高中数学 第二章《函数概念与基本初等函数Ⅰ》教案四 苏教版必修1
- 格式:doc
- 大小:60.50 KB
- 文档页数:5
2。
1 函数的概念和图象2.1。
1 函数的概念名师导航知识梳理1.函数的概念设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有__________的数f (x)和它对应,那么就称f:A →B 为从集合A 到集合B 的函数,记作y=f (x),x ∈A.其中x 叫__________,x 的取值范围A 叫做函数y=f (x )的__________;与x 的值相对应的y 的值叫做函数值,函数值的集合{f(x )|x ∈A }(⊆B )叫做函数y=f(x )的__________。
函数符号y=f (x)表示“y 是x 的函数",有时简记作函数__________。
(1)函数实际上就是集合A 到集合B 的一个特殊对应f:A →B ,这里A ,B 为__________的数集.(2)A:定义域;{f(x )|x ∈A}:值域,其中{f(x )|x ∈A}__________B ;f :对应法则,x ∈A,y ∈B.(3)函数符号:y=f (x )↔y 是x 的函数,简记f(x).2。
已学函数的定义域和值域(1)一次函数f (x )=ax+b(a ≠0):定义域为__________,值域为__________;(2)反比例函数f(x )=xk (k ≠0):定义域为__________,值域为__________; (3)二次函数f (x)=ax 2+bx+c (a ≠0):定义域为__________,值域:当a 〉0时,为__________;当a 〈0时,为__________。
3。
函数的值:关于函数值f(a )例:f (x)=x 2+3x+1,则f(2)= __________.4。
函数的三要素:对应法则f 、定义域A 和值域{f(x )|x ∈A}.只有当这三要素__________时,两个函数才能称为同一函数。
疑难突破有关函数概念的理解剖析:(1)如果一个函数需要几条限制时,那么定义域为各限制所得x 的范围的交集。
第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一 函数的定义域[典例] (1)(2019·长春质检)函数y =ln1-x x +1+1x的定义域是( ) A .[-1,0)∪(0,1) B .[-1,0)∪(0,1] C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则(1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [题组训练] 1.函数f (x )=1lnx +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln x +1≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f x +1x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f x +f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f x =3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,①f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2x -1,x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f x -1,x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2, ∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f 2x +1log 2x +1的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f 2x +1log 2x +1有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x=f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③. 9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1. 所以该函数的定义域为(0,1].答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,则f (f (-9))=________. 解析:∵函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2. 答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3.答案:-312.已知f (x )=⎩⎪⎨⎪⎧ 12x +1,x ≤0,-x -12,x >0,使f (x )≥-1成立的x 的取值范围是________. 解析:由题意知⎩⎪⎨⎪⎧ x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧ x >0,-x -12≥-1,解得-4≤x ≤0或0<x ≤2,故所求x 的取值范围是[-4,2].答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1). (1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧ -2a +b =3,-a +b =2, 解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0. (2)函数f (x )的图象如图所示.。
课题:函数的单调性(一)一、教材分析1、教材内容本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》§2.1.3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题.2、教材所处地位、作用函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质.通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题.通过上述活动,加深对函数本质的认识.函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础.此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一.从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法.3、教学目标(1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性的方法;(2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.(3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质.4、重点与难点教学重点(1)函数单调性的概念;(2)运用函数单调性的定义判断一些函数的单调性.教学难点(1)函数单调性的知识形成;(2)利用函数图象、单调性的定义判断和证明函数的单调性.二、教法分析与学法指导本节课是一节较为抽象的数学概念课,因此,教法上要注意:1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性.2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决.3、在鼓励学生主体参与的同时,不可忽视教师的主导作用.具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达.4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性.在学法上:1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力.2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃.教学环节教学过程设计意图问题情境(播放中央电视台天气预报的音乐)如图为宿迁市2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:问题1 怎样描述气温随时间增大的变化情况?问题 2 怎样用数学语言来刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?问题3 在区间[4,16]上,气温是否随时间增大而增大?连续提出三个相关联的问题,包括问题3这样让人警觉的反例,使学生在解决问题的过程中,形成对函数单调性的认识.从学生熟悉的生活情境引入,让学生对函数单调性产生感性认识,为引出单调性的定义打好基础,有利于定义的自然生成,也揭示了单调性最本质的东西.定义形成通过对以上问题的分析,从正、反两方面领会函数单调性.师生共同总结出单调增函数的定义,并解读定义中的关键词,如:区间内,任意,当1x<2x时,都有)(1xf<)(2xf.仿照单调增函数定义,由学生说出单调减函数的定义.教师介绍单调性和单调区间的定义.函数单调性定义产生是本节课的难点,难在:如何使学生从描述性语言过渡到严谨的数学语言.通过问题的分解,引导学生步步深入,直至找到最准确的数学语言来描述定义.这里体现以学生为主体,师生互动合作的教学新理念.教学设计说明本节课是一节概念课.函数单调性的本质是利用解析的方法来研究函数图象的性质,如何将图形特征用严谨的数学语言来刻画是本节课的难点之一.另一难点是学生在高中阶段第一次接触代数证明,如何进行严格的推理论证并完成规范的书面表达.围绕以上两个难点,在本节课的处理上,我着重注意了以下几个问题:1、重视学生的亲身体验.具体体现在两个方面:①将新知识与学生的已有知识建立了联系.如:学生对一次函数、二次函数和反比例函数的认识,学生对“y 随x 的增大而增大”的理解;②运用新知识尝试解决新问题.如:对函数1)(+=x xx f 在定义域上的单调性的讨论.2、重视学生发现的过程.如:充分暴露学生将函数图象(形)的特征转化为函数值(数)的特征的思维过程;充分暴露在正、反两个方面探讨活动中,学生认知结构升华、发现的过程.3、重视学生的动手实践过程.通过对定义的解读、巩固,让学生动手去实践运用定义.4、重视课堂问题的设计.通过对问题的设计,引导学生解决问题.《函数的单调性》说课稿(二)各位专家:您好!我叫,今天我说课的课题是“”,下面我从教材分析、教法设计、学法设计、学情分析、教学程序、板书设计和评价设计等七个方面向各位阐述我对本节课的构思与设计。
第2章 函数概念与基本初等函数Ⅰ本章概述函数是中学数学中的一个重要概念,函数是高中数学的基础.学生在初中已经初步接受了函数的知识,掌握了一些简单函数的表示方法、性质和图象,本章在初中学习的基础上,继续系统学习函数知识,培养学生应用函数知识的意识,并对后续选修课程中要涉及的函数知识打下良好的基础.本章在学生学习函数知识的过程中是一个重要的环节.一、课标要求1.函数的概念和图象(1)学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.(2)了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.通过具体实例,了解简单的分段函数,并能简单应用.(3)结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.(4)通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.2.基本初等函数(1)了解指数函数模型的实际背景.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算.理解指数函数的概念和意义,掌握f(x)=a x 的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特殊点).通过应用实例的教学,体会指数函数是一种重要的函数模型.(2)理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x 符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点).(3)知道指数函数f(x)=a x 与对数函数f(x)=log a x 互为反函数(a >0,a≠1),初步了解反函数的概念和f -1(x)的意义.(4)通过实例,了解幂函数的概念,结合五种具体函数y=x,y=x 3,y=x -1,y=x 21的图象,了解它们的变化情况.3.函数的应用(1)通过二次函数的图象,懂得判断一元二次方程根的存在性与根的个数,通过具体的函数例子,了解函数零点与方程根的联系.根据函数图象,借助计算器或电脑,学会运用二分法求一些方程的近似解,了解二分法的实际应用,初步体会算法思想.(2)借助计算机作图,比较指数函数、对数函数、幂函数的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的关系.收集现实生活中普遍使用的几种函数模型的案例,体会三种函数模型的应用价值,发展学习应用数学知识解决实际问题的意识.二、本章编写意图与教学建议1.在进一步体会两个变量之间的依赖关系的基础上,学习用集合与对应的语言来刻画“单值对应”,领悟函数就是一个从一个数集到另一个数集的单值对应.“单值对应”是函数对应法则的根本特征.箭头图给出了“单值对应”从一个集合到另一个集合的方向性,应突出“输进”与“输出”的关系.2.教材把指数函数、对数函数、幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题.3.教材“阅读”中力求通过信息技术与课程内容的整合,激发学生对数学学习的兴趣,体现数学的应用性,教学中应鼓励学生探索,把现代教育技术作为学习的研究和探究解决问题的工具.例如,用Excel可以解决陌生函数的图象的大致形状,增加直观性.为以后研究函数的性质和学习方程的近似解、数据拟合等打下基础.4.本章通过学习用二分法求方程近似解的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题.三、教学内容及课时安排建议本章教学时间约29课时:2.1.1 函数的概念和图象3课时2.1.2 函数的表示方法1课时2.1.3 函数的简单性质3课时2.1.4 映射的概念1课时2.2.1 分数指数幂2课时2.2.2 指数函数3课时2.3.1 对数2课时2.3.2 对数函数3课时2.4 幂函数1课时2.5.1 二次函数与一元二次方程2课时2.5.2 用二分法求方程的近似解1课时2.6 函数模型及其应用3课时探究案例——钢琴与指数曲线1课时实习作业1课时本章复习2课时2.1函数的概念和图象2.1.1函数的概念和图象整体设计教材分析先从初中学过的变量观点的函数概念说起,借助对应关系和集合语言得到了函数更为确切的定义,然后学习映射的概念,之后再用映射的概念来研究函数,使同学们对函数概念的理解更加深刻.定义域、对应法则是函数的两个要素.判断两个函数是否相同只需判断它们的定义域、对应法则是否相同即可.对函数符号y=f(x)的理解是同学们学习中的难点.这是一个抽象的数学符号,也仅仅是函数符号,它表示“y是x的函数”,指对定义域中的任意x,在“对应法则f”的作用下,即可得到y=f(x),既不表示“y等于f与x的乘积”,也不一定是解析式.要注意符号f(a)与f(x)的区别与联系,f(a)表示当自变量x=a时函数f(x)的值,它是一个常量;而f(x)是自变量x的函数.在一般情况下,它是一个变量,f(a)是f(x)在x=a时的一个特殊值.学习过程中要充分理解教材中的几个例题,感受函数概念的应用,体会求函数定义域、函数在x取某些特定值时的函数值和值域、函数关系式的转化的方法,体会换元法的应用.三维目标(1)了解构成函数的要素.(2)会求一些简单函数的定义域和值域.(3)能够正确使用“区间”的符号表示某些函数的定义域.(4)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.重点难点教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数.教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示.课时安排3课时教学过程第一课时函数的概念(一)导入新课设计思路一(问题导入)阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)估计人口数量变化趋势是我们制定一系列相关政策的依据,从人口统计年鉴中可以查得我国从1949年至1999年人口数据资料如下表所示,你能根据这个表说出我国人口的变化情况吗?年份1949 1954 1959 1964 1969 1974 1979 1984 1989 1994 1999 人口数/百万542 603 672 705 807 909 975 1035 1107 1177 1246(2)一物体从静止开始下落,下落的距离y(m)与下落的时间x(s)之间近似地满足关系式y=4.9x2.若一物体下落2 s,你能求出它下落的距离吗?(3)下图为某市一天24小时内的气温变化图,①上午8时的气温约是多少?全天的最高、最低气温分别是多少?②大约在什么时刻,气温为0 ℃?③大约在什么时刻内,气温在0 ℃以上?其中:(1)人口数量与时间的变化关系问题;(2)物体自由落体运动中下落的高度与时间的变化关系问题;(3)某市一天中的温度与时间的变化关系问题.思考1.分析、归纳以上三个实例,它们有什么共同点.2.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系.3.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系. 设计思路二(情境导入)社会生活中,地球正在逐渐变暖,为什么?中国的国内生产总值为什么在逐年增长?上述这些变化的现象中,都存在着两个变量,当一个变量变化时,另一个变量随之发生变化.那么我们如何用数学模型来刻画这两个变量之间的关系?这数学模型又有什么特征?学好本章便可弄清这两个问题.推进新课新知探究设计思路一函数的有关概念(1)函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A→B 为从集合A 到集合B 的一个函数.记作:y=f(x),x ∈A.其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)|x ∈A}叫做函数的值域.注意:①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;②函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,是一个数,而不是f 乘x.(2)构成函数的三要素是什么?定义域、对应关系和值域.(3)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?通过三个已知的函数:y=ax+b ,(a≠0),y=ax 2+bx+c ,(a≠0),y=xk ,(k≠0), 比较描述性定义和集合,与对应语言刻画的定义,谈谈体会.设计思路二对于导入新课设计思路一的问题解答:(1)解:我国人口随时间的变化是逐渐增加的.(2)解:1 s→4.9 m , 2 s→19.6 m ,对任一时刻x ,都有唯一的下落距离y 与之对应.(3)解:①上午8时的气温约是0 ℃,全天的最高、最低气温分别是9 ℃和-2 ℃; ②大约在上午8时和晚上22时,气温为0 ℃;③大约在8到22时刻内,气温在0 ℃以上.总结:对任一时刻t ,都有唯一的温度θ与之对应.思考解答:上述三个问题中,都反映出两个变量之间的关系,当一个变量的取值确定后,另一个变量的值也随之唯一确定.回忆初中学习的函数的概念,如何用集合语言来阐述上述三个问题的共同特点?每个问题均涉及两个非空数集A ,B :A B问题1 {1949,1954,…,1999} {542,603,…1246}问题2 {x|x≥0} {y|y≥0}问题3 {t|0≤t≤24} {θ|-2≤θ≤9}存在某种对应法则,对于A 中任意元素x ,B 中总有一个元素y 与之对应.问题1 问题2 单值对应:对于A 中的任一个元素x ,B 中有唯一的元素y 与之对应.或一个输入值对应到唯一的输出值.总结:单值对应为一对一,多对一,而不能一对多.函数的概念:(1)设A ,B 是两个非空的数集,如果按某种对应法则f ,对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,这样的对应叫做从A 到B 的一个函数.记为y=f(x),x ∈A.其中,所有的输入值x 组成的集合A 叫函数的定义域.(2)函数是建立在两个非空的数集上的单值对应,x 叫自变量,y 叫因变量.问:上述的三个问题中的对应是否是单值对应,是否是函数,且函数的定义域是什么? 答:是的,都上单值对应,同时也都是函数,每个集合都是非空的数集.记忆技巧:在定义的记忆中,要抓住几个关键词,使用定义时要注意数形结合,增加对单值定义的理解.应用示例思路1例1 已知函数f(x)=3+x +21+x . (1)求函数的定义域;(2)求f(-3),f(32)的值; (3)当a >0时,求f(a),f(a-1)的值.分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.解:(1)使函数有意义,必须满足 x+3≥0,且x+2≠0,化简得到:x≥-3且x≠-2,所以函数的定义域为{x|x≥-3且x≠-2}.(2)f(-3)=-1,f(32)=332++833332321+=+.(3)f(a)=213+++a a ,f(a-1)=1122)1(13)1(+++=+-++-a a a a . 点评:在解题时要注意(3)的求解,此时的x 就是a 、a-1,所以只要把它们作为x 代入. 例2 设一个矩形的周长为80,其中一边长为x ,求它的面积关于x 的函数的解析式,并写出定义域.分析:这是一道应用题,要把一个实际问题转化为数学问题,转化时应注意使实际问题有意义.解:由题意知,另一边长为2280x -,且边长为正数,所以0<x <40. 所以面积s=2280x -·x=(40-x)x,(0<x <40), 所以s(x)=(40-x)x,(0<x <40).点评:引导学生小结几类函数的定义域:(1)如果f(x)是整式,那么函数的定义域是实数集R .(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集).(5)满足实际问题有意义.例3 下列函数中哪个与函数y=x 相等?(1)y=(x )2;(2)y=33x ;(3)y=2x ;(4)y=x x 2. 分析:(1)构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数).(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关.解:(1)、(4)与函数y=x 不相等,因为定义域不同;(3)与函数y=x 不相等,因为对应关系不同;只有(2)与函数y=x 相等.点评:在判断时要注意函数表达式的化简,同时注意化简前后的等价变形,不然就不是原函数了.例4 比较下列两个函数的定义域与值域:(1)f(x)=(x-1)2+1,x ∈{-1,0,1,2,3};(2)f(x)=(x-1)2+1.分析:定义域与值域是函数的两个要素,通过解析式可以得出两者的关系.解:(1)函数的定义域为{-1,0,1,2,3},因为f(-1)=(-1-1)2+1=5,同理f(0)=2,f(1)=1,f(2)=2,f(3)=5,所以这个函数的值域为{1,2,5};(2)函数的定义域为R ,因为(x-1)2+1≥1,所以这个函数的值域是{y|y≥1}.点评:函数的值域就是函数值的取值集合,我们可以把函数的值域表示成{y|y=f(x),x ∈A}.例5 已知函数y=ax ax ++312的定义域为R ,求a 的取值范围. 分析:本题是从函数的定义域的逆向思维的角度来设计的一个问题,所以考虑问题时会有一个暂时的停顿.同时要注意分类思想.解:当a=0时,y=x31,函数的定义域不是R ; 当a≠0时,只要9-4a 2<0,得a >23或a <23-. 综上所述,a >23或a <23-. 点评:对于参数问题的求解,可先把它当作已知的,然后再用相关的知识求解.也就是以退为进.思路2例1 判断下列对应是否为函数:(1)x→x2,x≠0,x ∈R ; (2)x→y,这里y=x 2,x ∈N ,y ∈R ;(3)x→y,这里y 2=x,x ∈N ,y ∈R ;(4)x→y,这里y=x+1,x ∈{1,2,3,4,5},y ∈{0,2,3,4,6}.分析:根据定义来进行判断.解:(1)(2)是函数,(3)(4)不是函数.例2 如下图所示的对应x→y ,能表示函数的是______.分析:可以用与y 轴平行的直线来截,如有两个交点就不是函数图象.答案:A 、D点评:函数概念的要点:(1) A ,B 为非空数集.(2) A 中的任一个元素,B 中都有唯一的元素与之对应;而B 中的元素在A 中的对应元素可以不唯一,也可以没有.从上述三个问题中我们可以看出,函数可以用列表、图象、解析式来表示.对给定的函数必须要指明定义域,对于用解析式表示的函数如果没指明定义域,则认为函数的定义域是指使函数表达式有意义的输入值的集合.例3 求下列函数的定义域:(1)f(x)=1-x ;(2)f(x)=11+x ;(3)f(x)=1231+-x x. 分析:运用函数的定义域的求法,就是根据满足的几个条件来进行判断和列式. 解:(1) {x|x≥1};(2){x|x ∈R 且x≠-1};(3){x|x ∈R 且x≠0且x≥21-}. 点评:注意几个满足条件就可以了.例4 已知函数y=f(x)的定义域是(-1,1),求y=f(x+1)的定义域.解:因为y=f(x)的定义域是(-1,1),所以-1<x+1<1,所以-2<x <0.所以y=f(x+1)的定义域为{x|-2<x <0}.点评:隐函数的定义域要紧扣定义进行求解.例5 已知函数y=a x ax ++32的定义域为R ,求a 的取值范围.解:⎩⎨⎧≤-=∆>,049,02a a ∴a ∈[23,+∞). 点评:挖掘概念的内涵,是解决这类问题的思维的关键.知能训练1.y=x 1111++的定义域是( )A.x≠0的一切实数B.x≠-1且x≠0的一切实数C.x >0的一切实数D.x≠0且x≠-1且x≠21-的一切实数 2.如图,在直角坐标系的第一象限内,△AOB 是边长为2的等边三角形,垂直底的直线x =t (0≤t≤2)截这个三角形所得阴影部分面积为f(t),则y=f(t)的图象大致是()3.函数f(x)=⎪⎩⎪⎨⎧≥<<--≤+),2(,2),21(,),1(,22x x x x x x 若f(x)=3,则x 等于( )A.1B.1或23 C.1,±3 D.3 4.函数y=x x -+-22的定义域是___________,值域是___________.5.(1)若f(x)=x 2+1,则f(3x+2)=___________.(2)若f(x-1)=2x 2-1,则f(x)=_________,f(0)=_________,f(1)=_________,f[f(0)]=_________.6.已知函数f(x)=⎪⎩⎪⎨⎧+∞∈-∞∈),,0[,),0,(,12x x x x 求f(x+1).解答:1.D ;2.D ;3.D ;4.{x|x=2},{y|y=0};5.(1)9x 2+12x+5,(2)2x 2+4x+1,1,7,7;6.解:由已知得:f(x+1)=⎪⎩⎪⎨⎧+∞∈++-∞∈++),,0[1,)1(),0,(1,112x x x x所以f(x+1)=⎪⎩⎪⎨⎧+∞-∈+--∞∈+).,1[,)1(),1,(,112x x x x课堂小结今天我们学习了函数的概念、函数的定义域和值域等,体会用集合间的特殊对应来表示函数,这是学生认识的进步,是今后学习函数的基础.本节课我们从不同的角度对定义域做了研究,在今后学习函数的过程中,应该要求学生一看到函数,马上就要去想它的定义域,避免因定义域的忽略而出现解题的错误.作业课本第28页习题2.1(1) 1、2.设计感想1.注重学生学习函数概念的心理建构过程建构主义学习理论认为:应把学习看成是学生主动的建构活动,学习应与一定的知识、背景及情境相联系;在实际情境下进行学习,可以使学生利用已有的知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情境中.在函数概念教学中,可以适当采用引导讨论,注重分析、启发、反馈,先从实际问题引入概念,然后揭示函数概念的共同特性:(1)问题中所研究的两个变量是相互联系的;(2)其中一个变量变化时,另一个变量也随着发生变化;(3)对第一个变量在某一范围内的每一个确定的值,第二个变量都有唯一确定的值与它对应.同时从阅读、练习中巩固概念,再从讨论、反馈中深化概念,让学生自己完成从具体到抽象的过程,避免概念教学的抽象与枯燥,使学生深入理解函数的实质,从而让学生较好地完成函数概念的建构.2.注重函数概念与信息技术适时性、适度性的结合由于初中刚进高中的高一学生,思维较为单一,认识比较具体,注意不够持久,并且高中数学比较抽象,学生学习普遍感到困难,因此在教学过程中应创设一些知识情境,借助现代教学手段多媒体进行教学,让学生在轻松愉快的氛围中进行学习.应用信息技术时要根据教学需要、学生需求和课堂教学过程中出现的情况适时使用,并且运用要适度,掌握分寸,避免过量信息钝化学生的思维.函数概念教学中,教师可以借助于几何画板、图形计算器等现代教学工具辅助教学,鼓励、引导学生通过交流与讨论,来更好地学习和理解函数.(设计者:王银娣)第二课时 函数的概念(二)导入新课设计思路一(复习导入)在上节课我们学习了函数的定义,从定义中我们可以看出,构成函数有三个要素:定义域、值域和解析式,在函数的定义中大家要能体会出通过符号来解决问题的思想,也就是把实际的问题抽象成数学问题,函数也是高中数学中抽象思维要求最强的一个知识,也是有着广泛用途的一个数学知识,同时也推动了人类认识的进步.本节课将在上一节课的基础上对函数作更深一个层次的了解.这个认识我们将会在以后的学习中逐步加深.设计思路二(事例导入)函数在数学及实际生活中有着广泛的应用,在我们身边就存在着很多与函数有关的问题,如在我们身边就有不少函数的实例,我们看下面的一个实例:夏天,大家都喜欢吃西瓜,而西瓜的价格往往与西瓜的重量有关.某人到一个水果店去买西瓜,价格表上写的是:6斤以下,每斤0.4元;6斤以上9斤以下,每斤0.5元;9斤以上,每斤0.6元.此人挑了一个西瓜,称重后店主说5元1角,1角就不要了,给5元吧,可这位聪明的顾客马上说,你不仅没少要,反而多收了我钱,当顾客讲出理由,店主只好承认了错误,照实收了钱.同学们,你知道顾客是怎样识破店主坑人的吗?其实数学问题时刻伴随着我们,只要你注意观察、积累,并学以致用,就能成为聪明人,因为数学可以使人聪明起来.答案:若西瓜重9斤以下则最多应付4.5元,若西瓜9斤以上,则最少也要5.4元,不可能出现5.1元这样的价钱,所以店主坑人了.推进新课新知探究1.函数的概念关键词:任意、唯一.2.构成函数的三要素是:定义域、对应关系和值域.3.函数的值域:若A 是函数y=f(x)的定义域,则对于A 中的每一个x ,都有一个输出值y 与之对应.我们将所有输出值y 组成的集合称为函数的值域.应用示例思路1例1 求下列函数的值域:(1)y=x2-;(2)y=x 2+x-1; (3)y=x 2-2x,x ∈[2,3];(4)y=x 2-2x,x ∈[-1,1].分析:这些函数都可以用基本函数的方法来解决,解题时要注意它们的定义域,不然就会造成值域的范围的扩大.解:(1){y|y ∈R ,y≠0}(基本函数法);(2)[45-,+∞)(基本函数法); (3)[0,3](函数图象法);(4)[-1,3](函数图象法).变式训练1.求函数y=x 2-2x,x ∈[-2,5]的值域.解:[-1,15](函数图象法).2.求函数y=x 1-,x ∈(-1,0)∪(0,2)的值域. 解:(-∞,21-)∪(1,+∞)(函数图象法). 点评:函数图象法就是根据基本函数的图象,通过已知的图象来观察出要解决的函数的值域的方法,主要从图象的高低来进行判断.例2 若一次函数y=f(x)满足f(1)=1,f(-1)=3,求f(x)的解析式.分析:一次函数是一条直线,有两个点,直线就会被唯一确定,所以本题使用待定系数法就很容易求得.解:设f(x )=ax+b,(a≠0)(待定系数法),由题意可得⎩⎨⎧=+-=+,3,1b a b a 解得⎩⎨⎧=-=,2,1b a 所以f(x)=-x+2.点评:使用待定系数法时,在设系数时要注意符合一次函数的定义,同时在解方程时要依据所设的条件,注意增根和减根的现象.例3 二次函数y=f(x)对任意x ∈R ,有f(x+1)+f(x-1)=2x 2-4x ,求f(x)的解析式.分析:本题根据恒等式的特征进行解题,所以在代入计算时要有足够的耐心进行计算,同时要保证计算的准确性.解:设f(x)=ax 2+bx+c,(a≠0),由题意可得a(x+1)2+b(x+1)+c+a(x-1)2+b(x-1)+c=2x 2-4x,即2ax 2+2bx+(2a+2c)=2x 2-4x,所以⎪⎩⎪⎨⎧=+-==,022,42,22c a b a 即⎪⎩⎪⎨⎧-=-==,1,2,1c b a所以f(x)=x 2-2x-1.点评:与例2的解法相似,但有其自身的特点,复杂的程度比一次的高,所以计算的时候准确性要注意,不然即使方法正确,答案也容易错.例4 y=f(x)满足f(x+1)=x 2-7x-1,求f(x)的解析式.分析:本题求函数的解析式是从配凑法、换元法的角度来解决这个问题,在运算过程中,要明白解题的目的.解法一:f(x+1)=x 2-7x-1=(x+1)2-9x-2=(x+1)2-9(x+1)+7,所以f(x)=x 2-9x+7.解法二:令x+1=t ,所以x=t-1,代入可得f(t)=(t-1)2-7(t-1)-1=t 2-9t+7,所以f(x)=x 2-9x+7.点评:这两种求函数解析式的方法比较常见,其中配凑法要在目的的导引下来进行有效的变形,换元法比较容易操作.例5 函数y=f(x)满足f(x x 1+)=221xx x ++,求f(x)的解析式. 分析:本题看上去比较复杂,但是方法仍用配凑法,当然也可以用换元法,下面就这两种方法分别给出解答,然后观察比较.解:(换元法)令x x 1+=t ,则x=11-t ,代入可得 f(t)=22)1(11)1(1)1(1-+-+-t t t =1+(t-1)+(t-1)2=t 2-t+1,所以f(x)=x 2-x+1. 另解:(配凑法)f(x x 1+)=221x x x ++=222212xx x x x x +--++=(x x 1+)2-x x 1++1,所以f(x)=x 2-x+1. 点评:两种方法比较下来,我们感觉第一种容易上手,易于操作,学生也比较容易把握,方法二要求技巧性比较强,对基础好的同学可以作要求,它能培养学生的观察能力.思路2例1 已知f(x)=x1,g(x)=x 2+x+1,求f[g(2)]和g[f(2)]的值. 分析:这是一个求函数值的问题,它分为两层,从里层开始计算,一层一层地计算,实际上就是按照函数的定义来进行分解.解:f[g(2)]=f(7)=71,g[f(2)]=g(21)=47. 点评:学生对这类问题的求解,开始的时候有点难,但随着对函数定义的理解,这类问。
指数与指数幂的运算(3)导入新课思路1.同学们,既然我们把指数从正整数推广到整数,又从整数推广到正分数到负分数,这样指数就推广到有理数,那么它是否也和数的推广一样,到底有没有无理数指数幂呢?回顾数的扩充过程,自然数到整数,整数到分数(有理数),有理数到实数.并且知道,在有理数到实数的扩充过程中,增添的数是——实数.对无理数指数幂,也是这样扩充而来.既然如此,我们这节课的主要内容是:教师板书本堂课的课题(指数与指数幂的运算(3))之无理数指数幂.思路2.同学们,在初中我们学习了函数的知识,对函数有了一个初步的了解,到了高中,我们又对函数的概念进行了进一步的学习,有了更深的理解,我们仅仅学了几种简单的函数,如一次函数、二次函数、正比例函数、反比例函数、三角函数等,这些远远不能满足我们的需要,随着科学的发展,社会的进步,我们还要学习许多函数,其中就有指数函数,为了学习指数函数的知识,我们必须学习实数指数幂的运算性质,为此,我们必须把指数幂从有理数指数幂扩充到实数指数幂,因此我们本节课学习:指数与指数幂的运算(3)之无理数指数幂,教师板书本堂课的课题.推进新课新知探究提出问题①我们知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值?③你能给上述思想起个名字吗?④一个正数的无理数次幂到底是一个什么性质的数呢?如52,根据你学过的知识,能作出判断并合理地解释吗?⑤借助上面的结论你能说出一般性的结论吗?活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容:问题①从近似值的分类来考虑,一方面从大于2的方向,另一方面从小于2的方向.问题②对图表的观察一方面从上往下看,再一方面从左向右看,注意其关联.问题③上述方法实际上是无限接近,最后是逼近.问题④对问题给予大胆猜测,从数轴的观点加以解释.问题⑤在③④的基础上,推广到一般的情形,即由特殊到一般.讨论结果:①1.41,1.414,1.414 2,1.414 21,…这些数都小于2,称2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,这些数都大于2,称2的过剩近似值.②第一个表:从大于2的方向逼近2时,52就从51.5,51.42,51.415,51.4143,51.41422,…,即大于52的方向逼近52.第二个表:从小于2的方向逼近2时,52就从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于52的方向逼近52.从另一角度来看这个问题,在数轴上近似地表示这些点,数轴上的数字表明一方面52从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于52的方向接近52,而另一方面52从51.5,51.42,51.415,51.4143,51.41422,…,即大于52的方向接近52,可以说从两个方向无限地接近52,即逼近52,所以52是一串有理数指数幂51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理数指数幂51.5,51.42,51.415,51.4143,51.41422,…,按上述变化规律变化的结果,事实上表示这些数的点从两个方向向表示52的点靠近,但这个点一定在数轴上,由此我们可得到的结论是52一定是一个实数,即51.4<51.41<51.414<51.414 2<51.41421<…<52<…<51.41422<51.4143<51.415<51.42<51.5.充分表明52是一个实数.③逼近思想,事实上里面含有极限的思想,这是以后要学的知识. ④根据②③我们可以推断52是一个实数,猜测一个正数的无理数次幂是一个实数.⑤无理数指数幂的意义:一般地,无理数指数幂a α(a>0,α是无理数)是一个确定的实数.也就是说无理数可以作为指数,并且它的结果是一个实数,这样指数概念又一次得到推广,在数的扩充过程中,我们知道有理数和无理数统称为实数.我们规定了无理数指数幂的意义,知道它是一个确定的实数,结合前面的有理数指数幂,那么,指数幂就从有理数指数幂扩充到实数指数幂. 提出问题(1)为什么在规定无理数指数幂的意义时,必须规定底数是正数?(2)无理数指数幂的运算法则是怎样的?是否与有理数指数幂的运算法则相通呢? (3)你能给出实数指数幂的运算法则吗?活动:教师组织学生互助合作,交流探讨,引导他们用反例说明问题,注意类比,归纳. 对问题(1)回顾我们学习分数指数幂的意义时对底数的规定,举例说明.对问题(2)结合有理数指数幂的运算法则,既然无理数指数幂a α(a>0,α是无理数)是一个确定的实数,那么无理数指数幂的运算法则应当与有理数指数幂的运算法则类似,并且相通. 对问题(3)有了有理数指数幂的运算法则和无理数指数幂的运算法则,实数的运算法则自然就得到了.讨论结果:(1)底数大于零的必要性,若a=-1,那么a α是+1还是-1就无法确定了,这样就造成混乱,规定了底数是正数后,无理数指数幂a α是一个确定的实数,就不会再造成混乱. (2)因为无理数指数幂是一个确定的实数,所以能进行指数的运算,也能进行幂的运算,有理数指数幂的运算性质,同样也适用于无理数指数幂.类比有理数指数幂的运算性质可以得到无理数指数幂的运算法则: ①a r ·a s =a r+s(a>0,r,s 都是无理数).②(a r )s =a rs(a>0,r,s 都是无理数).③(a·b)r =a r b r(a>0,b>0,r 是无理数).(3)指数幂扩充到实数后,指数幂的运算性质也就推广到了实数指数幂. 实数指数幂的运算性质:对任意的实数r,s,均有下面的运算性质: ①a r ·a s =a r+s(a>0,r,s∈R ).②(a r )s =a rs(a>0,r,s∈R ).③(a·b)r =a r b r(a>0,b>0,r∈R ). 应用示例思路1例1利用函数计算器计算.(精确到0.001) (1)0.32.1;(2)3.14-3;(3)3.143;(4)33.活动:教师教会学生利用函数计算器计算,熟悉计算器的各键的功能,正确输入各类数,算出数值,对于(1),可先按底数0.3,再按键,再按幂指数2.1,最后按,即可求得它的值; 对于(2),先按底数3.14,再按键,再按负号键,再按3,最后按即可;对于(3),先按底数3.1,再按键,再按34,最后按即可;对于(4),这种无理指数幂,可先按底数3,其次按键,再按键,再按3,最后按键.有时也可按或键,使用键上面的功能去运算.学生可以相互交流,挖掘计算器的用途.答案:(1)0.32.1≈0.080;(2)3.14-3≈0.032; (3)3.143≈2.336;(4)33≈6.705.点评:熟练掌握用计算器计算幂的值的方法与步骤,感受现代技术的威力,逐步把自己融入现代信息社会;用四舍五入法求近似值,若保留小数点后n 位,只需看第(n+1)位能否进位即可.例2求值或化简. (1)3224ab ba -(a>0,b>0); (2)(41)21-213321)()1.0()4(---b a ab (a>0,b>0);(3)246347625---+-.活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)由里向外把根式化成分数指数幂,要紧扣分数指数幂的意义和运算性质,对(2)既有分数指数幂又有根式,应当统一起来,化为分数指数幂,对(3)有多重根号的式子,应先去根号,这里是二次根式,被开方数应凑完全平方,这样,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并对学生作及时的评价,注意总结解题的方法和规律.解:(1)3224ab ba -=2224b a -(a 31b 32)21=a -2ba 61b 31=a611-b 34=61134ab .点评:根式的运算常常化成幂的运算进行,计算结果如没有特殊要求,就用根式的形式来表示.(2)(41)21-2133231)()1.0()4(---b a ab =223211044•a 23a 23-b 23-b 23=254a 0b 0=254.点评:化简这类式子一般有两种办法,一是首先用负指数幂的定义把负指数化成正指数,另一个方法是采用分式的基本性质把负指数化成正指数.(3) 246347625---+- =222)22()32()23(---+- =3-2+2-3-2+2=0.点评:考虑根号里面的数是一个完全平方数,千万注意方根的性质的运用.例3已知x=21(5n 1-5n 1-),n∈N *,求(x+2x 1+)n 的值.活动:学生思考,观察题目的特点,从整体上看,应先化简,然后再求值,要有预见性,5n1与5n1-具有对称性,它们的积是常数1,为我们解题提供了思路,教师引导学生考虑问题的思路,必要时给予提示.x 2=41(5n 1-5n 1-)2=41(5n 2-2·50+5n 2-)=41(5n 2+2+5n 2--4) =41(5n 1+5n 1-)2-1. 这时应看到1+x 2=1+41(n 1-5n 1-)2=41(5n 1+5n 1-)2,这样先算出1+x 2,再算出2x 1+,带入即可.解:将x=21(5n 1-5n 1-)代入1+x 2,得1+x 2=1+41(5n 1-5n 1-)2=41(5n 1+5n 1-)n ,所以(x+2x 1+)n=[21(5n 1-5n 1-)+211)55(41n n-+]n=[21(5n 1-5n 1-)+21(5n 1+5n 1-)]n =(5n 1)n=5.点评:运用整体思想和完全平方公式是解决本题的关键,要深刻理解这种做法.思路2 例1计算:(1)105432)(0625.0833416--+++π;(2)12532+(21)-2+34331-(271)31-;(3)(-2x 41y31-)(3x 21y 32);(4)(x 21-y 21)÷(x 41-y 41).活动:学生观察、思考,根式化成分数指数,利用幂的运算性质解题,另外要注意整体的意识,教师有针对性的提示引导,对(1)根式的运算常常化成幂的运算进行,对(2)充分利用指数幂的运算法则来进行,对(3)则要根据单项式乘法和幂的运算法则进行,对(4)要利用平方差公式先因式分解,并对学生作及时的评价. 解:(1)105432)(0625.0833416--+++π =(425)21+(827)31+(0.062 5)41+1-21=(25)2×21+(23)313⨯+(0.5)414⨯+21 =25+23+0.5+21 =5;(2)12532+(21)-2+34331-(271)31-=(53)32+(2-1)-2+(73)31-(3-3)31-=5323⨯+2-2×(-1)+7313⨯-3)31(3-⨯-=25+4+7-3=33; (3)(-2x 41y 31-)(3x 21y 32)=(-2×3)(x 41x 21·y31-y 32)=323121416+-+•-yx=-6x 43y 31=3436y x-;(4)(x 21-y 21)÷(x 41-y 41)=((x 41)2-(y 41)2)÷(x 41-y 41) =(x 41+y 41)(x 41-y 41)÷(x 41-y 41) =x 41+y 41.点评:在指数运算中,一定要注意运算顺序和灵活运用乘法公式.例2化简下列各式: (1)323222323222--------+--++yxy x yxy x ;(2)(a 3+a -3)(a 3-a -3)÷[(a 4+a -4+1)(a-a -1)].活动:学生观察式子的特点,特别是指数的特点,教师引导学生考虑题目的思路,这两题要注意分解因式,特别是立方和和立方差公式的应用,对有困难的学生及时提示:对(1)考查x 2与x 32的关系可知x 2=(x 32)3,立方关系就出来了,公式便可运用,对(2)先利用平方差,再利用幂的乘方转化为立方差,再分解因式,组织学生讨论交流. 解:(1)原式=323222323222--------+--++yxy x yxy x=])())(()[()()(23232322322323232232--------++-+-yyx x yy x x=343234343234)()(---------+-yxy xy xy x=xyxy xy 3322)(2-=--; (2)原式=[(a 3)2-(a -3)2]÷[(a 4+a -4+1)(a-a -1)]=))(1()()(1442222----++-a a a a a a =))(1()1)((1444422-----++++-a a a a a a a a =1212)(----a a a a =a+a -1.点评:注意立方和立方差公式在分数指数幂当中的应用,因为二项和、差公式,平方差公式一般在使用中一目了然,而对立方和立方差公式却一般不易观察到,a 23=(a 21)3还容易看出,对其中夹杂的数字m 可以化为m·a 21a 21-=m,需认真对待,要在做题中不断地提高灵活运用这些公式的能力.知能训练课本P 59习题2.1A 组 3.利用投影仪投射下列补充练习: 1.化简:(1+2321-)(1+2161-)(1+281-)(1+241-)(1+221-)的结果是( )A.21(1-2321-)-1B.(1-2321-)-1C.1-2321- D.21(1-2321-) 分析:根据本题的特点,注意到它的整体性,特别是指数的规律性,我们可以进行适当的变形. 因为(1+2321-)(1-2321-)=1-2161-,所以原式的分子分母同乘以(1-2321-),依次类推,所以321212121)21)(21(----+-=32112121----=21(1-2321-)-1. 答案:A2.计算(297)0.5+0.1-2+(22710)32--3π0+9-0.5+490.5×2-4.解:原式=(925)21+100+(6427)32-3+4921×161=53+100+169-3+31+167=100.3.计算1212--+-+a a a a (a≥1). 解:原式=|11|11)11()11(22--++-=--++-a a a a (a≥1).本题可以继续向下做,去掉绝对值,作为思考留作课下练习.4.设a>0,x=21(a n 1-a n 1-),则(x+2x 1+)n 的值为_______.分析:从整体上看,应先化简,然后再求值,这时应看到解:1+x 2=1+41(a n 1-a n 1-)2=41(a n 1+a n 1-)2.这样先算出1+x 2,再算出2x 1+,将x=21(a n 1-a n 1-)代入1+x 2,得1+x 2=1+41(a n 1-a n 1-)2=41(a n 1+a n 1-)2.所以(x+2x 1+)n=[21(a n 1-a n 1-)+41(a n 1+a n 1-)2]n=[21(a n 1-a n 1-)+21(a n 1+a n 1-)]n=a.答案:a 拓展提升参照我们说明无理数指数幂的意义的过程,请你说明无理数指数幂32的意义.活动:教师引导学生回顾无理数指数幂52的意义的过程,利用计算器计算出3的近似值,取它的过剩近似值和不足近似值,根据这些近似值计算32的过剩近似值和不足近似值,利用逼近思想,“逼出”32的意义,学生合作交流,在投影仪上展示自己的探究结果.我们把用2作底数,3的不足近似值作指数的各个幂排成从小到大的一列数 21.7,21.72,21.731,21.7319,…,同样把用2作底数, 3的过剩近似值作指数的各个幂排成从大到小的一列数: 21.8,21.74,21.733,21.7321,…,不难看出3的过剩近似值和不足近似值相同的位数越多,即3的近似值精确度越高,以其过剩近似值和不足近似值为指数的幂2α会越来越趋近于同一个数,我们把这个数记为32. 即21.7<21.73<21.731<21.7319<…<32<…<21.7321<21.733<21.74<21.8.也就是说32是一个实数,32=3.321 997 …也可以这样解释:当3的过剩近似值从大于3的方向逼近3时,32的近似值从大于32的方向逼近32; 当3的不足近似值从小于3的方向逼近3时,32的近似值从小于32的方向逼近32.所以32就是一串有理指数幂21.7,21.73,21.731,21.7319,…,和另一串有理指数幂21.8,21.74,21.733,21.7321,…,按上述规律变化的结果,即32≈3.321 997.课堂小结(1)无理指数幂的意义.一般地,无理数指数幂a α(a>0,α是无理数)是一个确定的实数. (2)实数指数幂的运算性质:对任意的实数r,s,均有下面的运算性质: ①a r ·a s =a r+s(a>0,r,s∈R ).②(a r )s =a rs(a>0,r,s∈R ).③(a·b)r =a r b r(a>0,b>0,r∈R ).(3)逼近的思想,体会无限接近的含义. 作业课本P 60习题2.1 B 组 2.设计感想无理数指数是指数概念的又一次扩充,教学中要让学生通过多媒体的演示,理解无理数指数幂的意义,教学中也可以让学生自己通过实际情况去探索,自己得出结论,加深对概念的理解,本堂课内容较为抽象,又不能进行推理,只能通过多媒体的教学手段,让学生体会,特别是逼近的思想、类比的思想,多作练习,提高学生理解问题、分析问题的能力.。
高一数学必修1 分段函数
【学习导航】
知识网络
分段函数⎪⎩
⎪⎨⎧分段函数图象分段函数定义域值域分段函数定义
学习要求
1、了解分数函数的定义;
2、学会求分段函数定义域、值域;
3、学会运用函数图象来研究分段函数;
自学评价:
1、分段函数的定义
在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应法则,这样的函数叫做分段函数;
2、分段函数定义域,值域;
分段函数定义域各段定义域的并集,其值域是各段值域的并集(填“并”或“交”)
3、分段函数图象
画分段函数的图象,应在各自定义域之下画出定义域所对应的解析式的图象;
【精典范例】
一、含有绝对值的解析式
例1、已知函数y=|x -1|+|x+2|
(1)作出函数的图象。
(2)写出函数的定义域和值域。
【解】:
(1)首先考虑去掉解析式中的绝对值符号,第一个绝对值的分段点x=1,第二个绝对值的分段点x=-2,这样数轴被分为三部分:(-∞,-2],(-2,1],(1,+∞)
所以已知函数可写为分段函数形式:
y=|x -1|+|x+2|=⎪⎩
⎪⎨⎧>+≤<--≤--)1(12)12(3)2(12x x x x x
在相应的x 取值范围内,分别作出相应函数的图象,即为所求函数的图象。
(图象略)
(2)根据函数的图象可知:函数的定义域为R ,值域为[3,+∞)
二、实际生活中函数解析式问题
例2、某同学从甲地以每小时6千米的速度步行2小时到达乙地,在乙地耽搁1小时后,又以每小时4千米的速度步行返回甲地。
写出该同学在上述过程中,离甲地的距离S(千米)和时间t(小时)的函数关系式,并作出函数图象。
【解】:
先考虑由甲地到乙地的过程:
0≤t ≤2时, y=6t
再考虑在乙地耽搁的情况:
2<t ≤3时, y=12
最后考虑由乙地返回甲地的过程:
3<t ≤6时, y=12-4(t -3)
所以S(t)=⎪⎩
⎪⎨⎧≤<+-≤<≤≤)63(244)32(12)20(6t t t t t
函数图象(略)
点评:某些实际问题的函数解析式常用分段函数表示,须针对自变量的分段变化情况,列出各段不同的解析式,再依据自变量的不同取值范围,分段画出函数的图象.
三、二次函数在区间上的最值问题
例3、已知函数f(x)=2x 2-2ax+3在区间[-1,1]上有最小值,记作g(a).
(1)求g(a)的函数表达式
(2)求g(a)的最大值。
【解】:
对称轴x=
讨论分12
];1,1[2122>-∈-<a a ;a a 得g(a)⎪⎪⎩⎪⎪⎨⎧>+-≤≤---<+)2(52)22(23)2(522
a a a a a a 利用分段函数图象易得:g(a)max =3
点评:二次函数在闭区间上的最值问题往往结合图象讨论。
追踪训练
1、设函数f(x)=⎩⎨⎧>≤+)
2(,2)2(,22x x x x 则f(-4)=___________,若f(x 0)=8,则x 0=________
答案:18;6-或4。
2、已知函数f(x)=⎪⎩
⎪⎨⎧<=>)0(0)0(1)0(2x x x x
求f(1),f[f(-3)],f{f[f(-3)]}的值.
答案:1;1;1。
3、 出下列函数图象
y=┃x+2┃-┃x -5┃
解:原函数变为 y=⎪⎩
⎪⎨⎧+∞∈-∈---∞∈-),5[,7)5,2(,32]2(,7x x x ,x
下面根据分段函数来画出图象
图象(略)。
4、已知函数y=⎪⎩
⎪⎨⎧-+=+==)1()()1(3)1(1)0(n nf n f n f f f ,则f(4)=_______.
答案:22。
5、已知函数f(x)=122+
+-x x (1)求函数定义域;
(2)化简解析式用分段函数表示;(3)作出函数图象
答案:(1)函数定义域为{x ┃x ≠( 2 )
f(x)=┃x-1┃+1
|1|++x x =⎪⎩
⎪⎨⎧≥<<---<-1,11,21,x x x x x x
(3) 图象(略)。
【师生互动】。