BO 于点D ,交BC 于点E ;②以点O 为圆心、BD 长为半径画弧,交线段OA 于点F ;③以点F 为圆心、DE 长为半径画弧,交前一条弧于点G ,点G 与点C 在直线AB 同侧;④作直线OG ,交AC 于点M .下列结论不一定成立的是( )A .AOMB ∠=∠B .180OMC C ∠+∠= C .AM CM =D .12OM AB = 180,根据平行线分线段成比例得出AOM ∠180一定成立,故的中点,24.(2024·青海·中考真题)如图,一个弯曲管道AB CD ,120ABC ∠=︒,则BCD ∠的度数是( )A .120︒B .30︒C .60︒D .150︒【答案】C 【分析】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.根据两直线平行,同旁内角互补即可得出结果.【详解】AB CD180ABC BCD ∴∠+∠=︒120ABC ∠=︒60BCD ∴∠=︒ 故选:C25.(2024·吉林长春·中考真题)在剪纸活动中,小花同学想用一张矩形纸片剪出一个正五边形,其中正五边形的一条边与矩形的边重合,如图所示,则α∠的大小为( )A .54oB .60C .70D .7226.(2024·内蒙古赤峰·中考真题)将一副三角尺如图摆放,使有刻度的两条边互相平行,则1∠的大小为( )A .100︒B .105︒C .115︒D .120︒【答案】B 【分析】本题考查了三角板中角度计算问题,由题意得3230∠=∠=︒,根据1180345∠=︒−∠−︒即可求解.【详解】解:如图所示:∠=∠=︒由题意得:3230∠=︒−∠−︒=︒∴1180345105故选:B.27.(2024·四川达州·中考真题)如图,正方体的表面展开图上写有“我们热爱中国”六个字,还原成正方体后“我”的对面的字是()A.热B.爱C.中D.国28.(2024·四川宜宾·中考真题)如图是正方体表面展开图.将其折叠成正方体后,距顶点A最远的点是()A.B点B.C点C.D点D.E点【答案】B【分析】本题考查了平面图形和立体图形,把图形围成立体图形求解.【详解】解:把图形围成立方体如图所示:所以与顶点A距离最远的顶点是C,故选:B.29.(2024·四川泸州·中考真题)把一块含30︒角的直角三角板按如图方式放置于两条平行线间,若145∠=︒,则2∠=()A.10︒B.15︒C.20︒D.30︒【答案】B【分析】本题考查了平行线的性质,三角板中角的运算,熟练掌握相关性质是解题的关键.利用平行线性∠=︒,再根据平角的定义求解,即可解题.质得到3135【详解】解:如图,∠=︒,直角三角板位于两条平行线间且145∴∠=︒,3135又直角三角板含30︒角,∴︒−∠−∠=︒,1802330∴∠=︒,215故选:B.30.(2024·江苏盐城·中考真题)小明将一块直角三角板摆放在直尺上,如图,若155∠=︒,则2∠的度数为()A .25︒B .35︒C .45︒D .55︒ 【答案】B 【分析】此题考查了平行线的性质,根据平行线的性质得到3155∠=∠=︒,再利用平角的定义即可求出2∠的度数.【详解】解:如图,∵155∠=︒,ABCD∴3155∠=∠=︒, ∴21802335∠=︒−∠−∠=︒,故选:B31.(2024·甘肃·中考真题)若55A ∠=︒,则A ∠的补角为( )A .35︒B .45︒C .115︒D .125︒32.(2024·内蒙古呼伦贝尔·中考真题)如图,,AD BC AB AC ⊥∥,若135.8∠=,则B ∠的度数是( )A .3548'︒B .5512'︒C .5412'︒D .5452'︒【答案】C 【分析】本题考查了平行线的性质,垂直的定义,度分秒的计算等,先利用垂直定义结合已知条件求出125.8BAD ∠=︒,然后利用平行线的性质以及度分秒的换算求解即可.【详解】解∶∵AB AC ⊥,135.8∠=,∴19035.8125.8BAD BAC ∠=∠+∠=︒+︒=︒,∵AD BC ∥,∴180B BAD ∠+∠=°,∴18054.25412B BAD '∠=︒−∠=︒=︒,故选∶C .二、填空题33.(2024·吉林·中考真题)如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .【答案】两点之间,线段最短【分析】本题考查了两点之间线段最短,熟记相关结论即可.【详解】从长春站去往胜利公园,走人民大街路程最近,其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.34.(2024·广西·中考真题)已知1∠与2∠为对顶角,135∠=︒,则2∠= °. 【答案】35【分析】本题主要考查了对顶角性质,根据对顶角相等,得出答案即可.【详解】解:∵1∠与2∠为对顶角,135∠=︒, ∴2135∠=∠=︒.故答案为:35.35.(2024·广东广州·中考真题)如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为 .∵a b ,171∠=︒,∴1371∠=∠=︒,∴21803109∠=︒−∠=︒;故答案为:109︒36.(2024·四川乐山·中考真题)如图,两条平行线a 、b 被第三条直线c 所截.若160∠=︒,那么2∠= .【答案】120︒/120度【分析】本题考查了直线平行的性质:两直线平行同位角相等.也考查了平角的定义.根据两直线平行同位角相等得到1360∠=∠=︒,再根据平角的定义得到23180∠+∠=︒,从而可计算出2∠.【详解】解:如图,a b ∥,1360∴∠=∠=︒,而23180∠+∠=︒,218060120∴∠=︒−︒=︒,故答案为:120︒.37.(2024·黑龙江绥化·中考真题)如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠= ︒.【答案】66【分析】本题考查了平行线的性质,等边对等角,三角形外角的性质,根据等边对等角可得33E C ∠=∠=︒,根据三角形的外角的性质可得66DOE ∠=︒,根据平行线的性质,即可求解.【详解】解:∵OC OE =,33C ∠=︒,∴33E C ∠=∠=︒,∴66DOE E C ∠=∠+∠=︒,∵AB CD ∥,∴66A DOE =∠=︒∠,故答案为:66.38.(2024·山东威海·中考真题)如图,在正六边形ABCDEF 中,AH FG ∥,BI AH ⊥,垂足为点I .若20EFG ∠=︒,则ABI ∠= .【答案】50︒/50度【分析】本题考查了正六边形的内角和、平行线的性质及三角形内角和定理,先求出正六边形的每个内角为120︒,即120EFA FAB ∠=∠=︒,则可求得GFA ∠的度数,根据平行线的性质可求得FAH ∠的度数,进而可求出HAB ∠的度数,再根据三角形内角和定理即可求出ABI ∠的度数. 【详解】解:∵正六边形的内角和(62)180720=−⨯=︒, 每个内角为:7206120︒÷=︒,120EFA FAB ∴∠=∠=︒, 20EFG ∠=︒,12020100GFA ∴∠=︒−︒=︒, AH FG ∥,180G FAH FA ∠=︒∴∠+,180********GFA FAH =︒−∠=︒−︒=︒∴∠, 1208040HAB FA FAH B ∴∠=∠−︒−︒=︒∠=,BI AH ⊥,90BIA ∴∠=︒,904050ABI ∴∠=︒−︒=︒.故答案为:50︒.39.(2024·河北·中考真题)如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为 ; (2)143B C D △的面积为 . ,证明()11SAS AC D ACD ≌)证明()11SAS AB D ABD ≌三点共线,得11112AB D AC D S △△+=,继而得出113AB D =△,证明3C AD △99CAD S ==△,推出S △【详解】解:(1)连接11B D 、1B ∵ABC 的面积为ABD S S △=∵点A ,1C ,1AC AC =和ACD 中,CAD , ∴()11SAS AC D ACD ≌111AC D ACD S S ==△△,∠11AC D △的面积为1,故答案为:1;)在11AB D 和△1AB AD BAD AD =∠∴()11SAS AB D ABD ≌111AB D ABD S S ==△△,∠180BDA CDA ∠+∠=︒1111180B D A C D A ∠+∠=和ACD 中,3AD AD,3C ∠CAD △,332233C AD CADS AC SAC ⎫==⎪⎭33C AD =△1AC C =【点睛】本题考查三角形中线的性质,全等三角形的判定与性质,相似三角形的判定与性质,等分点的意义,三角形的面积.掌握三角形中线的性质是解题的关键.三、解答题40.(2024·福建·中考真题)在手工制作课上,老师提供了如图1所示的矩形卡纸ABCD,要求大家利用它制作一个底面为正方形的礼品盒.小明按照图2的方式裁剪(其中AE FB=),恰好得到纸盒的展开图,并利用该展开图折成一个礼品盒,如图3所示.图1图2图3(1)直接写出ADAB的值;(2)如果要求折成的礼品盒的两个相对的面上分别印有“吉祥”和“如意”,如图4所示,那么应选择的纸盒展开图图样是()图4A.B.C.D.(3)现以小明设计的纸盒展开图(图2)为基本样式,适当调整AE,EF的比例,制作棱长为10cm的正方体礼品盒,如果要制作27个这样的礼品盒,请你合理选择上述卡纸(包括卡纸的型号及相应型号卡纸的张数),并在卡纸上画出设计示意图(包括一张卡纸可制作几个礼品盒,其展开图在卡纸上的分布情况),给出所用卡纸的总费用.(要求:①同一型号的卡纸如果需要不止一张,只要在一张卡纸上画出设计方案;②没有用到的卡纸,不要在该型号的卡纸上作任何设计;③所用卡纸的数量及总费用直接填在答题卡的表格上;④本题将综合考虑“利用卡纸的合理性”和“所用卡纸的总费用”给分,总费用最低的才能得满分;⑤试卷上的卡纸仅供作草稿用)【答案】(1)2;(2)C;∴所用卡纸总费用为:⨯+⨯+⨯=(元).202533158。
山东17地市近三年中考真题分类汇编-----几何图形4.(3分)(2014•聊城)如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为()A.53°B.55°C.57°D.60°7.(3分)(2014•聊城)如图,点P是∠AOB 外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR 的长为()A.4.5 B.5.5 C.6.5 D.79.(3分)(2014•聊城)如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为()A.2B.3C.6D.7.将一个n边形变成n+1边形,内角和将(A)减少180°.(B)增加90°.(C)增加180°.(D)增加360°.17BC=,10184y=x三角形斜边OA的中点,则过点D的反比例函数的解析式为.19.一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同....的,也就是说,集合中的元素是不重复出现的.如一组数1,1,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比实数有加法运算,集合也可以“相加”.定义:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B. 若A ={-2,0,1,5,7},B ={-3,0,1,3,5},则A+B = .4.(3分)(2013•德州)如图,AB∥CD,点E 在BC上,且CD=CE,∠D=74°,则∠B的度数为()A.68°B.32°C.22°D.16°7.(3分)(2013•德州)下列命题中,真命题是()A . 对角线相等的四边形是等腰梯形B . 对角线互相垂直平分的四边形是正方形C . 对角线互相垂直的四边形是菱形D . 四个角相等的四边形是矩形17.(4分)(2013• 德州)如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE=CF ;②∠AEB=75°;③BE+DF=EF ;④S正方形ABCD=2+.其中正确的序号是 ①②④ (把你认为正确的都填上).2.如图,点O在直线AB 上,若ο401=∠,则2∠的度数是A .ο50 B .ο60 C .ο140 D .ο150 ABO 21 第2题图8.下列命题中,真命题是A .两对角线相等的四边形是矩形B .两对角线互相平分的四边形是平行四边形C .两对角线互相垂直的四边形是菱形D .两对角线相等的四边形是等腰梯形10.在□ABCD 中,延长AB 到E ,使BE =AB ,连接DE 交BC于F ,则下列结论不一定成立的是A .CDF E ∠=∠B .DF EF =C .BF AD 2= D .CF BE 2=20.如图,将边长为12的正方形ABCD 是沿其对角线AC 剪开,再把ABC ∆沿着AD 方向平移,得到C B A '''∆,当两个三角形重叠的面积为32时,它移动的距离A A '等于________. 【解析】设m A A =',则222121264m (m )+-=-,解之m =4或8,应填4或8.A BC DEF 第10题图A D CBA DAB C第20题图23.(本小题满分7分)(1)如图,在四边形ABCD是矩形,点E是AD 的中点,求证:ECEB .3.如图,已知AB∥CD,∠2=135°,则∠1的度数是(A) 35°. (B) 45°. (C) AB CDE第23题(1)图(第10题图)EDCBAO488 16t(s)S (2cm (A )O48816t(s )S (2cm (B )55°. (D) 65°.10.如图,四边形ABCD 中,AC 垂直平分BD,垂足为E,下列结论不一定...成立的是(A ) AB=AD. (B) AC 平分∠BCD. (C) AB=BD. (D) △BEC ≌△DEC.14、如图,正方形ABCD 中,AB=8cm,对角线AC,BD 相交于点O,点E,F 分别从B,C 两点同时出发,以1cm/s 的速度沿BC,CD 运动,到点C,D 时停止运动,设运动时间为t(s),△OEF的面积为O 48 8 16t(s)S (2cm (C )O488 16t(s)S (2cm (D )s(2cm ),则s(2cm )与t(s)的函数关系可用图像表示为8.(3分)(2013•威海)如图,在△ABC 中,∠A=36°,AB=AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD ,下列结论错误的是( )A.∠C=2∠A B.B D平分∠ABC C.S△BCD=S△BOD D.点D为线段AC的黄金分割点10.(3分)(2013•威海)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.B C=AC B.C F⊥BF C.B D=DF D.A C=BF13.(3分)(2013•威海)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=25°.15.(3分)(2013•威海)如图,AC⊥CD,垂足为点C,BD⊥CD,垂足为点D,AB与CD交于点O.若AC=1,BD=2,CD=4,则AB=5.17.(3分)(2013•威海)如图①,将四边形纸片ABCD沿两组对边中点连线剪切为四部分,将这四部分密铺可得到如图②所示的平行四边形,若要密铺后的平行四边形为矩形,则四边形ABCD需要满足的条件是AC=BD.8.如图,已知矩形ABCD的长AB为5,宽BC为4.E是BC边上的一个动点,AE⊥上EF,EF交CD于点F.设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图象是5.(3分)(2014•日照)已知△ABC的周长为13,且各边长均为整数,那么这样的等腰△ABC 有()A.5个B.4个C.3个D.2个7.(3分)(2014•青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4B.3C.4.5 D.5 13.(3分)(2014•青岛)如图,在等腰梯形ABCD 中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为2.15.(4分)(2014•青岛)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.2.(2013菏泽)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30° B.30°或45°C.45°或60°D.30°或60°.7.(2013菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.1913.(2013菏泽)如图,▱ABCD中,对角线AC 与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为.(第6题)ABCD E CP14.(2013菏泽)如图所示,在△ABC 中,BC=6,E 、F 分别是AB 、AC 的中点,动点P 在射线EF 上,BP 交CE 于D ,∠CBP 的平分线交CE 于Q ,当CQ=CE 时,EP+BP= 12 .3.把一根长100cm 的木棍锯成两段,使其中一段的长比另一段的2倍少5cm ,则锯出的木棍的长不可能为 (A )70cm (B )65cm (C )35cm (D )35cm 或65cm6.如图,菱形纸片ABCD 中,∠A =60°,折叠菱形纸片ABCD ,使点C 落在DP (P 为AB 中点)所在的直线上,得到经过点 D 的折痕DE .则∠DEC 的大小为 (A )78° (B )75° (C )60° (D )45°8.如图,直角梯形ABCD 中,AB CD ∥,=C ∠90°,=BDA ∠90°,AB a =,ABCDdabce(第8题)BD b=,CD c =,BC d =,AD e =,则下列等式成立的是 (A )2bac= (B )2bce=(C )be ac = (D )bd ae =12.如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC =10,则PQ 的长为(A )32 (B )52 (C )3 (D )4 15.在△ABC 中,P 是AB 上的动点(P 异于A ,B ),过点P 的一条直线截△ABC ,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P 的△ABC 的相似线.如图,∠A =36°,AB =AC ,当点P 在AC 的垂直平分线上时,过点P 的△ABC 的相似线最多有 条.16.如图,AB 是⊙O 的直径,»»AD DE =,AB =5,BD =4,则sin ∠ECB = . 19.(本题满分5分)如图,AD ∥BC ,BD 平分∠ABC .求证:AB =AD .ABC D EP Q (第12题) A BP (第15题)DE C O(第16题) (第19题)CD A B7.(4分)(2014年山东淄博)如图,等腰梯形ABCD中,对角线AC、DB相交于点P,∠BAC=∠CDB=90°,AB=AD=DC.则cos∠DPC的值是()A.B. C.D.9.(4分)(2014年山东淄博)如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC 相交于点F.有甲、乙、丙三名同学同时从点A 出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D.若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A.甲乙丙B.甲丙乙C.乙丙甲D.丙甲乙10.(4分)(2014年山东淄博)如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE 的垂直平分线MN恰好过点C.则矩形的一边AB的长度为()A. 1 B. C.D. 218.(5分)(2014年山东淄博)计算:•.19.(5分)(2014年山东淄博)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.6.(2014年山东烟台)如图,在菱形ABCD 中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°7.(2014年山东烟台)如图,已知等腰梯形ABCD 中,AD∥BC,AB=CD=AD=3,梯形中位线EF 与对角线BD相交于点M,且BD⊥CD,则MF 的长为()A . 1.5B . 3C .3.5D .4.54.下列命题中是真命题的是( ) A .如果22a b =,那么a b =B .对角线互相垂直的四边形是菱形C .旋转前后的两个图形,对应点所连线段相等D .线段垂直平分线上的点到这条线段两个端点的距离相等7.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么, 这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.其中正确命题的序号是( )A .②③B .①②C .③④D .②③④10.如图,四边形ABCD 为HF CAG菱形,AB=BD,点B、C、D、G四个点在同一个O e圆上,连接BG并延长交AD于点F,连接DG并延长交AB于点E,BD与CG交于点H,连接FH.下列结论:①AE=DF;②FH∥AB;③△DGH∽△BGE;④当CG为O e的直径时,DF=AF.其中正确结论的个数是()A.1 B.2 C.3 D.4 5.(2013聊城)下列命题中的真命题是()A.三个角相等的四边形是矩形B.对角线互相垂直且相等的四边形是正方形C.顺次连接矩形四边中点得到的四边形是菱形D.正五边形既是轴对称图形又是中心对称图形11.(2013聊城)如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD 的面积为a,则△ACD的面积为()A.a B.C.D.16.(2013聊城)如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为.8.(2013济宁)如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y 轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A .(0,0)B .(0,1)C .(0,2)D .(0,3)14.如图,ABCD 是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件 ____________,使ABCD 成为菱形.(只需添加一个即可)18.如图,直角三角形ABC 中,︒=∠90ACB ,10=AB , 6=BC ,在线段AB 上取一点D ,作AB DF ⊥交AC 于点F .现将ADF ∆沿DF 折叠,使点A落在线段DB 上,对应点记为1A ;AD 的中点E 的对应点记为1E .若11FA E ∆∽BF E 1∆,则AD =__________. 19.(本题满分10分)如图,四边形ABCD 是平行四边形,以对角线BD 为直径作⊙O ,分别于BC 、AD 相交于点E 、F .(1)求证四边形BEDF 为矩形.(2)若BC BE BD⋅=2试判断直线CD 与⊙O 的位置关系,并说明理由.9.(3分)(2014•威海)如图,在△ABC 中,∠ABC=50°,∠ACB=60°,点E 在BC 的延长线上,∠ABC 的平分线BD 与∠ACE 的平分线CD 相交于点D ,连接AD ,下列结论中不正确的是( )A . ∠BAC =70°B . ∠DOC =90° C . ∠BDC =35°D . ∠DAC =55°15.(3分)(2014•威海)直线l 1∥l 2,一块含45°角的直角三角板如图放置,∠1=85°,则∠2= 40° .17.(3分)(2014•威海)如图,有一直角三角形纸片ABC,边BC=6,AB=10,∠ACB=90°,将该直角三角形纸片沿DE折叠,使点A与点C 重合,则四边形DBCE的周长为18.3.(3分)(2014•枣庄)如图,AB ∥CD ,AE 交CD 于C ,∠A=34°,∠DEC=90°,则∠D 的度数为( ) A . 17°B . 34°C . 56°D .124° 7.(3分)(2014•枣庄)如图,菱形ABCD 的边长为4,过点A 、C 作对角线AC 的垂线,分别交CB 和AD 的延长线于点E 、F ,AE=3,则四边形AECF 的周长为( )A .22B . 18C . 14D .11 12.(3分)(2014•枣庄)如图,△ABC 中,AB=4,AC=3,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于F ,交AB 于G ,连接EF ,则线段EF 的长为( )A .B.1 C.D.717.(4分)(2014•枣庄)如图,将矩形ABCD 沿CE向上折叠,使点B落在AD边上的点F处.若AE=BE,则长AD与宽AB的比值是.18.(4分)(2014•枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3+3)cm.6.(3分)(2014•莱芜)若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13 B.14 C.15 D.1610.(3分)(2014•莱芜)如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ACD=()A.1:16 B.1:18 C.1:20 D.1:24 11.(3分)(2014•莱芜)如图,在正五边形ABCDE 中,连接AC、AD、CE,CE交AD于点F,连接BF,下列说法不正确的是()A.△CDF的周长等于B.F C平分∠BFD AD+CDC.A C2+BF2=4CD2D.D E2=EF•CE21.(9分)(2014•莱芜)如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.(1)求证:BE=CD;(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.5.(2014年山东省滨州市)如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE=60°,则∠BOD的度数为()A.50 B.60 C.65 D.7015.(2014年山东省滨州市)如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则=.2.(2014菏泽)如图,直线l∥m∥n,等边△ABC的顶点B、C分别在直线n和m上,边BC与直线n所夹锐角为25°,则∠α的度数为A.25°B.45° C. 35° D. 30°10.(2014菏泽)如图,在△ABC中,∠C=90°,∠=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则D B))的度数为12.(2014菏泽)如图,平行于x 轴的直线AC 分别交函数22xy=(x ≥o)与322x y =(x ≥0)的图象于B 、C 两 点,过点C 作y 轴的平行线交y 1的图象于点D ,直线DE ∥AC ,交y 2的图象于点E ,则=ABDE 13.(2014菏泽)如图所示,Rt △ABO 中,∠AOB=90°,点A 在第一象限、点B 在第四象限,且AO: BO=1:2 ,若点A(x 0,y 0)的坐标(x 0,y 0)满足01y x=,则点B(x ,y)的坐标x ,y 所满足的关系式为5.(3分)(2014•德州)如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B=30°,则∠C 为( )A . 30°B . 60°C . 80°D . 120°F (第12题图)A O12.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE =DF ,AE 、BF 相交于点O ,下列结论:(1)AE =BF ;(2)AE ⊥BF ;(3)AO =OE ;(4)AOBDEOFS S ∆=四边形中正确的有( )A. 4个B. 3个C. 2个D. 1个15.某校研究性学习小组测量学校旗杆AB 的高度,如图在教学楼一楼C 处测得旗杆顶部的仰角为60︒,在教学楼三楼D 处测得旗杆顶部的仰角为30︒,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB 的高度为 米.16.如图,圆柱形容器中,高为1.2m ,底面周长为1m ,在容器内壁..离容器底部0.3m 的点B 处有一蚊子,此时一只壁虎正好在容器外壁..,离容器上沿0.3m 与蚊子相对..的点A 处,则壁虎捕捉蚊子的最短距离为 m (容器厚度忽略不计).17.如图,已知直线l :y=33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;……按此作法继续下去,则点A 2013的坐标为 .5.(2014年山东泰安)如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是( )(第17OA A AB Bxl(第1560︒30︒ACBD(第16题图)ABA.∠1+∠6>180°B.∠2+∠5<180°C.∠3+∠4<180°D.∠3+∠7>180°8.(2014年山东泰安)如图,∠ACB=90°,D 为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()A.6 B.7 C.8 D.1012.(2014年山东泰安)如图①是一个直角三角形纸片,∠A=30°,BC=4cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为()A.cm B.2cm C.2cm D.3cm16.(2014年山东泰安)将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为()A.10°B.20° C.7.5°D.15°27.(2014年山东泰安)如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.28.(2014年山东泰安)如图,在四边形ABCD 中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=;(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.8.(2012•聊城)如图,四边形ABCD是平行四边形,点E在边BC上,如果点F是边AD上的点,那么△CDF与△ABE不一定全等的条件是()A.DF=BE B.AF=CE C.CF=AE D.CF∥AE19.(2012•聊城)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.17.如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD= °.18.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE= cm.22.如图,点A、F、C、D在同一直线上,点B 和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形,(2)若∠ABC=90°,AB=4,BC=3,当AF 为何值时,四边形BCEF是菱形.11.(2012滨州)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1B.4:1C.5:1D.6:123.(2012滨州)我们知道“连接三角形两边中点的线段叫三角形的中位线”,“三角形的中位线平行于三角形的第三边,且等于第三边的一半”.类似的,我们把连接梯形两腰中点的线段叫做梯形的中位线.如图,在梯形ABCD中,AD∥BC,点E,F分别是AB,CD的中点,那么EF就是梯形ABCD的中位线.通过观察、测量,猜想EF和AD、BC有怎样的位置和数量关系?并证明你的结论.16.(2012菏泽)(1)如图,∠DAB=∠CAE,请补充一个条件:,使△ABC∽△ADE.15.(2012•济宁)如图,在等边三角形ABC中,D是BC边上的一点,延长AD至E,使AE=AC,∠BAE的平分线交△ABC的高BF于点O,则tan∠AEO=.17.(2012•济宁)如图,AD是△ABC的角平分线,过点D作DE∥AB,DF∥AC,分别交AC、AB于点E和F.(1)在图中画出线段DE和DF;(2)连接EF,则线段AD和EF互相垂直平分,这是为什么?7.(2012泰安)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为()A.53°B.37°C.47°D.123°9.(2012泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5C.2.5D.2.8 20.(2012泰安)如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A .4B .3C .2D .19、如图,在8×4的矩形网格中,每个小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为A 、13B 、12C 2D 、3CBA第9题图NMDCBA第13题图O13、如图,∠MON=900,矩形ABCD 的顶点A ,B 分别在OM 、ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1。
山东省临沂市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.分式的加减法(共1小题)1.(2022•临沂)计算:(1)﹣23÷×(﹣);(2)﹣.二.一元一次方程的应用(共1小题)2.(2023•临沂)大学生小敏参加暑期实习活动,与公司约定一个月(30天)的报酬是M 型平板电脑一台和1500元现金.当她工作满20天后因故结束实习,结算工资时公司给了她一台该型平板电脑和300元现金.(1)这台M型平板电脑价值多少元?(2)小敏若工作m天,将上述工资支付标准折算为现金,她应获得多少报酬(用含m 的代数式表示)?三.解一元一次不等式(共1小题)3.(2023•临沂)(1)解不等式5﹣2x<,并在数轴上表示解集;(2)下面是某同学计算﹣a﹣1的解题过程:解:﹣a﹣1=﹣…①=…②=…③==1…④上述解题过程从第几步开始出现错误?请写出正确的解题过程.四.反比例函数的性质(共1小题)4.(2021•临沂)已知函数y=(1)画出函数图象;列表:x… …y… .…描点,连线得到函数图象:(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由;(3)设(x1,y1),(x2,y2)是函数图象上的点,若x1+x2=0,证明:y1+y2=0.五.反比例函数的应用(共1小题)5.(2022•临沂)杠杆原理在生活中被广泛应用(杠杆原理:阻力×阻力臂=动力×动力臂),小明利用这一原理制作了一个称量物体质量的简易“秤”(如图1).制作方法如下:第一步:在一根匀质细木杆上标上均匀的刻度(单位长度1cm),确定支点O,并用细麻绳固定,在支点O左侧2cm的A处固定一个金属吊钩,作为秤钩;第二步:取一个质量为0.5kg的金属物体作为秤砣.(1)图1中,把重物挂在秤钩上,秤砣挂在支点O右侧的B处,秤杆平衡,就能称得重物的质量.当重物的质量变化时,OB的长度随之变化.设重物的质量为xkg,OB的长为ycm.写出y关于x的函数解析式;若0<y<48,求x的取值范围.(2)调换秤砣与重物的位置,把秤砣挂在秤钩上,重物挂在支点O右侧的B处,使秤杆平衡,如图2.设重物的质量为xkg,OB的长为ycm,写出y关于x的函数解析式,完成下表,画出该函数的图象.x/kg……0.250.5124……y/cm…… ……六.二次函数的应用(共1小题)6.(2023•临沂)综合与实践:问题情境小莹妈妈的花卉超市以15元/盆的价格新购进了某种盆栽花卉,为了确定售价,小莹帮妈妈调查了附近A,B,C,D,E五家花卉店近期该种盆栽花卉的售价与日销售量情况,记录如下:数据整理:(1)请将以上调查数据按照一定顺序重新整理,填写在下表中:售价(元/盆) 日销售量(盆) 模型建立(2)分析数据的变化规律,找出日销售量与售价间的关系.拓广应用(3)根据以上信息,小莹妈妈在销售该种花卉中,①要想每天获得400元的利润,应如何定价?②售价定为多少时,每天能够获得最大利润?七.圆周角定理(共1小题)7.(2021•临沂)如图,已知在⊙O中,==,OC与AD相交于点E.求证:(1)AD∥BC;(2)四边形BCDE为菱形.八.切线的性质(共1小题)8.(2022•临沂)如图,AB是⊙O的切线,B为切点,直线AO交⊙O于C,D两点,连接BC,BD.过圆心O作BC的平行线,分别交AB的延长线、⊙O及BD于点E,F,G.(1)求证:∠D=∠E;(2)若F是OE的中点,⊙O的半径为3,求阴影部分的面积.九.解直角三角形的应用(共1小题)9.(2021•临沂)如图,在某小区内拐角处的一段道路上,有一儿童在C处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的A处驶来,已知CM=3m,CO=5m,DO=3m,∠AOD=70°,汽车从A处前行多少米才能发现C处的儿童(结果保留整数)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75;sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)一十.解直角三角形的应用-方向角问题(共1小题)10.(2023•临沂)如图,灯塔A周围9海里内有暗礁.一渔船由东向西航行至B处,测得灯塔A在北偏西58°方向上,继续航行6海里后到达C处,测得灯塔A在西北方向上.如果渔船不改变航线继续向西航行,有没有触礁的危险?(参考数据:sin32°≈0.530,cos32°≈0.848,tan32°≈0.625,sin58°≈0.848,cos58°≈0.530,tan58°≈1.6)一十一.众数(共1小题)11.(2021•临沂)实施乡村振兴计划以来,我市农村经济发展进入了快车道,为了解梁家岭村今年一季度经济发展状况,小玉同学的课题研究小组从该村300户家庭中随机抽取了20户,收集到他们一季度家庭人均收入的数据如下(单位:万元):0.69 0.73 0.74 0.80 0.81 0.98 0.93 0.81 0.89 0.690.74 0.99 0.98 0.78 0.80 0.89 0.83 0.89 0.94 0.89研究小组的同学对以上数据进行了整理分析,得到下表:分组频数0.65≤x<0.7020.70≤x<0.7530.75≤x<0.8010.80≤x<0.85a0.85≤x<0.9040.90≤x<0.9520.95≤x<1.00b统计量平均数中位数众数数值0.84c d(1)表格中:a= ,b= ,c= ,d= ;(2)试估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数;(3)该村梁飞家今年一季度人均收入为0.83万元,能否超过村里一半以上的家庭?请说明理由.山东省临沂市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.分式的加减法(共1小题)1.(2022•临沂)计算:(1)﹣23÷×(﹣);(2)﹣.【答案】(1)3;(2).【解答】解:(1)原式=﹣8××()=8××=3;(2)原式===.二.一元一次方程的应用(共1小题)2.(2023•临沂)大学生小敏参加暑期实习活动,与公司约定一个月(30天)的报酬是M 型平板电脑一台和1500元现金.当她工作满20天后因故结束实习,结算工资时公司给了她一台该型平板电脑和300元现金.(1)这台M型平板电脑价值多少元?(2)小敏若工作m天,将上述工资支付标准折算为现金,她应获得多少报酬(用含m 的代数式表示)?【答案】(1)这台M型平板电脑价值2100元;(2)若工作m天,她应获得的报酬为120m元.【解答】解:(1)设这台M型平板电脑价值x元,根据题意得:(x+1500)=x+300,解得:x=2100,∴这台M型平板电脑价值2100元;(2)由(1)知,一台M型平板电脑价值2100元,∴工作一个月,她应获得的报酬为2100+1500=3600(元),∴若工作m天,她应获得的报酬为=120m(元).三.解一元一次不等式(共1小题)3.(2023•临沂)(1)解不等式5﹣2x<,并在数轴上表示解集;(2)下面是某同学计算﹣a﹣1的解题过程:解:﹣a﹣1=﹣…①=…②=…③==1…④上述解题过程从第几步开始出现错误?请写出正确的解题过程.【答案】(1)x>3,解集在数轴上表示见解答;(2)上述解题过程从第①步开始出现错误,正确的解题过程见解答.【解答】解:(1)5﹣2x<,2(5﹣2x)<1﹣x,10﹣4x<1﹣x,﹣4x+x<1﹣10,﹣3x<﹣9,x>3,该不等式的解集在数轴上表示如图所示:(2)上述解题过程从第①步开始出现错误,正确的解题过程如下:﹣a﹣1=﹣(a+1)===.四.反比例函数的性质(共1小题)4.(2021•临沂)已知函数y=(1)画出函数图象;列表:x… ﹣3 ﹣2 ﹣1 0 1 2 3 4 …y… ﹣1 ﹣3 0 3 1 .…描点,连线得到函数图象:(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由;(3)设(x1,y1),(x2,y2)是函数图象上的点,若x1+x2=0,证明:y1+y2=0.【答案】(1)见解析;(2)有,最大值为3;(3)见解析【解答】解:(1)列表如下:x……﹣3﹣2﹣101234……y……﹣1﹣3031……函数图象如图所示:(2)根据图象可知:当x=1时,函数有最大值3;当x=﹣1时,函数有最小值﹣3.(3)∵(x1,y1),(x2,y2)是函数图象上的点,x1+x2=0,∴x1和x2互为相反数,当﹣1<x1<1时,﹣1<x2<1,∴y1=3x1,y2=3x2,∴y1+y2=3x1+3x2=3(x1+x2)=0;当x1≤﹣1时,x2≥1,则y1+y2==0;同理:当x1≥1时,x2≤﹣1,y1+y2=0,综上:y1+y2=0.五.反比例函数的应用(共1小题)5.(2022•临沂)杠杆原理在生活中被广泛应用(杠杆原理:阻力×阻力臂=动力×动力臂),小明利用这一原理制作了一个称量物体质量的简易“秤”(如图1).制作方法如下:第一步:在一根匀质细木杆上标上均匀的刻度(单位长度1cm),确定支点O,并用细麻绳固定,在支点O左侧2cm的A处固定一个金属吊钩,作为秤钩;第二步:取一个质量为0.5kg的金属物体作为秤砣.(1)图1中,把重物挂在秤钩上,秤砣挂在支点O右侧的B处,秤杆平衡,就能称得重物的质量.当重物的质量变化时,OB的长度随之变化.设重物的质量为xkg,OB的长为ycm.写出y关于x的函数解析式;若0<y<48,求x的取值范围.(2)调换秤砣与重物的位置,把秤砣挂在秤钩上,重物挂在支点O右侧的B处,使秤杆平衡,如图2.设重物的质量为xkg,OB的长为ycm,写出y关于x的函数解析式,完成下表,画出该函数的图象.x/kg……0.250.5124……y/cm…… 4 2 1 ……【答案】(1)0<x<12;(2)4;2;1;;;【解答】解:(1)∵阻力×阻力臂=动力×动力臂,∴重物重力×OA=秤砣重力×OB,∵OA=2cm,重物的质量为xkg,OB的长为ycm,秤砣为0.5kg,∴2x=0.5y,∴y=4x,∵4>0,∴y随x的增大而增大,∵当y=0时,x=0;当y=48时,x=12,∴0<x<12;(2)∵阻力×阻力臂=动力×动力臂,∴秤砣×OA=重物×OB,∵OA=2cm,重物的质量为xkg,OB的长为ycm,秤砣为0.5kg,∴2×0.5=xy,∴y=,当x=0.25时,y==4;当x=0.5时,y==2;当x=1时,y=1;当x=2时,y=;当x=4时,y=;故答案为:4;2;1;;;作函数图象如图:六.二次函数的应用(共1小题)6.(2023•临沂)综合与实践:问题情境小莹妈妈的花卉超市以15元/盆的价格新购进了某种盆栽花卉,为了确定售价,小莹帮妈妈调查了附近A,B,C,D,E五家花卉店近期该种盆栽花卉的售价与日销售量情况,记录如下:数据整理:(1)请将以上调查数据按照一定顺序重新整理,填写在下表中:售价(元/盆) 18 20 22 26 30 日销售量(盆) 54 50 46 38 30 模型建立(2)分析数据的变化规律,找出日销售量与售价间的关系.拓广应用(3)根据以上信息,小莹妈妈在销售该种花卉中,①要想每天获得400元的利润,应如何定价?②售价定为多少时,每天能够获得最大利润?【答案】(1)18,54;20,50;22,46;26,38;30,30;(2)y=﹣2x+90;(3)①要想每天获得400元的利润,定价为25元或35元;②售价定为30元时,每天能够获得最大利润450元.【解答】解:(1)根据销售单价从小到大排列得下表:售价(元/盆)1820222630日销售量(盆)5450463830故答案为:18,54;20,50;22,46;26,38;30,30;(2)观察表格可知销售量是售价的一次函数;设销售量为y盆,售价为x元,y=kx+b,把(18,54),(20,50)代入得:,解得,∴y=﹣2x+90;(3)①∵每天获得400元的利润,∴(x﹣15)(﹣2x+90)=400,解得x=25或x=35,∴要想每天获得400元的利润,定价为25元或35元;②设每天获得的利润为w元,根据题意得:w=(x﹣15)(﹣2x+90)=﹣2x2+120x﹣1350=﹣2(x﹣30)2+450,∵﹣2<0,∴当x=30时,w取最大值450,∴售价定为30元时,每天能够获得最大利润450元.七.圆周角定理(共1小题)7.(2021•临沂)如图,已知在⊙O中,==,OC与AD相交于点E.求证:(1)AD∥BC;(2)四边形BCDE为菱形.【答案】(1)见解答;(2)见解答【解答】证明:(1)连接BD,∵,∴∠ADB=∠CBD,∴AD∥BC;(2)连接CD,BD,设OC与BD相交于点F,∵AD∥BC,∴∠EDF=∠CBF,∵,∴BC=CD,BF=DF,又∠DFE=∠BFC,∴△DEF≌△BCF(ASA),∴DE=BC,∴四边形BCDE是平行四边形,又BC=CD,∴四边形BCDE是菱形.八.切线的性质(共1小题)8.(2022•临沂)如图,AB是⊙O的切线,B为切点,直线AO交⊙O于C,D两点,连接BC,BD.过圆心O作BC的平行线,分别交AB的延长线、⊙O及BD于点E,F,G.(1)求证:∠D=∠E;(2)若F是OE的中点,⊙O的半径为3,求阴影部分的面积.【答案】(1)证明过程见解析;(2)S=.【解答】(1)证明:连接OB,∵AB是⊙O的切线,∴∠OBE=90°,∴∠E+∠BOE=90°,∵CD为⊙O的直径,∴∠CBD=90°,∴∠D+∠DCB=90°,∵OE∥BC,∴∠BOE=∠OBC,∵OB=OC,∴∠OBC=∠OCB,∴∠BOE=∠OCB,∴∠D=∠E;(2)解:∵F为OE的中点,OB=OF,∴OF=EF=3,∴OE=6,∴BO=OE,∵∠OBE=90°,∴∠E=30°,∴∠BOG=60°,∵OE∥BC,∠DBC=90°,∴∠OGB=90°,∴OG=,BG=,∴S△BOG=OG•BG==,S扇形BOF==π,∴S阴影部分=S扇形BOF﹣S△BOG=.九.解直角三角形的应用(共1小题)9.(2021•临沂)如图,在某小区内拐角处的一段道路上,有一儿童在C处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的A处驶来,已知CM=3m,CO=5m,DO=3m,∠AOD=70°,汽车从A处前行多少米才能发现C处的儿童(结果保留整数)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75;sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)【答案】约6米.【解答】解:∵CM=3m,OC=5m,∴OM==4(m),∵∠CMO=∠BDO=90°,∠COM=∠BOD,∴△COM∽△BOD,∴,即,∴BD==2.25(m),∴tan∠AOD=tan70°=,即≈2.75,解得:AB=6m,∴汽车从A处前行约6米才能发现C处的儿童.一十.解直角三角形的应用-方向角问题(共1小题)10.(2023•临沂)如图,灯塔A周围9海里内有暗礁.一渔船由东向西航行至B处,测得灯塔A在北偏西58°方向上,继续航行6海里后到达C处,测得灯塔A在西北方向上.如果渔船不改变航线继续向西航行,有没有触礁的危险?(参考数据:sin32°≈0.530,cos32°≈0.848,tan32°≈0.625,sin58°≈0.848,cos58°≈0.530,tan58°≈1.6)【答案】如果船不改变航线继续向西航行,没有触礁危险.【解答】解:过点A作AD⊥BC于D,设AD=x海里,由题意得,∠ABD=32°,∠ACD=45°,BC=6海里,在Rt△ACD中,∠ACD=∠CAD=45°,∴AD=CD=x海里,在Rt△ABD中,tan∠ABD=,∴BD=≈=6+x,解得,x=10,∵10>9,∴如果船不改变航线继续向西航行,没有触礁危险.一十一.众数(共1小题)11.(2021•临沂)实施乡村振兴计划以来,我市农村经济发展进入了快车道,为了解梁家岭村今年一季度经济发展状况,小玉同学的课题研究小组从该村300户家庭中随机抽取了20户,收集到他们一季度家庭人均收入的数据如下(单位:万元):0.69 0.73 0.74 0.80 0.81 0.98 0.93 0.81 0.89 0.690.74 0.99 0.98 0.78 0.80 0.89 0.83 0.89 0.94 0.89研究小组的同学对以上数据进行了整理分析,得到下表:分组频数0.65≤x<0.7020.70≤x<0.7530.75≤x<0.8010.80≤x<0.85a0.85≤x<0.9040.90≤x<0.9520.95≤x<1.00b统计量平均数中位数众数数值0.84c d(1)表格中:a= 5 ,b= 3 ,c= 0.82 ,d= 0.89 ;(2)试估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数;(3)该村梁飞家今年一季度人均收入为0.83万元,能否超过村里一半以上的家庭?请说明理由.【答案】(1)5,3,0.82,0.89;(2)估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数有210户;(3)村梁飞家今年一季度人均收入为0.83万元,能超过村里一半以上的家庭,理由见解析.【解答】解:(1)由统计频数的方法可得,a=5,b=3,将该村家庭收入从小到大排列,处在中间位置的两个数的平均数为(0.81+0.83)÷2=0.82,因此中位数是0.82,即c=0.82,他们一季度家庭人均收入的数据出现最多的是0.89,因此众数是0.89,即d=0.89,故答案为:5,3,0.82,0.89;(2)300×=210(户),答:估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数有210户;(3)该村梁飞家今年一季度人均收入为0.83万元,能超过村里一半以上的家庭,理由:该村300户家庭一季度家庭人均收入的中位数是0.82,0.83>0.82,所以该村梁飞家今年一季度人均收入为0.83万元,能超过村里一半以上的家庭.。
山东省济宁市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.科学记数法—表示较大的数(共1小题)1.(2021•济宁)数字6100000用科学记数法表示是 .二.因式分解的应用(共1小题)2.(2023•济宁)已知实数m满足m2﹣m﹣1=0,则2m3﹣3m2﹣m+9= .三.二次根式有意义的条件(共1小题)3.(2022•济宁)若二次根式有意义,则x的取值范围是 .四.函数关系式(共1小题)4.(2021•济宁)已知一组数据0,1,x,3,6的平均数是y,则y关于x的函数解析式是 .五.一次函数的性质(共2小题)5.(2023•济宁)一个函数过点(1,3),且y随x增大而增大,请写出一个符合上述条件的函数解析式 .6.(2022•济宁)已知直线y1=x﹣1与y2=kx+b相交于点(2,1).请写出一个b值 (写出一个即可),使x>2时,y1>y2.六.反比例函数的性质(共1小题)7.(2022•济宁)如图,A是双曲线y=(x>0)上的一点,点C是OA的中点,过点C 作y轴的垂线,垂足为D,交双曲线于点B,则△ABD的面积是 .七.二次函数图象与系数的关系(共1小题)8.(2021•济宁)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴交于点A,对称轴为直线x=1.下面结论:①abc<0;②2a+b=0;③3a+c>0;④方程ax2+bx+c=0(a≠0)必有一个根大于﹣1且小于0.其中正确的是 .(只填序号)八.平行线的性质(共1小题)9.(2022•济宁)如图,直线l1,l2,l3被直线l4所截,若l1∥l2,l2∥l3,∠1=126°32',则∠2的度数是 .九.全等三角形的判定(共1小题)10.(2021•济宁)如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件 ,使△ABC≌△ADC.一十.全等三角形的判定与性质(共1小题)11.(2023•济宁)如图,△ABC是边长为6的等边三角形,点D,E在边BC上,若∠DAE=30°,,则BD= .一十一.多边形内角与外角(共1小题)12.(2023•济宁)一个多边形的内角和是540°,则这个多边形是 边形.一十二.扇形面积的计算(共1小题)13.(2021•济宁)如图,△ABC中,∠ABC=90°,AB=2,AC=4,点O为BC的中点,以O为圆心,以OB为半径作半圆,交AC于点D,则图中阴影部分的面积是 .一十三.解直角三角形(共1小题)14.(2022•济宁)如图,点A,C,D,B在⊙O上,AC=BC,∠ACB=90°.若CD=a,tan∠CBD=,则AD的长是 .一十四.解直角三角形的应用-仰角俯角问题(共1小题)15.(2023•济宁)某数学活动小组要测量一建筑物的高度,如图,他们在建筑物前的平地上选择一点A,在点A和建筑物之间选择一点B,测得AB=30m,用高1m(AC=1m)的测角仪在A处测得建筑物顶部E的仰角为30°,在B处测得仰角为60°,则该建筑物的高是 .山东省济宁市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.科学记数法—表示较大的数(共1小题)1.(2021•济宁)数字6100000用科学记数法表示是 6.1×106 .【答案】6.1×106.【解答】解:用科学记数法表示6100000,应记作6.1×106,故答案是:6.1×106.二.因式分解的应用(共1小题)2.(2023•济宁)已知实数m满足m2﹣m﹣1=0,则2m3﹣3m2﹣m+9= 8 .【答案】8.【解答】解:∵m2﹣m﹣1=0,∴m2﹣m=1,∴2m3﹣3m2﹣m+9=(2m3﹣2m2)﹣m2﹣m+9=2m(m2﹣m)﹣m2﹣m+9=2m﹣m2﹣m+9=﹣m2+m+9=﹣(m2﹣m)+9=﹣1+9=8,故答案为:8.三.二次根式有意义的条件(共1小题)3.(2022•济宁)若二次根式有意义,则x的取值范围是 x≥3 .【答案】见试题解答内容【解答】解:根据题意,得x﹣3≥0,解得,x≥3;故答案为:x≥3.四.函数关系式(共1小题)4.(2021•济宁)已知一组数据0,1,x,3,6的平均数是y,则y关于x的函数解析式是 y =+2 .【答案】y=+2.【解答】解:根据题意得:y=(0+1+x+3+6)÷5=+2.故答案为:y=+2.五.一次函数的性质(共2小题)5.(2023•济宁)一个函数过点(1,3),且y随x增大而增大,请写出一个符合上述条件的函数解析式 y=x+2(答案不唯一) .【答案】y=x+2(答案不唯一).【解答】解:设一次函数的解析式为y=kx+b(k≠0).∵一次函数y=kx+b的图象经过点(1,3),∴3=k+b,又∵函数值y随自变量x的增大而增大,∴k>0,∴k=1,b=2符合题意,∴符合上述条件的函数解析式可以为y=x+2.故答案为:y=x+2(答案不唯一).6.(2022•济宁)已知直线y1=x﹣1与y2=kx+b相交于点(2,1).请写出一个b值 0(答案不唯一) (写出一个即可),使x>2时,y1>y2.【答案】0(答案不唯一).【解答】解:直线y1=x﹣1与y2=kx+b相交于点(2,1).∵x>2时,y1>y2.∴b>﹣1,故b可以取0,故答案为:0(答案不唯一).六.反比例函数的性质(共1小题)7.(2022•济宁)如图,A是双曲线y=(x>0)上的一点,点C是OA的中点,过点C 作y轴的垂线,垂足为D,交双曲线于点B,则△ABD的面积是 4 .【答案】4.【解答】解:∵点C是OA的中点,∴S△ACD=S△OCD,S△ACB=S△OCB,∴S△ACD+S△ACB=S△OCD+S△OCB,∴S△ABD=S△OBD,∵点B在双曲线y=(x>0)上,BD⊥y轴,∴S△OBD==4,∴S△ABD=4,故答案为:4.七.二次函数图象与系数的关系(共1小题)8.(2021•济宁)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴交于点A,对称轴为直线x=1.下面结论:①abc<0;②2a+b=0;③3a+c>0;④方程ax2+bx+c=0(a≠0)必有一个根大于﹣1且小于0.其中正确的是 ①②④ .(只填序号)【答案】见试题解答内容【解答】解:由图象可得,a<0,b>0,c>0,则abc<0,故①正确;∵﹣=1,∴b=﹣2a,∴2a+b=0,故②正确;∵函数图象与x轴的正半轴交点在点(2,0)和(3,0)之间,对称轴是直线x=1,∴函数图象与x轴的另一个交点在点(0,0)和点(﹣1,0)之间,故④正确;∴当x=﹣1时,y=a﹣b+c<0,∴y=a+2a+c<0,∴3a+c<0,故③错误;故答案为:①②④.八.平行线的性质(共1小题)9.(2022•济宁)如图,直线l1,l2,l3被直线l4所截,若l1∥l2,l2∥l3,∠1=126°32',则∠2的度数是 53°28' .【答案】53°28'.【解答】解:如图:∵l1∥l2,l2∥l3,∴l1∥l3,∴∠1=∠3=126°32',∴∠2=180°﹣∠3=180°﹣126°32'=53°28';故答案为:53°28'.九.全等三角形的判定(共1小题)10.(2021•济宁)如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件 AD=AB (答案不唯一) ,使△ABC≌△ADC.【答案】见试题解答内容【解答】解:添加的条件是AD=AB,理由是:在△ABC和△ADC中,∴△ABC≌△ADC(SAS),故答案为:AD=AB(答案不唯一).一十.全等三角形的判定与性质(共1小题)11.(2023•济宁)如图,△ABC是边长为6的等边三角形,点D,E在边BC上,若∠DAE =30°,,则BD= 3﹣ .【答案】3﹣.【解答】解:过点A作AH⊥BC于H,∵△ABC是等边三角形,∴AB=AC=BC=6,∠BAC=60°,∴AH⊥BC,∴,∴∠BAD+∠DAH=30°,∴∠DAE=30°,∴∠BAD+∠EAC=30°,∴∠DAH=∠EAC,∴tan∠DAH=tan∠EAC=,∵BH=AB=3,∵AH=AB sin60°=6×=3,∴,∴DH=,∴BD=BH﹣DH=3﹣,故答案为:3﹣.一十一.多边形内角与外角(共1小题)12.(2023•济宁)一个多边形的内角和是540°,则这个多边形是 五 边形.【答案】五.【解答】解:设此多边形的边数为n,则(n﹣2)•180°=540°,解得:n=5,即此多边形为五边形,故答案为:五.一十二.扇形面积的计算(共1小题)13.(2021•济宁)如图,△ABC中,∠ABC=90°,AB=2,AC=4,点O为BC的中点,以O为圆心,以OB为半径作半圆,交AC于点D,则图中阴影部分的面积是 ﹣ .【答案】见试题解答内容【解答】解,连接OD,过D作DE⊥BC于E,在△ABC中,∠ABC=90°,AB=2,AC=4,∴sin C===,BC===2,∴∠C=30°,∴∠DOB=60°,∵OD=BC=,∴DE=,∴阴影部分的面积是:2×2﹣﹣=﹣,故答案为:﹣.一十三.解直角三角形(共1小题)14.(2022•济宁)如图,点A,C,D,B在⊙O上,AC=BC,∠ACB=90°.若CD=a,tan∠CBD=,则AD的长是 2a .【答案】2a.【解答】解:连接AB,作直径CE.连接DE,设AD交BC于点T.∵∠ACB=90°,∴AB是直径,∵EC是直径,∴∠CDE=90°,∵∠CBD=∠E,∴tan E=tan∠CBD=,∴=,∴DE=3a,∴EC=AB===a,∴AC=BC=AB=a,∵∠CAT=∠CBD,∴tan∠CAT=tan∠CBD=,∴CT=a,BT=a,∴AT===a,∵AB是直径,∴∠ADB=90°,∵tan∠DBT==,∴DT=BT=a,∴AD=AT+DT=2a,解法二:过点C作CE⊥AD于点E,则CE=DE=a,AE=a,∴AD=AE+CE=2a.故答案为:2a.一十四.解直角三角形的应用-仰角俯角问题(共1小题)15.(2023•济宁)某数学活动小组要测量一建筑物的高度,如图,他们在建筑物前的平地上选择一点A,在点A和建筑物之间选择一点B,测得AB=30m,用高1m(AC=1m)的测角仪在A处测得建筑物顶部E的仰角为30°,在B处测得仰角为60°,则该建筑物的高是 (15+1)m .【答案】(15+1)m.【解答】解:如图:延长CD交EF于点G,由题意得:DB=AC=FG=1m,CG⊥EF,DC=AB=30m,∠EDG=60°,∠ECG=30°,∵∠EDG是△EDC的一个外角,∴∠DEC=∠EDG﹣∠ECG=30°,∴∠DEC=∠ECD=30°,∴ED=CD=30m,在Rt△EGD中,EG=ED•sin60°=30×=15(m),∴EF=EG+FG=(15+1)m,∴该建筑物的高是(15+1)m,故答案为:(15+1)m.。
山东省十七地市中考试题精选(2015.12.25)------------初四第一学期专用(1)1(2015•济南)如图,一个几何体是由两个小正方体和一个圆锥构成,其主视图是(B)A. B.C.D.2.(3分)(2015•泰安)下列四个几何体:B分线分别交AB、CD于M、N两点.若AM=2,则线段ON的长为(C)5.(3分)(2015•济南)如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x 轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C、C2共有3个不同的交点,则m的取值范围是(D)A.﹣2<m<B.﹣3<m<﹣C.﹣3<m<﹣2 D.﹣3<m<﹣6(3分)(2015•济南)如图,PA是⊙O的切线,A是切点,PA=4,OP=5,则⊙O的周长为6π(结果保留π).7.(3分)(2015•泰安)如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径8.(3分)(2015•济南)小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖的除颜色外完全相同,它最终停留在黑色方砖上的概率是.9.(3分)(2015•泰安)若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选 B反比例函数y= (x <0)的图象上,则k= ﹣4 .11.(3分)(2015•泰安)如图,轮船从B 处以每小时60海里的速度沿南偏东20°方向匀速航行,在B 处观测灯塔A 位于南偏东50°方向上,轮船航行40分钟到达C 处,在C 处观测 海里海里 B圆心的圆与AD 、DC 相切,与AB 、CB 的延长线分别相交于点E、F,则图中. + +π C . ﹣ 2 14.如图所示,该几何体的主视图是D(A)(B) (C ) (D)15.右图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是D A . B . C . D . 16.已知反比例函数xy 2-=,下列结论不正确...的是B A .图象必经过点(-1,2) B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-2 17.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为CA .2.5B .5C .10D .1518二次函数c bx ax y ++=2的图象如图所示,则一次函数a bx y +=的图象不经过DA .第一象限B .第二象限C .第三象限D .第四象限19一个边长为2的正多边形的内角和是其外角和的2倍,则这个正多边形的半径是AA .2B . 3C .1D .1220.只用下列哪一种正多边形,可以进行平面镶嵌A .正五边形B .正六边形C .正八边形D .正十边形21.如图,在平面直角坐标系xOy 中,直线y=3x 经过点A,作AB ⊥x 轴于点B ,将⊿ABO 绕点B 逆时针旋转60°得到⊿CBD ,若点B 的坐标为(2,0),则点C 的坐标为A)2,3.(D )1,3.(C )3,2.(B )3,1.(A ----22.(临沂)一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机地搭配在一起. 则其颜色搭配一致的概率是B(第18题图)(第6题图)(A)14. (B)12. (C)34. (D) 1.23.如图A ,B ,C 是O e 上的三个点,若100AOC ∠=o ,则ABC ∠等于D(A) 50°. (B) 80°.(C) 100°.(D) 130°.24 (烟台)如图,讲一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相等,则该几何体的左视图是( A )25. 如图,BD 是菱形ABCD 的对角线,CE ⊥AB 于点E ,且点E 是AB 的中点,则tan BFE ∠的值是D A .1226.A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中1l 和2l 分别表示甲、乙两人所走路程S (千米)与时刻t (小时)之间的关系。
11.(3分)(2014•聊城)如图,在平面直角坐标系中,将△ABC绕点P旋转180°,得到△A1B1C1,则点A1,B1,C1的坐标分别为()A.A1(﹣4,﹣6),B1(﹣3,﹣3),C1(﹣5,﹣1)B.A1(﹣6,﹣4),B1(﹣3,﹣3),C1(﹣5,﹣1)C.A1(﹣4,﹣6),B1(﹣3,﹣3),C1(﹣1,﹣5)D.A1(﹣6,﹣4),B1(﹣3,﹣3),C1(﹣1,﹣5)2.(3分)(2013•德州)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.5.下列图案既是轴对称图形又是中心对称图形的是A.B.C.D.3.(3分)(2014•日照)在下列图案中,是中心对称图形的是()A.B.C.D.2.(3分)(2014•青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是( ) A . B . C . D .11.(3分)(2014•青岛)如图,△ABC 的顶点都在方格线的交点(格点)上,如果将△ABC 绕C 点按逆时针方向旋转90°,那么点B 的对应点B ′的坐标是 (1,0) .10.如果m 是任意实数,则点(4P m -,1)m +一定不在(A )第一象限 (B )第二象限(C )第三象限 (D )第四象限10.(2014年山东烟台)如图,将△ABC 绕点P 顺时针旋转90°得到△A′B ′C ′,则点P 的坐标是( )A . (1,1)B . (1,2)C . (1,3)D . (1,4)15、已知,如图,直线AB 与直线BC 相交于点B ,点D 是直线BC 上一点求作:点E ,使直线DE ∥AB ,且点E 到B 、D 两点的距离相等(在题目的原图中完成作图)9.(2012•聊城)如图,在方格纸中,△ABC 经过变换得到△DEF,正确的变换是( )A .把△ABC 绕点C 逆时针方向旋转90°,再向下平移2格B .把△ABC 绕点C 顺时针方向旋转90°,再向下平移5格C .把△ABC 向下平移4格,再绕点C 逆时针方向旋转180°D .把△ABC 向下平移5格,再绕点C 顺时针方向旋转180°(2)如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8.在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D ,E 两点的坐标.14.(2012泰安)如图,菱形OABC 的顶点O 在坐标原点,顶点A 在x 轴上,∠B=120°,OA=2,将菱形OABC 绕原点顺时针旋转105°至OA ′B ′C ′的位置,则点B ′的坐标为( )A .(2,2-)B .(2-,2)C .(2012泰安)D .(3,3-)。
15.(3分)(2014•聊城)如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为300π.
10.(3分)(2013•德州)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()
A.B.C.D.
8.(3分)(2014•日照)如图,正六边形ABCDEF是边长为2cm的螺母,点P是FA延长线上的点,在A、P之间拉一条长为12cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为()
A.13πcm B.14πcm C.15πcm D.16πcm
(第5题图)
16.如图(a ),有一张矩形纸片ABCD ,其中AD=6cm ,以AD 为直径的半圆,正好与对边BC 相切,将矩形纸片ABCD 沿DE 折叠,使点A 落在
BC 上,如图(b ).则半圆还露在外面的部分(阴影部分)的面积为_____________.
10.(2013
菏泽)在半径为5的圆中,30°的圆心角所对的弧长为
(结果保留π).
考点:弧长的计算.
分析:直接利用弧长公式计算即可.
17.(2014年山东烟台)如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为
4,则阴影部分的面积等于 .
5.如图,已知扇形的圆心角为60︒,半径为3,则图中弓形的面积为( )
A .4334π-
B .34π-
C .2334
π- D .332π-
14.(2013聊城)已知一个扇形的半径为60cm ,圆心角为150°,用它围成一个圆锥的侧面,那么圆锥的底面半径为 cm .
12.(2013济宁)如图,△ABC 和△A ′B ′C 是两个完全重合的直角三角板,∠B=30°,斜边长为10cm .三角板A ′B ′C 绕直角顶点C 顺时针旋转,当点A ′落在AB 边上时,CA ′旋转所构成的扇形的弧长为
cm .
(第8题图) A B C
D 8.(3分)(2014•莱芜)如图,AB 为半圆的直径,且AB=4,半圆绕点B 顺时针旋转45°,点A 旋转到A ′的位置,则图中阴影部分的面积为( )
A . π
B . 2π
C .
D . 4π 9.(3分)(2014•莱芜)一个圆锥的侧面展开图是半径为R 的半圆,则该圆锥的高是( )
A . R
B .
C .
D .
13、如图,AB 是圆0直径,弦AC=2,∠ABC=30°,则图中阴影部分的面积是_____________
8.如图,正方形ABCD 中,分别以B 、D 为圆心,以正方形
的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树
叶形图案的周长为( )
A. a π
B. 2a π
C.
12a π D. 3a
第13题
19.(2014年山东泰安)如图,半径为2cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为( )
A .(
﹣1)cm 2 B .(+1)cm 2 C .1cm 2 D . cm 2
13.如图,AB 是⊙O 的直径,点E 为BC 的中点,AB =4,∠BED =120°,则图中阴影部分的面积之和为( )
A .1
B .32
C .3
D .23
6.如图,在4×4的正方形网格中,若将△ABC 绕着点
A 逆时针旋转得到△A
B ′
C ′,则
的长为 (A )π (B )2
π (C )7π (D )6π
15.如图1,正方形OCDE 的边长为1,阴影部分的面积记作
S 1;如图2,最大圆半径r =1,阴影部分的面积记作S 2,则S 1
S 2(用“>”、“<”或“=”填空).
12.向一个图案如下图所示的正六边形靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率为【】
A.23
1
9
π
- B.
1
6
C.
33
1
2π
- D.
1
5
【答案】A。