九年级数学上册 23.2 中心对称(第1课时)教案 新人教版
- 格式:doc
- 大小:66.50 KB
- 文档页数:2
课题:23.2.1中心对称一、教学目标1.知道中心对称的意义,知道什么是对称中心和对称点.2.通过观察得出中心对称的两个性质,会利用性质画出对称图形.二、教学重点和难点1.重点:中心对称的概念和性质.2.难点:中心对称的性质.三、教学过程(一)基本训练,巩固旧知1.如图,以点O 为中心,把△OAB 旋转180°.(本节课时间紧,建议1题让生课前完成)(二)创设情境,导入新课(师出示下图)师:(指准图)以O 为中心,把△OAB 旋转180°得到△OA ′B ′.师:(指准图)请大家观察这两个三角形(稍停),从图上看可以感觉到这两个三角形有某种对称性.这是一种什么对称?(稍停)这种对称不是我们以前学过的轴对称,而是一种新的对称,叫中心对称.本节课我们就来学习中心对称(板书课题:23.2.1中心对称).(三)尝试指导,讲授新课师:(指准图)中心对称有什么特点?我们来看这个图.如果把△OA ′B ′绕着点O 旋转180°,你发现会有什么结果?生:△OAB 与△OA ′B ′重合.(多让几名同学回答)师:对!(指准图)如果我们把△OA ′B ′绕着点O 旋转180°,这两个三角形能够重合.这就是中心对称的特点,根据这一特点,我们可以给中心对称下这样的定义.师:(指准图)把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么A /B /O B A A B O就说这两个图形中心对称,或者说这两个图形关于这个点对称.(师出示板书:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形中心对称,或者说这两个图形关于这个点对称)师:(指图)请大家结合这个图,把中心对称的概念默读几遍.(生默读)师:(指准图)在中心对称中,旋转中心O 叫做对称中心(板书:点O 是对称中心),对应点A 与A ′叫做对称点(板书:点A 与A ′叫做对称点),对应点B 与B ′也是对称点,对称点还有很多.师:知道了中心对称的概念,下面我们来探索中心对称的性质. 师:我们知道,中心对称的两个图形经过旋转能够重合,这说明中心对称的两个图形是全等图形.(师出示板书:中心对称的两个图形是全等图形)师:(指板书)这就是中心对称的第一个性质,大家把这个性质一起来读一遍.(生读) 师:下面我们来看中心对称的第二个性质.师:(指准图)点A 与A ′是对称点,点O 是对称中心,大家看一看对称点与对称中心有什么关系?(让生观察一会儿再叫学生)生:……(多让几名同学发表看法,鼓励学生用自己的语言表述)师:(指准图)点A 与点A ′是对称点,点O 是对称中心,看到没有?点A 与A ′所连线段经过对称中心O ,而且被对称中心所平分;点B 与点B ′也是对称点,看到没有?点B 与点B ′所连线段也经过对称中心O ,而且也被对称中心O 所平分.其它对称点也一样,于是我们得出这样一个结论.(师出示板书:对称点所连线段都经过对称中心,而且被对称中心所平分)师:(指板书)大家一起来把中心对称的第二个性质读一遍.(生读)师:第二个性质听起来好像有点复杂,实际上它的意思很简单,它的意思是说,(指准图)对称点连线的中点恰好就是对称中心.大家看看图,是不是这样?(让生看图)师:(指板书)性质二是一个有用的结论,利用它可以很方便地画出中心对称图形,下面我们来看一个例题.(师出示例题)例 如图,以点O 为对称中心,画出与四边形ABCD 关于点O 对称的四边形A ′B ′C ′D ′..OD C A B师:(指准图)这个题目要我们做什么?要我们画出四边形ABCD 关于点O 对称的四边形A ′B ′C ′D ′.师:怎么画呢?(稍停)关键是要找到点A 的对称点A ′,点B 的对称点B ′,点C 的对称点C ′,点D 的对称点D ′.师:怎么找点A 的对称点A ′?因为根据性质二,(指准图)对称点A ,A ′的连线的中点恰好是对称中心O ,所以我们连结AO 并延长到A ′,使OA ′=OA (边讲边画),点A ′就是点A 的对称点.师:同样,连结BO 并延长到B ′,使OB ′=OB (边讲边画),点B ′就是点B 的对称点.师:同样画点C 的对称点C ′(边讲边画);同样画点D 的对称点D ′(边讲边画).师:找到了对称点,接下来依次连结A ′B ′,B ′C ′,C ′D ′,D ′A ′,四边形A ′B ′C ′D ′就是我们要画的四边形.(画好的图形如下所示)师:利用中心对称的性质,下面请大家自己来画几个对称图形.(四)试探练习,回授调节 2.如图,以点O 为中心,画出点P 关于点O 的对称点P ′.3.如图,以点O 为中心,画出与线段AB 关于点O 对称的线段A ′B ′.D /C /A /B /.O DCA B .O P .AB .O4.如图,以点O 为中心,画出与△ABC 关于点O 对称的△A ′B ′C ′.(五)归纳小结,布置作业师:本节课我们学习了什么?(指准板书)我们学习了中心对称.结合这个图,请大家把中心对称的概念和性质再看一遍.(生默读)(作业:P 64练习2.P 67习题1.)四、板书设计 23.2.1中心对称课题:23.2.2中心对称图形(第1课时)一、教学目标1.知道什么是中心对称图形,会判断一个图形是不是中心对称图形.2.知道中心对称和中心对称图形的区别和联系.二、教学重点和难点1.重点:中心对称图形.2.难点:中心对称图形的判断.三、教学过程(一)基本训练,巩固旧知1.填空:O .C A B(1)把一个图形绕着某一个点旋转180°,如果它能够与另一个图形 ,那么就说这两个图形关于这个点对称或中心 ,这个点叫做 中心,这两个图形中的对应点叫做关于中心的 点.(2)中心对称的性质有:中心对称的两个图形是 图形;中心对称的两个图形,对称点所连线段都 对称中心,而且被对称中心所 .2.画出下面图形关于点O 对称的图形:(二)尝试指导,讲授新课(师出示下图)师:(指准图)这是一条线段,点O 是它的中点(边讲边标点O ).现在我们把这条线段绕着点O 旋转180°,你想象会发生什么情况?生:……(多让几名同学发表看法)师:(指准图)线段绕着点O 旋转180°后,这个端点转到了这里,这个端点转到了这里,旋转后的图形与原来的图形恰好重合.师:我们再来看一个图形.(师出示下图)师:(指准图)这是一个平行四边形,点O 是对角线的交点(边讲边画对角线并标点O ).现在我们把这个平行四边形绕着点O 旋转180°,你想象会发生什么情况?(让生观察一会儿再叫学生)生:……(多让几名同学发表看法)师:(指准图)平行四边形绕着点O 旋转180°后,这个顶点转到了哪儿?(稍停)这个顶点转到了这里;这个顶点转到了哪儿?(稍停)这个顶点转到了这里;还有这个顶点转到了这里,O.这个顶点转到了这里.可见,旋转后的图形与原来的图形恰好重合.师:(指准图)线段也好,平行四边形也好,它们有一个共同的特性,什么特性?就是把图形绕着某一点旋转180°,旋转后的图形能够与原来的图形重合.这样的图形我们把它叫做中心对称图形.(师出示板书:把一个图形绕着某一点旋转180°,旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形)师:(指板书)请大家把中心对称图形概念一起来念一遍.(生读)师:(指准图)在中心对称图形中,旋转中心O叫做对称中心(板书:点O是对称中心).师:下面我们利用概念来判断中心对称图形,请看例题.(师出示例题)例下列图形是中心对称图形吗?如果是中心对称图形,在图中用点O标出对称中心.(先让生尝试,然后师利用概念解释,椭圆、长方形是中心对称图形)(三)试探练习,回授调节3.下列图形是中心对称图形吗?如果是中心对称图形,在图中用点O标出对称中心.4.下列汽车标志中,哪些是中心对称图形?.(四)归纳小结,布置作业师:本节课我们学习了什么?我们学习了中心对称图形.(板书课题:23.2.2中心对称图形)师:什么样的图形是中心对称图形?(指准平行四边形)把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合.那么这个图形叫做中心对称图形.师:上节课我们学的是中心对称,这节课我们学的是中心对称图形,现在请同学们回答这样一个问题:中心对称与中心对称图形有什么区别?(让生想一会儿再叫学生)生:……(多让几名同学发表看法)师:中心对称是对两个图形说的,而中心对称图形是对一个图形说的.一个图形绕着中心旋转180°,能够与另一个图形重合,这是中心对称;一个图形绕着某一点旋转180°,能够与它本身重合,这是中心对称图形.所以中心对称与中心对称图形是有区别的.(作业:P68习题2.5.)四、板书设计23.2.2中心对称图形课题:23.2.3关于原点对称的点的坐标(第1课时)一、教学目标1.探究点(x,y)关于原点对称点的坐标,会运用发现的规律作关于原点对称的图形.2.发展空间观念,渗透数形结合思想.二、教学重点和难点1.重点:关于原点对称点的坐标.2.难点:探究关于原点对称点的坐标.三、教学过程(一)基本训练,巩固旧知1.如图,(1)画出点A关于x轴的对称点A′;(2)画出点B关于x轴的对称点B′;(3)画出点C关于y轴的对称点C′;(4)画出点A关于y轴的对称点D′.2.填空:(1)点A(-2,1)关于x 轴的对称点为A ′( , );(2)点B(0,-3)关于x 轴的对称点为B ′( , );(3)点C(-4,-2)关于y 轴的对称点为C ′( , ); (4)点D(5,0)关于y 轴的对称点为D ′( , ).(二)创设情境,导入新课(师出示下面的板书)点P(x ,y)关于x 轴的对称点为P ′( , );点P(x ,y)关于y 轴的对称点为P ′( , ); 点P(x ,y)关于原点的对称点为P ′( , ).师:初二的时候,我们学过关于数轴的对称点,(指准图)点P (x ,y )关于x 轴的对称点P ′的坐标是什么?生:P ′(x ,-y).(几名学生回答后师填入答案)师:(指准图)点P (x ,y )关于y 轴的对称点P ′的坐标是什么?生:P ′(-x ,y).(几名学生回答后师填入答案)师:这节课我们要学习关于原点的对称点.师:(画点P 关于原点的对称点P ′,并指准图)点P ′是什么?它是点P 关于原点的对称点.P(x,y).o xy点P 的坐标是(x ,y),那么点P ′的坐标是什么呢?请大家自己来探究这个问题.(三)尝试指导,讲授新课(师出示下面的探究题)3.探究题如图,A(3,2),B(-3,2),C(3,0),(1)在直角坐标系中,画出点A ,B ,C 关于原点的对称点A ′,B ′,C ′;(2)点A(3,2)关于原点的对称点为A ′( , ),点B(-3,2)关于原点的对称点为B ′( , ),点C(3,0)关于原点的对称点为C ′( , ); (3)你发现点P(x ,y)关于原点的对称点P ′( , ).(生做探究题,师巡视引导,要给学生充足的探究时间)师:下面我们一起来做探究题.师:(指准图)点A 的坐标是(3,2),点B 的坐标是(-3,2),点C 的坐标是(3,0).第(1)小题要我们画出点A ,B ,C 关于原点的对称点A ′,B ′,C ′.师:(指准图)点A 关于原点的对称点是这一点(边讲边画点A ′),点B 关于原点的对称点是这一点(边讲边画点B ′),点C 关于原点的对称点是这一点(边讲边画点C ′). 师:(指准图)第(2)小题要我们写出点A ′,B ′,C ′的坐标,点A ′的坐标是(-3,-2)(边讲边填入答案),点B′的坐标是什么?生:(齐答)(-3,-2).(生答师填入答案)师:(指准图)点C′的坐标是什么?生:(齐答)(-3,0).(生答师填入答案)师:(指准(2)题)请大家比较对称点A与A′的坐标、B与B′的坐标、C与C′的坐标,(稍停)你发现点P(x,y)关于原点的对称点P′是什么?生:(-x,-y).(让几名学生回答后师填入答案)师:(指准(3)题)P(x,y)关于原点的对称点为P′(-x,-y),也就是说,如果两个点关于原点对称,那么它们的坐标符号相反.师:下面请大家利用这个结论来做一个练习.(四)试探练习,回授调节4.填空:(1)点A(8,-6)关于原点的对称点是A′( , );(2)点B(0,5)关于原点的对称点是B′( , );(3)点C( , )关于原点的对称点是C′(4,7);(4)点D( , )关于原点的对称点是D′(0,0).(五)尝试指导,讲授新课师:下面我们来看一道例题.(师出示例题)例如图,△ABC各顶点的坐标分别为A(-4,1),B(-1,-1),C(-3,2),作出与△ABC关于原点对称的图形.师:(指准图)点A的坐标是(-4,1),点B的坐标是(-1,-1),点C的坐标是(-3,2),这道题要我们做什么?要我们画出与△ABC关于原点对称的图形.怎么画呢?(稍停)关键是要画点A,B,C关于原点的对称点A′,B′,C′.师:点A的坐标是(-4,1),所以关于原点对称点A′的坐标是什么?生:(齐答)(4,-1).(生答师画出A′)师:点B的坐标是(-1,-1),所以对称点B′的坐标是什么?生:(齐答)(1,1).(生答师画出B′)师:同样可以画出点C′(边讲边画点C′).师:(指准图)画好了点A′,B′,C′,再依次连接A′B′,B′C′,C′A′(边讲边画),△A′B′C′就是我们要画的与△ABC关于原点对称的图形.(六)试探练习,回授调节5.如图,四边形ABCD各顶点坐标分别为A(5,0),B(-2,3),C(-3,0),D(-1,-5),作出与四边形ABCD关于原点对称的图形.(七)归纳小结,布置作业师:本节课我们学习了什么?我们学习了关于原点对称点的坐标.(板书课题:23.2.3关于原点对称的点的坐标)师:(指准板书)点P(x,y)关于x轴的对称点为P′(x,-y),点P(x,y)关于y轴的对称点为P′(-x,y),点P(x,y)关于原点的对称点为P′,P′的坐标是什么?生:(齐答)(-x,-y).(生答师填入答案)(作业:P67练习,P68习题4)四、板书设计于原点对称的点的坐标。
人教版九年级数学上册23.2.2.1《中心对称》教学设计一. 教材分析人教版九年级数学上册23.2.2.1《中心对称》是中心对称图形的相关知识,主要介绍了中心对称图形的定义、性质及运用。
通过本节课的学习,学生能够理解中心对称图形的概念,掌握中心对称图形的性质,并能运用中心对称解决实际问题。
二. 学情分析九年级的学生已经具备了一定的图形认知能力和空间想象力,他们对平面几何图形有一定的了解。
但是,对于中心对称图形的概念和性质,学生可能初次接触,需要通过实例和操作来加深理解。
此外,学生可能对实际运用中心对称解决问题的关键点把握不准,需要教师的引导和启发。
三. 教学目标1.知识与技能:理解中心对称图形的定义,掌握中心对称图形的性质,并能运用中心对称解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象力、逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:中心对称图形的定义、性质及运用。
2.难点:中心对称图形的性质的证明和运用。
五. 教学方法1.情境教学法:通过生活中的实例,引发学生的兴趣,引导学生主动探究中心对称图形的性质。
2.操作教学法:让学生通过实际操作,观察、总结中心对称图形的性质。
3.合作学习法:引导学生分组讨论,共同解决问题,培养学生的团队合作精神。
六. 教学准备1.教学素材:准备相关的图片、实例,制作PPT。
2.教学工具:黑板、粉笔、多媒体设备。
七. 教学过程1.导入(5分钟)利用生活中的实例,如剪纸、城市规划等,引出中心对称图形的概念,激发学生的兴趣。
2.呈现(10分钟)通过PPT展示中心对称图形的定义和性质,引导学生观察、思考。
3.操练(10分钟)让学生分组讨论,每组找一个中心对称图形,分析其性质,并制作PPT进行展示。
教师在这个过程中给予适当的引导和指导。
人教版九年级上册23.2.1中心对称课程设计课程背景中心对称是初中数学中的重点之一,也是初中生学习的难点之一。
在九年级上册数学教材中的23.2.1节中,详细讲解了关于中心对称的相关概念、性质和应用。
为了帮助学生更好地理解和掌握中心对称,提高学生的数学素养和解题能力,本课程设计旨在通过多种教学方式和方法,对学生进行系统的、全面的中心对称的教学。
教学目标1.掌握中心对称的含义与性质;2.了解有关中心对称的常见形式与表达方式;3.能够运用中心对称的原理进行简单的计算和证明;4.培养学生的数学思维能力和解题能力。
教学重点1.中心对称的含义与性质;2.有关中心对称的常见形式与表达方式;3.运用中心对称的原理进行简单的计算和证明。
教学难点1.中心对称的应用;2.对称图形的性质证明。
第一步:导入(5分钟)通过黑板报、实物等形式,让学生感性认识中心对称的概念,体会对称轴的特点,引发学生的兴趣和热情。
第二步:知识讲解(25分钟)1.中心对称的定义、性质;2.中心对称的常见形式和表达方式;3.中心对称的应用。
第三步:案例分析(25分钟)以校园环境为例,让学生在小组内寻找对称的事物,并进行对称轴的确定、对称中心的确定和证明对称性质等方面的讨论,加深学生对中心对称的认识和理解。
第四步:课堂练习(15分钟)组织学生进行中心对称的计算和证明练习,巩固所学知识。
同时,为解决学生可能遇到的困难和问题,教师通过个别辅导和群体呈现的方式帮助学生更好地掌握中心对称。
第五步:总结(5分钟)教师对本节课所学内容进行概括和总结,引导学生进行思考和回顾。
同时,对下节课所要学习的内容进行简要介绍。
课后作业1.完成所布置作业;2.复习所学内容,准备双倍速掌握中心对称的所有知识;3.自己设计一个中心对称图形,对其进行对称和性质证明,并将证明过程和结果写成文字形式。
1.每节课自然分成3-4个评估方面,一节课目标确定之后,需要在课程设计中明确评估内容和评估方法。
23.2.1 中心对称一、教学目标1.理解中心对称的定义.2.探究中心对称的性质.3.掌握中心对称的性质及其应用.二、课时安排1课时三、教学重点理解中心对称的定义. 探究中心对称的性质.四、教学难点掌握中心对称的性质及其应用.五、教学过程(一)导入新课1.从A旋转到B,旋转中心是什么?旋转角是多少度呢?2.从A旋转到C呢?3.从A旋转到D呢?(二)讲授新课探究内容1:(1)观察实例(教科书图23.2-1,23.2-2),(2)回答问题:其中一个图案绕点O旋转180°,你有什么发现?线段AC与BD相交于点O,OA=OC,OB=OD,把△OCD绕点O旋转180º,你有什么发现?(3)引导学生得出中心对称的概念归纳中心对称的定义:把一个图形绕某一个点旋转180º,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称;点O叫做对称中心;这两个图形中的对应点叫做关于中心的对称点.活动内容2:1、如教科书图23.2-3,旋转三角板,画关于点O对称的两个三角形:(1) 画出△ABC;(2) 以三角板的一个顶点O为中心,把三角板旋转180º,画出△A′B′C′2、让学生在作图的基础上思考:(1)分别连接对应点AA′、 BB′、CC′.点O在线段AA′上吗?如果在,在什么位置?(2) △ABC与△A′B′C′全等吗?为什么?(3) △ABC与△A′B′C′有什么关系?(4)你能从中得到什么结论?归纳:(1) 关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2) 关于中心对称的两个图形是全等图形.(三)重难点精讲例1 (1)已知A点和O点,画出点A关于点O的对称点A'.解:第一步:连接AO,第二步:延长AO至A',使OA'=OA,则A'是所求的点.(2)已知线段AB和O点,画出线段AB关于点O的对称线段A' B' .简记为:一连接;二延长;三截取等长;四连线(3)如图,选择点O为对称中心,画出与△ABC关于点O对称的△A′B′C′.△A′B′C′为所求作的三角形(四)归纳小结把握中心对称的定义并掌握旋转的性质,同时注意一下两点:(1)对称点的确定:旋转180º实际上是三点共线,我们可以以此来确定对称点和对称中心;(2)作图要规范,正确.(五)随堂检测1.判断正误:(1)轴对称的两个图形一定是全等形,但全等的两个图形不一定是轴对称的图形.()(2)成中心对称的两个图形一定是全等形.但全等的两个图形不一定是成中心对称的图形. ()(3)全等的两个图形,不是成中心对称的图形,就是成轴对称的图形. ( ) 2.如下所示的4组图形中,左边数字与右边数字成中心对称的有( )A.1组B.2组C.3组D.4组3.如图,已知△AOB 与△DOC 成中心对称,△AOB 的面积是6,AB =3,则△DOC 中CD 边上的高是( )A.2B.4C.6D.84.如图,已知等边三角形ABC 和点O ,画△A′B′C′,使△A′B′C′和△ABC 关于点O 成中心对称.【答案】 1. √,√,× 2.D 3.B4.A BC D O六.板书设计23.2.1 中心对称中心对称旋转性质作图步骤:注意事项:七、作业布置课本P66练习1、2练习册相关练习八、教学反思。
人教版九年级数学上册23.2.2.1《中心对称》教案一. 教材分析人教版九年级数学上册第23章《中心对称》是学生在学习了平面几何相关知识的基础上,进一步引导学生探索中心对称的性质和运用。
本节内容通过具体的实例,让学生了解中心对称的定义,掌握中心对称图形的性质,并能够运用中心对称解决实际问题。
教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生动手操作和观察分析的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的了解。
但学生在学习过程中,可能对中心对称的概念和性质理解不够深入,需要通过大量的练习和操作来巩固。
此外,学生对实际问题的解决能力有待提高,需要通过具体的例子来引导和培养。
三. 教学目标1.了解中心对称的定义,掌握中心对称图形的性质。
2.能够运用中心对称解决实际问题,提高学生的应用能力。
3.培养学生的动手操作和观察分析能力,激发学生学习几何的兴趣。
四. 教学重难点1.中心对称的定义和性质。
2.中心对称在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过具体的实例和问题,引导学生探索中心对称的性质,培养学生的动手操作和观察分析能力。
同时,学生进行小组合作学习,鼓励学生发表自己的观点和思考,提高学生的合作能力和沟通能力。
六. 教学准备1.准备相关的图片和实例,用于引导学生探索中心对称的性质。
2.准备一些实际问题,用于巩固学生对中心对称的应用。
3.准备黑板和粉笔,用于板书重要的概念和性质。
七. 教学过程1.导入(5分钟)通过展示一些图片,如天安门、蝴蝶等,引导学生观察这些图片的共同特点,引发学生对中心对称的思考。
让学生发表自己的观点,教师总结并引入中心对称的概念。
2.呈现(10分钟)教师通过展示一些实例,如将一张纸折叠后,对折线两侧的图形完全重合,引导学生探索中心对称的性质。
教师引导学生动手操作,观察分析中心对称图形的性质,如对称轴的性质、对称点的性质等。
中心对称教学目标1.通过具体实例认识两个图形关于某一点或中心对称的本质:就是一个图形绕一点旋转180°而成.2.掌握成中心对称的两个图形的性质,以及利用两种不同方式来作出中心对称的图形.3. 经历对日常生活与中心对称有关的图形进行观察、分析、欣赏、动手操作、画图等过程,发展审美能力,增强对图形的欣赏意识.重点中心对称的性质及初步应用. 难点中心对称与旋转之间的关系. 教学过程教师活动学生活动说明或设计意图创设情境,导入新课1. 我们已学过哪些图形变换?2. 这幅图案有哪些变换?有旋转变换吗?3.引出课题:板书课题。
1.学生集体回答。
2.观看图片并回答问题。
新知探究,1.观察:(1)把其中一个图案绕点O旋转180°,你有什么发现?1.(1)观看课件演示,并思考问题,回答问题。
例题教学(2)线段AC,BD相△CDO绕点O旋转180°,你有什么发现?2.得出定义:像这样把一个图形绕着某一点旋转180度,如果它能够和另一个图形重合,那么,我们就说这两个图形关于这个点对称或中心对称,这个点就叫对称中心。
这两个图形中的对应点,叫做关于中心的对称点. (2)观看课件演示,并思考问题,回答问题。
2.阅读并加深理解。
把一个图形绕着某一点旋转180度,如果它能够和另一个图形重合,那么,我们就说这两个图形关于这个点对称或中心对称,这个点就叫对称中心。
这两个图形中的对应点,叫做关于中心的对称点.O如图,△ABC与△AED关于点A中心对称,点A是对称中心。
如:C与E是关于中心A的对称点。
,得出性质:课件演示,旋转三角板,画关于点O对称的两个三角形。
如果连接AA′,点O在线段AA′上吗?如果在,在什么位置?△ABC与△A′B′C′有什么关系?课件演示,板书证明过程。
归纳性质:(1)关于中心对称的两个图形,对称点所连线段经过对称中心,而且被对称中心所平分.(2)关于中心对称中心的两个图形是全等图形.4.出示试一试.下图中△A′B′C′与△ABC关于点O是成中心对称的,你能从图中找到哪些等量关系? 3.合作探究,思考问题。
人教版数学九年级上册23.2.1《中心对称》教案一. 教材分析人教版数学九年级上册第23章《中心对称》是学生在学习了平面几何基本概念和性质的基础上进行的一节内容。
本节内容主要让学生了解中心对称的定义,掌握中心对称的性质和运用,能运用中心对称解决一些简单的几何问题。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的认识。
但学生在学习过程中,可能对中心对称的概念和性质理解不够深入,需要通过大量的练习来巩固。
三. 教学目标1.知识与技能:让学生理解中心对称的概念,掌握中心对称的性质,能运用中心对称解决一些简单的几何问题。
2.过程与方法:通过观察、操作、交流等活动,培养学生的空间想象能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生团结协作、积极探究的精神。
四. 教学重难点1.重点:中心对称的概念和性质。
2.难点:中心对称在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作法,引导学生主动探究,合作交流,培养学生的几何思维能力。
六. 教学准备1.教具准备:多媒体课件、几何画板、黑板、粉笔。
2.学具准备:学生自带直尺、圆规、三角板。
七. 教学过程1. 导入(5分钟)利用多媒体课件展示一些生活中的中心对称图形,如天安门、蝴蝶、脸谱等,引导学生观察并思考:这些图形有什么共同特点?你想到了什么几何概念?2. 呈现(10分钟)教师通过讲解和示范,给出中心对称的定义,并用几何画板展示中心对称的性质。
同时,让学生尝试解释中心对称的概念,并找出生活中的中心对称现象。
3. 操练(15分钟)学生分组进行练习,运用中心对称的性质解决一些简单的几何问题。
教师巡回指导,及时纠正错误,帮助学生巩固知识。
4. 巩固(10分钟)教师选取一些典型的练习题,让学生在课堂上独立完成,检验学生对中心对称知识的掌握程度。
同时,教师对学生的解答进行点评,指出不足之处,巩固所学知识。
5. 拓展(10分钟)教师提出一些拓展问题,如中心对称与轴对称的关系,让学生进行思考和讨论。
23.2 中心对称
教学内容
两个图形关于这个点对称或中心对称、对称中心、关于中心的对称点等概念及其运用它们解决一些实际问题.
教学目标
了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题.复习运用旋转知识作图,•旋转角度变化,•设计出不同的美丽图案来引入旋转180°的特殊旋转──中心对称的概念,并运用它解决一些实际问题.
重难点、关键
1.重点:利用中心对称、对称中心、关于中心对称点的概念解决一些问题.
2.难点与关键:从一般旋转中导入中心对称.
教具、学具准备
小黑板、三角尺
教学过程
一、复习引入
请同学们独立完成下题.
如图,△ABC绕点O旋转,使点A旋转到点D处,画出旋转后的三角形,•并写出简要作法.
老师点评:分析,本题已知旋转后点A的对应点是点D,且旋转中心也已知,所以关键是找出旋转角和旋转方向.显然,逆时针或顺时针旋转都符合要求,•一般我们选择小于180°的旋转角为宜,故本题选择的旋转方向为顺时针方向;•已知一对对应点和旋转中心,很容易确定旋转角.如图,连结OA、OD,则∠AOD即为旋转角.接下来根据“任意一对对应点与旋转中心的连线所成的角都是旋转角”和“对应点到旋转中心的距离相等”这两个依据来作图即可.
作法:(1)连结OA、OB、OC、OD;
(2)分别以OB、OB为边作∠BOM=∠CON=∠AOD;
(3)分别截取OE=OB,OF=OC;
(4)依次连结DE、EF、FD;
即:△DEF就是所求作的三角形,如图所示.
二、探索新知
问题:作出如图的两个图形绕点O旋转180°的图案,并回答下列的问题:
1.以O为旋转中心,旋转180°后两个图形是否重合?
2.各对称点绕O旋转180°后,这三点是否在一条直线上?
像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.
这两个图形中的对应点叫做关于中心的对称点.
例1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由.
(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点.
分析:(1)根据中心对称的定义便直接可知这两个图形是中心对称图形,•对称中心就是旋转中心.
(3)旋转后的对应点,便是中心的对称点.
解:作法:(1)延长AD,并且使得DA′=AD
(2)同样可得:BD=B′D,CD=C′D
(3)连结A′B′、B′C′、C′D,则四边形A′B′C′D为所求的四边形,如图23-44所示.
答:(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D点.(2)A、B、C、D关于中心D的对称点是A′、B′、C′、D′,这里的D′与D重合.例2.如图,已知AD是△ABC的中线,画出以点D为对称中心,与△ABD•成中心对称的三角形.
分析:因为D是对称中心且AD是△ABC的中线,所以C、B为一对的对应点,因此,只要再画出A关于D的对应点即可.
解:(1)延长AD,且使AD=DA′,因为C点关于D的中心对称点是B(C′),B•点关于中心D的对称点为C(B′)
(2)连结A′B′、A′C′.
则△A′B′C′为所求作的三角形,如图所示.。