宁夏六盘山高级中学2019届高三数学下学期第一次模拟考试试题文(扫描版)
- 格式:pdf
- 大小:1.78 MB
- 文档页数:9
宁夏六盘山高级中学2023届高三年级第一次模拟考试文科数学试卷命题教师:一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.1.已知集合{}{}1,0,1,2,032|2--=<--∈=B x x Z x A ,则A B = ()A .{}1,2--B .{}2,1,0,1,2--C .{}0,1,2--D .{}1,02.若()()2i 1i z =+-,则z z +等于()A .2B .6C .2-D .6-3.已知函数()f x 是奇函数,且当0x ≥时,()f x x =,则()4f -=()A .-4B .-2C .2D .44.在ABC ∆中,AB c = ,AC b = ,若点M 满足2MC BM =uuu r uuu r ,则AM =()A .2133b c- B .1233b c+C .5233c b-D .2133b c+5.已知命题p :1x ∀<,3log 0x>;命题q :0x ∃∈R ,0202x x ≥,则下列命题中为真命题的是()A .p q∨B .()()p q ⌝∧⌝C .()p q ∨⌝D .p q∧6.已知25sin 2cos24θθ+=,则sin 2θ=()A .1516-B .1516C .34-D .347.已知A 为抛物线()2:20C y px p =>上一点,点A 到C 的焦点的距离为6,到y 轴的距离为3,O 为坐标原点,则OA =()A .B .6C .D .98.已知l 是曲线2ln =+y x k x 在1x =处的切线,若点()0,1-到l 的距离为1,则实数k =()A .54-B .45-C .1D .1-9.圭表(如图甲)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表”)和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭”),当太阳在正午时刻照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图乙是一个根据某地的地理位置设计的主表的示意图,已知某地冬至正午时太阳高度角(即∠ABC )大约为15°,夏至正午时太阳高度角(即∠ADC )大约为60°,圭面上冬至线与夏至线之间的距离为a ,则表高为()(注:sin15︒=A.(2aB.34a C.14a D.34a 10.在棱长为1的正方体1111ABCD A B C D -中,,M N 分别为1AA ,11C D 的中点,过,,D M N 三点的平面与直线11A B 交于点P ,则线段1PB 的长为()A .14B .34C .12D .不确定11.已知双曲线()2222:10,0x y C a b a b-=>>,直线l 过双曲线C 的右焦点且斜率为a b -,直线l 与双曲线C 的两条渐近线分别交于,M N 两点(N 点在x 轴下方),且2ON OM =,则C 的离心率为()A .2B.C.D.312.已知函数()2e ln 2xx f x x =+-的极值点为1x ,函数()ln 2x h x x =的最大值为2x ,则()A .21x x >B .21x x ≥C .12x x >D .12x x ≥二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足32x x y y x ≤⎧⎪+≤⎨⎪≤⎩,则2x y +的最大值为__________.14.2022年11月30日,神州十五号3名航天员顺利进驻中国空间站,与神州十四号航天员乘组首次实现“太空会师”.若执行下次任务的3名航天员有一人已经确定,现需要在另外2名女性航天员和2名男性航天员中随机选出2名,则选出的2名航天员中既有男性又有女性的概率为__________.15.圆心在直线0=+y x 上,且过点()()0,4,2,0-的圆的标准方程为__________.16.如图,矩形ABCD 中,22AB AD ==,E 为边AB 的中点,将ADE V 沿直线DE 翻折至1A DE △的位置.若M 为线段1AC 的中点,在ADE V 翻折过程中(1A ∉平面ABCD ),给出以下结论:①存在1A DE △,使1DE A C ⊥;②三棱锥1B A CE -;③直线//MB 平面1A DE .则其中正确结论的序号为_________.(填写所有正确结论的序号)三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知{}n a 是等差数列,其前n 项和为n S .若()17252,4a S a a ==+.(1)求{}n a 的通项公式;(2)设22n an n b a =+,数列{}n b 的前n 项和为n T ,求n T .18.(12分)网民的智慧与活力催生新业态,网络购物,直播带货,APP 买菜等进入了我们的生活,改变了我们的生活方式,随之电信网络诈骗犯罪形势也非常严峻.于是公安部推出国家级反诈防骗“王炸”系统——“国家反诈中心APP”,这是一款能有效预防诈骗、快速举报诈骗内容的软件,用户通过学习里面的防诈骗知识可以有效避免各种网络诈骗的发生,减少不必要的财产损失,某省自“国家反诈中心APP”推出后,持续采取多措并举的推广方式,积极推动全省“国家反诈中心APP”安装注册工作.经统计,省反诈中心发现全省网络诈骗举报件数y (件)与推广时间有关,并记录了经推广x 个月后举报件数的数据:推广月数(个)1234567y (件)891888351220200138112(1)现用by a x=+作为回归方程模型,利用表中数据,求出该回归方程.(2)分析该省一直加大力度推广下去有可能将网络诈骗举报件数降至接近于零吗?参考数据(其中i i1=t x ):7i ii=1∑t yt7i22i=17tt -⨯∑15860.370.55参考公式:对于一组数据()()()()112233,,,,,,,n n x y x y x y x y ,其回归直线ˆˆy bxa =+的斜率和截距的最小二乘估计公式分别为:iii=11i2i=ˆ-=-∑∑nnx ynx y bxnx ,ˆˆay bx =-.19.(12分)如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,60ABC ∠= ,12AA AB =,M ,N 分别为AB ,1AA 的中点.(1)求证:平面1B MC ⊥平面1B MN ;(2)若2AB =,求点N 到平面1B MC 的距离.20.(12分)已知函数()ln 2,f x x ax a =-∈R .(1)当1a =时,求函数()f x 的单调区间;(2)若函数()f x 有两个零点,求a 的取值范围.21.(12分)已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为12F F ,,上顶点为1B ,若△112F B F 为等边三角形,且点31,2P ⎛⎫⎪⎝⎭在椭圆E 上.(1)求椭圆E 的方程;(2)设椭圆E 的左、右顶点分别为12A A ,,不过坐标原点的直线l 与椭圆E 相交于,A B 两点(异于椭圆E 的顶点),直线12AA BA 、与y 轴的交点分别为M 、N ,若||3||ON OM =,证明:直线l 过定点,并求出该定点的坐标.(二)选考题:共10分.请考生在第22、23题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分,不涂、多涂均按所答第一题评分;多答按所答第一题评分.22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C的参数方程为1,cos x y α⎧=⎪⎪⎨⎪=⎪⎩(α为参数,2k παπ≠+),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程为cos 13πρθ⎛⎫+= ⎪⎝⎭.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)已知点()2,0P ,若直线l 与曲线C 交于,A B 两点,求11PA PB-的值.23.[选修4—5:不等式选讲](10分)已知函数()21f x x a x =++-.(1)当1a =时,求()f x 的最小值;(2)若0a >,0b >时,对任意[]1,2x ∈使得不等式()21f x x b >-+恒成立,证明:2211222a b ⎛⎫⎛⎫+++> ⎪ ⎪⎝⎭⎝⎭.宁夏六盘山高级中学2023届高三年级第一次模拟考试文科数学试卷答案一、选择题:本题共12小题,每小题5分,共60分.题号123456789101112答案B B C B A A C A D B D C二、填空题:本题共4小题,每小题5分,共20分..133.14231522++-=16②③.(3)(3)10x y19【详解】(1)证明:CM AB ⊥,1CM AA ⊥1AB AA A= 所以CM ⊥平面1B MN ,因为CM ⊂平面1B MC ,所以平面1B MC ⊥平面1B MN ........6分(2)由()0f x =,可得ln 2xa x =,则直线y a =与函数()ln 2x g x x=的图象有两个交点,函数()ln 2x g x x=的定义域为()0,∞+,()21ln 2xg x x -'=,由()0g x '=,可得e x =,列表如下:所以,函数()g x 的极大值为()1e 2eg =,且当1x >时,()0g x >,当x →+∞时,和函数ln y x =相比,一次函数呈爆炸性增长,所以()0f x →,且()0f x '<,()0f x '→,又()10f =,根据以上信息,作出其图象如下:当102e a <<时,直线y a =与函数()ln 2x g x x=的图象有两个交点,。
宁夏六盘山高级中学2019届高三上学期第一次月考数学(文)考试试题(解析版) 1 / 9宁夏六盘山高级中学2019届高三上学期第一次月考数学(文)试题一、选择题(本大题共12小题,共60.0分)1. 设集合 , ,则A. B. C. D.【答案】A【解析】解:根据题意,做出数轴表示AB 可得:即可得 , 故选:A .根据题意,做出数轴,结合并集的意义,即可得到答案. 本题考查并集的计算,细心计算即可.2. 已知函数,则A.B.C. 2D.【答案】B【解析】解: 函数, ,.故选:B .由 ,结合分段函数的性质得 ,由 ,结合分段函数的性质得 .本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质的合理运用.3. 设 ,则“ ”是“ ”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】B【解析】解:解二次不等式x 2-4x+3<0得:1<x <3,又,故“0<x <3”是“x 2-4x+3<0”的必要不充分条件, 故选:B .由二次不等式的解法得:解二次不等式x 2-4x+3<0得:1<x <3,由集合的包含关系得:,由必要充分条件得:“0<x<3”是“x2-4x+3<0”的必要不充分条件,得解.本题考查了二次不等式的解法、集合的包含关系及必要充分条件,属简单题.4.设,,,则a,b,c的大小关系为A. B. C. D.【答案】D【解析】解:由指对函数的性质知,,,因为,又,所以,所以.故选:D.由指对函数的性质知,,,再借助中间量求a,b大小.本题考查指数函数和对数函数的性质属于简单题.5.若,则的定义域为A. B.C. D.【答案】C【解析】解:根据题意有:解得:,所以其定义域为:故选:C.根据分式函数的分母不能为0,再由对数函数的真数要大于零使得对数函数有意义,可得不等式组,最后两个不等式的解集取交集可得答案.本题主要考查给出解析式的函数的定义域的求法,常见的有分母不能为零,负数不能开偶次方根,零次幂及真数要大于零等.6.函数的图象是A. B.C. D.【答案】A宁夏六盘山高级中学2019届高三上学期第一次月考数学(文)考试试题(解析版) 3 / 9【解析】解: ,是偶函数,可排除B 、D ,由 排除C , 故选:A .利用函数的奇偶性可排除一些选项,利用函数的有界性可排除一些个选项 从而得以解决.本小题主要考查复合函数的图象识别 属于基础题.7. 已知命题p : , ;命题q :若 ,则 下列命题为真命题的是A. B. C. D.【答案】B【解析】解:命题p : , ,是真命题; 命题q :若 ,则 ,是假命题, 故 ¬ 是真命题, 故选:B .分别判断出p ,q 的真假,从而判断复合命题的真假即可. 本题考查了复合命题的判断,考查不等式的性质,是一道基础题.8. 已知 ,则A.B.C.D.【答案】D【解析】解:.故选:D .利用 ,令原式除以 ,从而把原式转化成关于 的式子,把 代入即可.本题主要考查了三角函数的恒等变换应用 本题利用了 巧妙的完成弦切互化.9. 设变量x ,y 满足约束条件则的最大值为 A. 0B. 2C.4D. 3【答案】C【解析】解:不等式组表示的平面区域如图所示,当直线 过点D 时,在y 轴上截距最小,z 最大由 知 . 故选:C .先根据约束条件画出可行域,再利用几何意义求最值,表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.10.已知在R上是奇函数,且满足,当时,,则A. 2B.C.D. 98【答案】B【解析】解:在R上是奇函数,且满足,当时,,.故选:B.利用函数的周期性、奇偶性求解.本题考查函数值的求法,是基础题,解题时要注意函数性质的合理运用.11.设定义在R上的奇函数满足,对任意,,且都有,且,则不等式的解集为A. ,B.C. D.【答案】D【解析】解:是奇函数,不等式不等式等价为,即,任意,,且都有,当时,为减函数,,,作出的图象如图:则等价为或,即或,即不等式的解集为,故选:D.根据条件判断函数的单调性,利用函数奇偶性和单调性的关系将不等式进行转化求解即可.本题主要考查函数奇偶性和单调性的应用,根据条件判断函数单调性是解决本题的关键注意要利用数形结合来求解比较方便.12.若函数,函数,则的最小值为A. B. C. D.【答案】B宁夏六盘山高级中学2019届高三上学期第一次月考数学(文)考试试题(解析版) 5 / 9【解析】解:设 ,则z 的几何意义是两条曲线上动点之间的距离的平方,求函数的导数,,直线 的斜率 , 由 ,即,即,解得,此时,即函数在处的切线和直线 平行, 则最短距离,的最小值,故选:B .根据平移切线法,求出和直线 平行的切线方程或切点,利用点到直线的距离公式即可得到结论.本题主要考查导数的综合应用,利用平移切线法求直线和正弦函数距离的最小值是解决本题的关键,考查学生的运算能力.二、填空题(本大题共4小题,共20.0分)13. 曲线 在点 处的切线方程为______. 【答案】【解析】解:函数的导数 , 则 ,即函数在点 处的切线斜率 ,,即切点坐标 , 则对应的切线方程为 , 即 ,故答案为:求出函数的导数,利用导数的几何意义进行求解即可.本题主要考查函数的切线方程,利用导数的几何意义求出函数的导数是解决本题的关键 比较基础.14. 函数 的单调递减区间为______. 【答案】【解析】解: 函数 , ,求得 ,或 ,故函数的定义域为 ,或 .故函数 的单调递减区间,即函数 在定义域内的减区间.利用二次函数的性质可得函数 在定义域内的减区间为 , 故答案为: .先求出函数的定义域,再根据复合函数的单调性,本题即求函数在定义域内的减区间 再利用二次函数的性质,得出结论.本题主要考查复合函数的单调性,二次函数、对数函数的性质,属于中档题.15.若存在,使得,则实数a的最小值为______.【答案】【解析】解:等价于,设,存在,使得等价于,由,易得:函数在为增函数,为减函数,又,,所以,即,即a的最小值为,故答案为:由不等式有解问题可构造函数求最值得:等价于,设,存在,使得等价于,利用导数研究函数的单调性及最值得:函数在为增函数,为减函数,又,,所以,即,得解.本题考查了不等式有解问题及构造函数利用导数研究函数的单调性、最值,属中档题16.若函数,则使得成立的x的取值范围是______.【答案】【解析】解:函数,则是偶函数,当时,为增函数,则不等式等价为,即,平方得,即,即,得,即不等式的解集为,故答案为:根据条件判断函数是偶函数,且在上是增函数,利用函数奇偶性和单调性的性质将不等式进行转化求解即可.本题主要考查不等式的求解,根据条件判断函数的奇偶性和单调性的性质,利用奇偶性宁夏六盘山高级中学2019届高三上学期第一次月考数学(文)考试试题(解析版)和单调性的性质转化不等式是解决本题的关键.三、解答题(本大题共6小题,共70.0分)17.计算下列各式的值:Ⅰ;Ⅱ.【答案】解:Ⅰ.;Ⅱ.【解析】Ⅰ直接利用有理指数幂的运算性质化简求值;Ⅱ直接利用对数的运算性质化简求值.本题考查有理指数幂与对数的运算性质,是基础的计算题.18.已知角终边上一点的坐标为.Ⅰ求,,的值;Ⅱ求的值.【答案】解:Ⅰ,,,则,,;Ⅱ.【解析】Ⅰ由已知求得,再由任意角的三角函数的定义求解;Ⅱ利用三角函数的诱导公式及同角三角函数基本关系式化简求值.本题考查三角函数的化简求值,考查任意角的三角函数的定义、诱导公式及同角三角函数基本关系式的应用,是基础题.19.已知函数.Ⅰ求的单调区间;Ⅱ求在上的最大值和最小值.【答案】解:Ⅰ函数的定义域是R,,令,解得:或,令,解得:,所以的单调递增区间为和;单调减区间为7 / 9Ⅱ由在递减,在递增,而,,,故最大值是,最小值是.【解析】Ⅰ求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;Ⅱ根据函数的单调性求出函数的最值即可.本题考查了函数的单调性,最值问题,考查导数的应用,是一道常规题.20.已知函数,若在处取得极值.Ⅰ求a的值;Ⅱ证明:当时,.【答案】解:Ⅰ函数的定义域为,函数的导数,在处取得极值.,即,得;Ⅱ当时,,,由得得或舍,此时函数为增函数,由得得,,此时,此时函数为减函数,即当时,取得极小值同时也是最小值,最小值为,即当时,,即成立.【解析】Ⅰ求函数的导数,利用函数极值关系解方程即可Ⅱ求出和,研究函数的极值和最值,进行证明即可.本题主要考查函数导数与极值的应用,通过条件解方程,求出a的值是解决本题的关键.21.设函数.Ⅰ讨论的导函数的单调性;Ⅱ当时,函数有两个零点,求实数a的取值范围.【答案】解:,.令ℎ,,则ℎ,令ℎ,得,或,令ℎ,得,的单调递增区间为,.单调减区间为当时,函数,.,,函数在上单调递减..时,,函数在上单调递减,不符合题意,舍去.宁夏六盘山高级中学2019届高三上学期第一次月考数学(文)考试试题(解析版),即时,存在,使得函数在内单调递增,在内单调递减, 时,.则函数此时有两个零点.综上可得实数a的取值范围是.【解析】,令ℎ,,利用导数已经其单调性即可得出.当时,函数,,对a分类讨论,利用导数研究函数的单调性即可得出.本题考查了利用导数研究函数的单调性、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于难题.22.已知曲线C的极坐标方程为,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,直线l过点,倾斜角为.Ⅰ求曲线C的直角坐标方程与直线l的参数方程;Ⅱ设直线l与曲线C交于A,B两点,求.【答案】解:Ⅰ由得,得,直线l的参数方程为:为参数,Ⅱ联立直线的参数方程与曲线C的直角坐标方程得:,设M,N两点对应的参数分别为,,则,,.【解析】Ⅰ两边同时乘以 后利用互化公式可得曲线C的直角坐标方程,根据点M 和倾斜角写出直线l的参数方程的标准形式;Ⅱ联立直线与圆的方程,根据参数的几何意义可得.本题考查了简单曲线的极坐标方程,属中档题.9 / 9。
xx(A )(B )(C )(D )宁夏六盘山高级中学2018-2019学年第一学期高三第一次月考测试卷学科:数学(文)测试时间:120分钟满分:150分一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合{}{}|1|22A x x B x x =>-=-<<,,则A B =(A ){}|2x x >-(B ){}1x x >-|(C ){}|21x x -<<-(D ){}|12x x -<<(2)函数⎩⎨⎧>-≤=1,1,3)(x x x x f x ,则()()=2f f (A )9(B )6(C )91(D )-2(3)设R x ∈,则“30<<x ”是“0342<+-x x ”的(A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件(4)设7.06=a ,67.0=b ,6log 7.0=c ,则a ,b ,c 的大小关系为(A )a c b >>(B )ca b >>(C )ba c >>(D )cb a >>(5)若()()121log 21f x x =+,则()f x 的定义域为(A )1,02⎛⎫- ⎪⎝⎭(B )1,2⎛⎫-+∞ ⎪⎝⎭(C )()1,00,2⎛⎫-⋃+∞ ⎪⎝⎭(D )1,22⎛⎫- ⎪⎝⎭(6)函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是(7)已知命题:p 对任意x R ∈,总有012≥+-x x ;:q 若22b a <,则b a <.则下列命题为真命题的是(A )qp ∧⌝(B )qp ⌝∧(C )qp ⌝∧⌝(D )qp ∧(8)已知tan 2θ=,则22sin sin cos 2cos θθθθ+-=(A )43-(B )54(C )34-(D )45(9)设变量,x y 满足约束条件0,0,220,x x y x y ≥⎧⎪-≥⎨⎪--≤⎩则32z x y =-的最大值为(A )0(B )2(C )4(D )6(10)已知函数()f x 在R 上是奇函数,且满足()()4+=x f x f ,当()2,0∈x 时,()22x x f =,则()=7f (A )-2(B )2(C )-98(D )98(11)设定义在R 上的奇函数()x f 满足,对任意()+∞∈,0,21x x ,且12x x ≠都有()()01221>--x x x f x f ,且()02=f ,则不等式()()0423≤--x x f x f 的解集为(A )(](]2,02, -∞-(B )[][)+∞-,20,2 (B )(][)+∞-∞-,22, (D )[)(]2,00,2 -(12)函数[]1113sin 2(0,)2y x x π=-∈错误!未找到引用源。
2019年宁夏六盘山高级中学高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。
第 1 题:来源: 2016_2017学年安徽省蚌埠市禹会区高二数学下学期期中试题试卷及答案理已知函数=+a+b的图象在点P (1,0)处的切线与直线3x+y=0平行.则a、b的值分别为().A -3, 2B -3, 0C 3, 2D 3, -4【答案】A第 2 题:来源:(通用版)2019版高考数学二轮复习4套“12+4”限时提速练检测理(普通生,含解析)若复数z=+1为纯虚数,则实数a=( )A.-2 B.-1C.1 D.2【答案】A 因为复数z=+1=为纯虚数,所以+1=0,且-≠0,解得a=-2.故选A.第 3 题:来源:山东省武城县2017届高三下第二次月考数学试题(理)含答案设函数其中表示不超过的最大整数,如=-2,=1,=1,若直线与函数y=的图象恰有三个不同的交点,则的取值范围是( )A. B. C. D.【答案】D第 4 题:来源:江西省吉水县2017_2018学年高二数学上学期第一次月考试题试卷及答案若圆有且仅有三个点到直线的距离为,则实数的值为()A. B. C. D.【答案】B第 5 题:来源: 2019高考数学一轮复习第6章数列第2讲等差数列及其前n项和分层演练文20180910193若等差数列{an}的前5项和S5=25,且a2=3,则a7=( )A.12 B.13 C.14 D.15【答案】B.设{an}的公差为d,由S5=⇒a4=7,所以7=3+2d⇒d=2,所以a7=a4+3d=7+3×2=13.第 6 题:来源:湖北省武汉市2017届高三四月调研测试数学试题(理)含答案已知集合,则A. B. C. D.【答案】B第 7 题:来源:湖北省枣阳市2017_2018学年高二数学上学期8月月考试题试卷及答案若函数有零点,则实数的最小值是(A)(B) 0 (C)1 (D)2【答案】B第 8 题:来源:高中数学第三章数系的扩充与复数的引入章末测试试卷及答案A 新人教A版选修1-2设z1=3-4i,z2=-2+3i,则z1-z2在复平面内对应的点位于( )A.第一象限 B.第二象限C.第三象限 D.第四象限【答案】D第 9 题:来源: 2017年高中数学第一章坐标系单元质量评估(含解析)新人教A版选修4_4直角坐标为(3-,3+)的点的极坐标可能是( )A. B.C. D.【答案】B.因为ρ==2(ρ>0),点(3-,3+)在第一象限,tanθ===tan,所以点(3-,3+)的极坐标为.第 10 题:来源:山东省菏泽市2017届高三数学上学期期末学分认定考试试题(B卷)试卷及答案定义在R上的奇函数f(x)满足f(x+2)=﹣,且在(0,1)上f(x)=3x,则f(log354)=()A.B.﹣C. D.﹣【答案】B第 11 题:来源:甘肃省兰州市2017_2018学年高一数学上学期期中试题试卷及答案定义在R上的函数f(x)在(6,+∞)上为减函数,且函数f(x+6)为偶函数,则()A.B.C.D.【答案】A第 12 题:来源: 2016_2017学年江苏省泰安市岱岳区高二数学下学期期中试题试卷及答案理用数学归纳法证明1+2+22+…+2n+1=2n+2﹣1(n∈N*)的过程中,在验证n=1时,左端计算所得的项为()A.1 B.1+2 C.1+2+22 D.1+2+22+23【答案】C第 13 题:来源: 2017届宁夏银川市高三第二次模拟考试理科数学试卷含答案已知圆,圆,则圆和圆的位置关系是A.相离B.外切C.相交 D.内切【答案】B第 14 题:来源:甘肃省嘉峪关市酒钢三中2016-2017学年高一数学上学期期末考试试题试卷及答案如图是一个水平放置的直观图,它是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积为()A. B.C.D.【答案】A第 15 题:来源:江西省南城县2016_2017学年高一数学上学期第二次月考试题理试卷及答案设集合,则下列关系中正确的是()A、 B、 C、 D、【答案】D第 16 题:来源:甘肃省镇原县二中2018_2019学年高二数学上学期期末考试试题理给出两个命题:p:|x|=x的充要条件是x为正实数,q:不等式|x-y|≤|x|+|y|取等号的条件是xy<0,则下列命题是真命题的是( )A.p∧q B.p∨q C.(p)∧q D.(p)∨q【答案】 D第 17 题:来源:贵州省思南中学2018_2019学年高二数学下学期期末考试试题理一个三位数的百位,十位,个位上的数字依次是a,b,c,当且仅当时称为“凹数”,若,从这些三位数中任取一个,则它为“凹数”的概率是()A. B. C. D.【答案】C第 18 题:来源:山东省曲阜夫子学校2019届高三数学上学期11月份阶段性测试试题理已知,则()A. B. C. D.【答案】D第 19 题:来源:云南省曲靖会泽县第一中学校2018_2019学年高二数学第二次半月考试试题理已知直线与双曲线交于,两点(,在同一支上),为双曲线的两个焦点,则在()A.以,为焦点的椭圆上或线段的垂直平分线上B.以,为焦点的双曲线上或线段的垂直平分线上C.以为直径的圆上或线段的垂直平分线上D.以上说法均不正确【答案】B【解析】:当直线垂直于实轴时,则易知在的垂直平分线上;当直线不垂直于实轴时,不妨设双曲线焦点在轴,分别为双曲线的左、右焦点,且、都在右支上,由双曲线定义:,,则,由双曲线定义可知,在以、为焦点的双曲线上,故选第 20 题:来源:重点班2017届高三数学一轮复习阶段检测试题四理试卷及答案已知一个正三棱柱的所有棱长均为2,它的俯视图是一个边长为2的正三角形,那么它的侧视图的面积的最小值是( )(A) (B)2 (C)2 (D)4【答案】C解析:如图,正三棱柱ABCA1B1C1中,D,D1分别是BC,B1C1的中点,则当侧视图为AA1D1D时面积最小,且面积S=2×=2.第 21 题:来源:江西省南昌市第二中学2018_2019学年高一数学上学期第一次月考试题设集合则( )A.B.C.D.【答案】D第 22 题:来源:江西省九江市2019届高三数学第一次模拟统一考试试题理(含解析)已知直线与曲线和分别交于两点,点的坐标为,则面积的最小值为()A. B. C. D.【答案】C【解析】【分析】求出S△ABC•2•|BC|=et+t2﹣t+2,令f(t)=et+t2﹣t+2,t∈R,求出函数的导数,根据函数的单调性求出三角形面积的最小值即可.【详解】由已知得B(t,et),C(t,﹣t2+t﹣2),则|BC|=et+t2﹣t+2,故S△ABC•2•|BC|=et+t2﹣t+2,令f(t)=et+t2﹣t+2,t∈R,f′(t)=et+2t﹣1,f′(t)在R递增,又f′(0)=0,故t>0时,f′(t)>0,t<0时,f′(t)<0,故f(t)在(﹣∞,0)递减,在区间(0,+∞)递增,故f(t)min=e0+0﹣0+2=3,故S△ABC的最小值是3,故选:C.【点睛】本题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,是一道综合题.第 23 题:来源:黑龙江省哈尔滨市第三中学2018_2019学年高二数学下学期第一次阶段性测试试题理(含解析)函数,的最大值是()A. B. C.D.【答案】A【解析】【分析】求得函数的导数,得到当时,函数单调递增,当,时,函数单调递减,进而比较,即可得到答案。
xx (A ) (B ) (C ) (D ) 宁夏六盘山高级中学2019届高三数学上学期第一次月考试题 文测试时间:120分钟 满分:150分 命题人:一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合{}{}|1|22A x x B x x =>-=-<<,,则A B =(A ){}|2x x >- (B ){}1x x >-| (C ) {}|21x x -<<- (D ){}|12x x -<<(2)函数⎩⎨⎧>-≤=1,1,3)(x x x x f x ,则()()=2f f(A )9 (B )6 (C )91 (D )-2 (3)设R x ∈,则“30<<x ”是“0342<+-x x ”的(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件(4)设7.06=a ,67.0=b ,6log 7.0=c ,则a ,b ,c 的大小关系为 (A )a c b >> (B )c a b >> (C )b a c >> (D )c b a >>(5)若()()121log 21f x x =+,则()f x 的定义域为 (A )1,02⎛⎫- ⎪⎝⎭ (B )1,2⎛⎫-+∞ ⎪⎝⎭ (C )()1,00,2⎛⎫-⋃+∞ ⎪⎝⎭ (D )1,22⎛⎫- ⎪⎝⎭(6)函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是(7)已知命题 :p 对任意x R ∈,总有012≥+-x x ;:q 若22b a <,则b a <.则下列命题为真命题的是(A )q p ∧⌝ (B )q p ⌝∧ (C )q p ⌝∧⌝ (D )q p ∧(8)已知tan 2θ=,则22sin sin cos 2cos θθθθ+-=(A )43- (B )54 (C )34- (D )45(9)设变量,x y 满足约束条件0,0,220,x x y x y ≥⎧⎪-≥⎨⎪--≤⎩则32z x y =-的最大值为(A )0 (B )2 (C )4 (D )6(10)已知函数()f x 在R 上是奇函数,且满足()()4+=x f x f ,当()2,0∈x 时,()22x x f =,则()=7f(A )-2 (B )2 (C )-98 (D )98(11)设定义在R 上的奇函数()x f 满足,对任意()+∞∈,0,21x x ,且12x x ≠都有()()01221>--x x x f x f ,且()02=f ,则不等式()()0423≤--x x f x f 的解集为 (A )(](]2,02, -∞- (B )[][)+∞-,20,2(B )(][)+∞-∞-,22, (D )[)(]2,00,2 -(12)函数[]111sin 20,)y x x π=∈错误!未找到引用源。
xx (A ) (B ) (C ) (D ) 宁夏六盘山高级中学2019届高三数学上学期第一次月考试题 文测试时间:120分钟 满分:150分 命题人:一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合{}{}|1|22A x x B x x =>-=-<<,,则A B =(A ){}|2x x >- (B ){}1x x >-| (C ) {}|21x x -<<- (D ){}|12x x -<<(2)函数⎩⎨⎧>-≤=1,1,3)(x x x x f x ,则()()=2f f(A )9 (B )6 (C )91 (D )-2 (3)设R x ∈,则“30<<x ”是“0342<+-x x ”的(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件(4)设7.06=a ,67.0=b ,6log 7.0=c ,则a ,b ,c 的大小关系为 (A )a c b >> (B )c a b >> (C )b a c >> (D )c b a >>(5)若()()121log 21f x x =+,则()f x 的定义域为 (A )1,02⎛⎫- ⎪⎝⎭ (B )1,2⎛⎫-+∞ ⎪⎝⎭ (C )()1,00,2⎛⎫-⋃+∞ ⎪⎝⎭ (D )1,22⎛⎫- ⎪⎝⎭(6)函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是(7)已知命题 :p 对任意x R ∈,总有012≥+-x x ;:q 若22b a <,则b a <.则下列命题为真命题的是(A )q p ∧⌝ (B )q p ⌝∧ (C )q p ⌝∧⌝ (D )q p ∧(8)已知tan 2θ=,则22sin sin cos 2cos θθθθ+-=(A )43- (B )54 (C )34- (D )45(9)设变量,x y 满足约束条件0,0,220,x x y x y ≥⎧⎪-≥⎨⎪--≤⎩则32z x y =-的最大值为(A )0 (B )2 (C )4 (D )6(10)已知函数()f x 在R 上是奇函数,且满足()()4+=x f x f ,当()2,0∈x 时,()22x x f =,则()=7f(A )-2 (B )2 (C )-98 (D )98(11)设定义在R 上的奇函数()x f 满足,对任意()+∞∈,0,21x x ,且12x x ≠都有()()01221>--x x x f x f ,且()02=f ,则不等式()()0423≤--x x f x f 的解集为 (A )(](]2,02, -∞- (B )[][)+∞-,20,2(B )(][)+∞-∞-,22, (D )[)(]2,00,2 -(12)函数[]111sin 20,)y x x π=∈错误!未找到引用源。
宁夏六盘山高级中学2019届高三下学期第一次模拟考试数学(理)试题一、选择题(本大题共12小题,共60.0分)1.设集合,,则中元素的个数为( )A. 3B. 2C. 1D. 0【答案】B【解析】【分析】可求出集合,然后进行交集的运算即可求出,从而得出元素的个数.【详解】;∴;∴中元素的个数为2.故选:B.【点睛】考查描述法、列举法的定义,以及交集的运算,集合元素的概念,熟记概念即可,属于基础题型.2.满足=i(i为虚数单位)的复数z等于( )A. B.C. D.【答案】D【解析】得,故选B.3.函数的部分图象大致为()A. B.C. D.【答案】C【解析】【分析】利用函数为奇函数排除A;再由当x→+∞时,y→+∞,排除B;利用导数判断单调性且求极值得答案.【详解】函数的定义域为(-∞,0)∪(0,+∞),且f(-x)=-f(x),函数为奇函数,排除A;又当x→+∞时,y→+∞,排除B;而x>0时,,可得x=1为函数的极小值点,结合图象可知,函数的部分图象大致为C.故选C.【点睛】本题考查函数的定义域、值域、奇偶性、单调性图象等基础知识,考查逻辑推理能力、抽象概括能力、运算求解能力,考查化归与转化思想、数形结合思想、特殊与一般思想等,是中档题.4.已知向量,满足,,, ( )A. 6B. 4C.D.【答案】C【解析】【分析】由已知可求,然后由,代入即可求解【详解】∵,∴,∵,,∴,,故选:C.【点睛】本题主要考查了向量的数量积的性质的简单应用,熟记模的计算公式即可,属于基础试题.5.设的内角的对边分别是,若,,,则 ( )A. 1B.C. 2D. 4【答案】D【解析】【分析】由已知利用二倍角的余弦函数公式可求的值,根据余弦定理即可解得的值.【详解】∵,,,∴,∴由余弦定理,可得:,可得:,∴解得:,或(舍去).故选:D.【点睛】本题主要考查了二倍角的余弦函数公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.6.已知双曲线与抛物线有相同的焦点,则该双曲线的渐近线方程为( )A. B. C. D.【答案】A【解析】【分析】由已知条件求出双曲线的一个焦点为,可得关于的方程,求出,由此能求出双曲线的渐近线方程.【详解】∵抛物线的焦点为,∴双曲线的一个焦点为,∴,∴,∴双曲线的渐近线方程为.故选:A.【点睛】本题主要考查圆锥曲线的基本元素之间的关系问题,同时双曲线、椭圆的相应知识也进行了综合性考查.7.秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为4,2,则输出v的值为A. 66B. 33C. 16D. 8【答案】A【解析】初始值,程序运行过程如下:,;;;;跳出循环,输出的值为,故选A.8.已知定义在上的函数,,设两曲线与在公共点处的切线相同,则值等于A. B. C. D.【答案】D【解析】【分析】分别求得和的导数,令它们的导数相等,求得切点的横坐标,进而求得纵坐标,代入求得的值.【详解】,令,解得,这就是切点的横坐标,代入求得切点的纵坐标为,将代入得.故选D.【点睛】本小题主要考查函数导数与切线,考查两个函数公共点的切线方程,有关切线的问题关键点在于切点和斜率.属于基础题.9.中国古代数学名著《九章算术》中记载:“圆周与其直径之比被定为3,圆中弓形面积为(为弦长,为半径长与圆心到弦的距离之差).”据此计算,已知一个圆中弓形所对应的弦长,,质点随机投入此圆中,则质点落在该弓形内的概率为()A. B. C. D.【答案】C【解析】【分析】利用圆中弓形面积为,可求得弓形的面积,根据勾股定理求得圆的半径,可得圆的面积,由勾股定理可得结果.【详解】由圆中弓形面积为可知:弓形的面积.设圆的半径为,则,解得,所以圆的面积,所以质点落在弓形内的概率为,故选C.【点睛】本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时, 忽视验证事件是否等可能性导致错误.10.已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为()A. B. C. D.【答案】C【解析】试题分析:设的交点为,连接,则为所成的角或其补角;设正四棱锥的棱长为,则,所以,故C为正确答案.考点:异面直线所成的角.【此处有视频,请去附件查看】11.已知定义在上的奇函数满足,当时,,则函数在区间上所有零点之和为( )A. 8B. 6C. 4D. 2【答案】A【解析】【分析】根据的奇偶性和对称性,推出函数的周期性,根据函数与方程之间的关系,转化为两个函数交点问题,利用对称性进行求解即可.【详解】解:∵奇函数满足,∴,即是周期为4的周期函数,同时函数关于对称,∵若,则,∴即,,若,则,此时,,若,则,此时,,由得,作出函数与,在上的图象,由图象知两个函数图象有4个交点,且四个交点,两两关于点对称,设彼此对称的交点横坐标为,,,,则,,得,,即,函数在区间上所有零点之和为8,故选:A.【点睛】本题主要考查函数与方程的应用,根据条件求出函数的周期,利用数形结合转化为两个函数的交点问题是解决本题的关键.12.已知点是抛物线上的一个动点,是圆:上的一个动点,则的最小值为()A. B. C. 3 D. 4【答案】C【解析】由题意可知圆的圆心坐标,半径为1;抛物线的焦点,虚线为抛物线的准线;为点到虚线的距离且,由抛物线的性质可知,.故可知。
宁夏六盘山高级中学2021届高三数学下学期第一次模拟考试试题 文(含解析)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置,并将核对后的条形码贴在答题卡条形码区域内.2.选择题答案使用2B 铅笔填涂,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.3.做答时,务必将答案写在答题卡相应位置上,写在本试题上、超出答题区域或非题号对应区域的答案一律无效.考试结束后,将答题卡交回.一、选择题:(每题5分,共60分,每题只有一个答案是正确的) 1.若复数z 满足()1234i z i +=-,则z 的实部为 A. 1 B. 1-C. 2D. 2-【答案】B 【解析】 【分析】根据已知得复数z 的表达式,再根据复数的除法运算,将复数z 的分子、分母同时乘以分母的共轭复数,计算化简得复数z ,从而得解. 【详解】由()1234i z i +=-得()()()()22341234310851012121212145i i i i i i z i i i i i ----+--=====--++--,所以复数z 的实部为1-, 故选B .【点睛】本题考查复数的概念与乘法、除法运算,属于基础题. 2.已知集合{|10}A x x =+>,{1,0,1}B =-,则A B =( )A. {1}B. {}1-C. {0,1}D. {1,0}-【答案】C 【解析】 【分析】求得集合{|10}{|1}A x x x x =+>=>-,根据集合的交集运算,即可求解. 【详解】由题意,集合{|10}{|1}A x x x x =+>=>-,又由{1,0,1}B =-, 所以{0,1}AB =,故选C.【点睛】本题主要考查了集合的交集运算,其中解答中正确求解集合A ,再利用集合的交集运算求解是解答的关键,着重考查了运算与求解能力.3. 从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( ) A.15B.25C.825D.925【答案】B 【解析】试题分析:从甲乙等5名学生中随机选出2人,基本事件的总数为2510n C ==,甲被选中包含的基本事件的个数11144m C C ==,所以甲被选中的概率25m p n ==,故选B . 考点:古典概型及其概率的计算.4.已知非零向量a ,b 满足a k b =,且()2b a b ⊥+,a ,b 的夹角为23π,则实数k 的值为( ) A. 4 B. 3 C. 2 D.12【答案】A 【解析】 【分析】根据(2)b a b ⊥+即可得出(2)0b a b +=,然后根据2||||,,3a kb a b π=<>=进行数量积的运算即可得出22202k b b -+=,再由20b ≠即可求出k .详解】()2b a b ⊥+,()22222cos ,0b a b b a b b a b a b ∴⋅+=+⋅=+=,且0a ≠,0b ≠,22cos 03b a π∴+=, 即1202b a -=,4a b ∴=, 4k ∴=.故选:A .【点睛】本题考查向量垂直的充要条件,向量数量积的运算及计算公式,属于基础题.5.函数2()()41x x x e e f x x --=-的部分图象大致是( ) A. B.C. D.【答案】B 【解析】 【分析】先判断函数奇偶性,再根据对应区间函数值的正负确定选项.【详解】2221()()410,()()24141x x x x x e e x e e x x f x f x x x ------≠∴≠±-===∴--()f x 为偶函数,舍去A; 当102x <<时()0f x >,舍去C ; 当12x >时()0f x <,舍去D ; 故选:B【点睛】本题考查函数奇偶性以及识别函数图象,考查基本分析求解判断能力,属基础题.6.双曲线22x a-22y b =1 (a >0,b >0)的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(2,1)在“右”区域内,则双曲线离心率e 的取值范围是()A. 512⎛⎫ ⎪ ⎪⎝⎭,B. 52⎛⎫+∞ ⎪ ⎪⎝⎭, C. 514⎛⎫⎪⎝⎭,D.54,⎛⎫+∞ ⎪⎝⎭【答案】B 【解析】 【分析】根据点在不等式表示的区域内,即可求得,a b 的不等关系,据此求得离心率范围.【详解】由题意可得双曲线22221(0,0)x y a b a b -=>>的渐近线方程为b y x a=±,且“右”区域由不等式组b y x ab y x a ⎧<⎪⎪⎨⎪>-⎪⎩确定,∵点(2,1)在“右”区域内, ∴21ba >,即12b a >, ∴22151()1()22c b e a a ==+>+=, 即双曲线离心率e 的取值范围是5)2+∞. 故选:B .【点睛】本题考查双曲线离心率范围的求解,属中档题.7.在四边形ABCD 中,2D B ∠=∠,且1AD =,3CD =,3cos 3B ∠=,则边AC 的长( ) A. 3 B. 4C. 22D. 23【答案】D 【解析】 【分析】利用二倍角的余弦公式求出cos D ∠,然后利用余弦定理可求得边AC 的长.【详解】2D B ∠=∠,2231cos cos 22cos 12133D B B ⎛⎫∴∠=∠=∠-=⨯-=- ⎪ ⎪⎝⎭, 由余弦定理得2222212cos 13213123AC AD CD AD CD D ⎛⎫=+-⋅⋅∠=+-⨯⨯⨯-= ⎪⎝⎭, 因此,23AC =. 故选:D.【点睛】本题考查利用余弦定理求三角形的边长,同时也考查了二倍角余弦公式的应用,考查计算能力,属于基础题. 8.如图,给出的是计算111147100++++的值的一个程序框图,则图中判断框内(1)处和执行框中的(2)处应填的语句是( )A. i >100,n =n +1B. i <34,n =n +3C. i >34,n =n +3D. i ≥34,n =n +3【答案】C【解析】 【分析】根据算法的功能确定跳出循环的i 值,可得判断框内的条件,根据n 值的出现规律可得执行框②的执行式子.【详解】算法的功能是计算111147100++++的值,易知1,4,7,…,100成等差数列,公差为3,所以执行框中(2)处应为n =n +3,令1+(i -1)×3=100,解得i =34,∴终止程序运行的i 值为35,∴判断框内(1)处应为i >34. 故选:C.【点睛】本题考查了循环结构的程序框图,根据算法的功能确定跳出循环的i 值及n 值的出现规律是解答本题的关键,属于基础题.9.如图四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是正方形,且2PA AB ==,则直线PB 与平面PAC 所成角为( )A.2π B.3π C.4π D.6π 【答案】D 【解析】 【分析】证明出BD ⊥平面PAC ,可得出直线PB 与平面PAC 所成角为OPB ∠,计算出OB 和PB ,可求得OPB ∠,即可得解. 【详解】四边形ABCD 是边长为2的正方形,则BD AC ⊥,且22BD =,12OB BD == PA ⊥平面ABCD ,BD ⊂平面ABCD ,BD PA ∴⊥,同理可得PA AB ⊥, ACPA A =,BD ∴⊥平面PAC ,所以,直线PB 与平面PAC 所成角为OPB ∠,2PA AB ==,PB ∴==,BD ⊥平面PAC ,PO ⊂平面PAC ,BD PO ∴⊥,在Rt OPB 中,2BOP π∠=,1sin 2OB OPB OP ∠==,6OPB π∴∠=. 因此,直线PB 与平面PAC 所成角为6π. 故选:D.【点睛】本题考查直线与平面所成角的计算,考查计算能力,属于中等题. 10.定义行列式运算12122112a a ab a b b b =-.已知函数())sin 0cos x f x xωωω=>满足()()120,2f x f x ==-且12x x -的最小值为2π,则ω的值为( ) A. 1 B. 2C. 3D. 4【答案】A 【解析】 【分析】先求出函数()f x 的解析式,然后由12x x -的最小值为2π可以求出周期2T π=,进而求出1ω=.【详解】由题意得,()cos 2sin 6f x x x x πωωω=+=+(),(0)ω>,因为12x x -的最小值为42T π=,所以2T π=,则由2T πω=得1ω=. 【点睛】本题考查了三角函数的图象与性质,属于基础题.11.如图,若C 是()222210x y a b a b+=>>椭圆上位于第一象限内的点,A 、B 分别是椭圆的左顶点和上顶点,F 是椭圆的右焦点,且OC OF =,//AB OC ,则该椭圆的离心率为( )A.63B.66C.13D.33【答案】A 【解析】 【分析】求出直线OC 的方程,将直线OC 的方程与椭圆的方程联立,求出点C 的坐标,由OC OF =建立等式,可求得椭圆的离心率. 【详解】直线AB 的斜率为b k a=,//AB OC ,所以,直线OC 的方程为by x a =,联立22221b y x a x y a b ⎧=⎪⎪⎨⎪+=⎪⎩,解得2222x a y ⎧=⎪⎪⎨⎪=⎪⎩或2222x a y b ⎧=-⎪⎪⎨⎪=-⎪⎩, 由于点C 在第一象限,则22C ⎫⎪⎪⎝⎭,OC OF =,则2222222c ⎛⎫⎛⎫+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,2222a b c +=, 22222a c c ∴-=,23a c =,因此,该椭圆的离心率为2633c e a ===. 故选:A.【点睛】本题考查椭圆离心率的求解,解答的关键就是求出点C 的坐标,并由此建立有关a 、b 、c 的齐次方程,考查计算能力,属于中等题.12.定义在R 上的奇函数()f x 满足()1(2)f x f x +=-,且在()0,1上()3x f x =,则()3log 54f =( )A.32B. 23-C.23D. 32-【答案】D 【解析】 【分析】由题意结合函数的性质整理计算即可求得最终结果. 【详解】由题意可得:()354f log =()3log 23f +, 则()354f log =()31log 21f -+,且()()331log 21log 21f f +=--, 由于()3log 211,0-∈-,故()()31log 2333log 211log 232f f --=--=-=-,据此可得:()()3312log 21log 213f f +=-=-,()354f log =32-.本题选择D 选项.【点睛】本题主要考查函数的奇偶性,函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题:(每小题5分,共20分)13.曲线()21ln y x x =+在点()1,0处的切线方程为__________. 【答案】330x y --= 【解析】 【分析】求出原函数的导函数,得到函数在1x =时的导数值,即切线的斜率,然后由直线方程的点斜式得答案.【详解】求导可得212ln x y x x+'=+,故切线斜率为31y x '==, 故切线方程()31y x =-,即330x y --=.故答案为:330x y --=.【点睛】本题考查了利用导数研究过曲线上某点的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是基础题.14.若实数x ,y 满足条件32122800x y x y x y +≤⎧⎪+≤⎪⎨⎪⎪⎩,则34z x y =+的最大值为_____________.【答案】18 【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点()2,3p 处取得最大值, 最大值为:max 34324318z x y =+=⨯+⨯=. 故答案为 18.15.已知tan 74πα⎛⎫+= ⎪⎝⎭,则tan2α=__________.【答案】247【解析】 【分析】利用两角差的正切公式求出tan α的值,再利用二倍角的正切公式可求出tan2α的值.【详解】tan tan71344tan tan 4417141tan tan 44ππαππααππα⎛⎫+- ⎪⎡⎤-⎛⎫⎝⎭=+-=== ⎪⎢⎥+⨯⎛⎫⎝⎭⎣⎦++ ⎪⎝⎭,因此,22322tan 316244tan 21tan 277314ααα⨯===⨯=-⎛⎫- ⎪⎝⎭. 故答案为:247. 【点睛】本题考查利用两角差和二倍角的正切公式求值,考查计算能力,属于基础题. 16.已知圆柱的轴截面为正方形,且圆柱的体积为54π,则该圆柱的侧面积为________. 【答案】36π 【解析】 【分析】设圆柱的底面半径为r ,可知该圆柱的高为2r ,计算出圆柱的体积,可求得r 的值,进而可求得圆柱的侧面积.【详解】设圆柱的底面半径为r ,由于该圆柱的轴截面为正方形,则该圆柱的高为2r , 所以,圆柱的体积为232254V r r r πππ=⨯==,解得3r =. 因此,该圆柱的侧面积为222244336S r r r ππππ=⨯==⨯=. 故答案为:36π.【点睛】本题考查圆柱侧面积的计算,同时也考查了圆柱的体积的计算,考查计算能力,属于基础题.三、解答题:(本大题共5小题,共60分,解答应写出文字说明) 17.已知等差数列{}n a 的前n 项和为n S ,2882a a +=,419S S =. (1)求数列{}n a 的通项公式; (2)求n S 的最大值.【答案】(1)512n a n =-;(2)625 【解析】 【分析】(1)由题,等差数列{}n a 的前n 项和为n S ,2882a a +=,419S S =,求得1,a d ,可求得通项公式;(2)先利用求和公式,求得n S ,即可求得最大值.【详解】(1)由题,因为等差数列{}n a ,2882a a +=,所以12882a d += 又419S S =,所以4191141409841(9)022S S a d a d ⨯⨯-=+-+= 解得149,2a d ==-所以1(1)512n a a n d n =+-=- (2)由(1)可得:221()50(25)6252n n n a a S n n n +==-+=--+ 可得当n=25时,n S 取最大值为625【点睛】本题考查了数列,熟悉等差数列的通项和求和公式是解题的关键,熟记基础题. 18.甲、乙两人在相同条件下各射击10次,每次中靶环数情况如图所示:(1)请填写下表(先写出计算过程再填表): 平均数 方差命中9环及9环以上的次数甲 71.21乙(2)从下列三个不同的角度对这次测试结果进行分析: ①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些); ③从折线图上两人射击命中环数的走势看(分析谁更有潜力).参考公式:()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦.【答案】(1)详见解析;(2)①甲成绩比乙稳定;②乙成绩比甲好些;③乙更有潜力. 【解析】 【分析】(1)根据统计图列举出甲、乙两人各射击10次中靶环数,并计算出乙射击10次中靶环数的平均数、方差以及命中9环及9环以上的次数,由此可完善表格;(2)①根据表格中的数据甲、乙两人的平均数和方差的大小,由此可得出结论;②根据表格中的数据甲、乙两人的平均数和命中9环及9环以上的次数的大小,由此可得出结论;③根据甲、乙两人射击命中环数的波动情况可得出结论. 【详解】解:(1)由列联表中数据,计算由题图,知:甲射击10次中靶环数分别为9、5、7、8、7、6、8、6、7、7.将它们由小到大排列为5、6、6、7、7、7、7、8、8、9.乙射击10次中靶环数分别为2、4、6、8、7、7、8、9、9、10. 将它们由小到大排列为2、4、6、7、7、8、8、9、9、10; (1)x 乙()124672829210710=⨯+++⨯+⨯+⨯+=(环), ()()()()()()()22222222127476777287297210710s ⎡⎤=⨯-+-+-+-⨯+-⨯+-⨯+-⎣⎦乙()125910289 5.410=⨯++++++=. 填表如下:平均数 方差命中9环及9环以上的次数甲 7 1.2 1乙 75.43(2)①平均数相同,22s s <甲乙,∴甲成绩比乙稳定;②平均数相同,命中9环及9环以上的次数甲比乙少,∴乙成绩比甲好些;③甲成绩在平均数上下波动;而乙处于上升势头,从第三次以后就没有比甲少的情况发生,乙更有潜力.【点睛】本题考查统计图表的应用,同时也考查了平均数、方差的计算,考查计算能力与数据处理能力,属于基础题.19.如图,直三棱柱111ABC A B C -中,D 是BC 的中点,且AD BC ⊥,四边形11ABB A 为正方形.(Ⅰ)求证:1//AC 平面1AB D ; (Ⅱ)若60BAC ∠=, 4BC =,求点1A 到平面1AB D 的距离.【答案】45【解析】 【分析】(Ⅰ)根据三角形中位线性质得线线平行,再根据线面平行判定定理得结果,(Ⅱ)根据等体积法求高,即得结果.【详解】(Ⅰ)连接1BA ,交1AB 于点E ,再连接DE , 由已知得,四边形11ABB A 为正方形,E 为1AB 的中点,∵D 是BC 的中点,∴1//DE A C ,又DE ⊂平面1AB D ,1AC ⊄平面1AB D , ∴1//AC 平面1AB D . (Ⅱ)∵在直三棱柱111ABC A B C -中,平面11BCC B ⊥平面ABC ,且BC 为它们的交线, 又AD BC ⊥,∴AD ⊥平面11BCC B ,又∵1B D ⊂平面11BCC B ,∴1AD B D ⊥,且1AD B D ==.同理可得,过D 作DG AB ⊥,则DG ⊥面11ABB A ,且DG =设1A 到平面1AB D 的距离为h ,由等体积法可得:1111A AB D D AA B V V --=,即111111113232AD DB h AA A B DG ⋅⋅⋅⋅=⋅⋅⋅⋅,即44h h =⋅=.即点1A 到平面1AB D 的距离为5. 【点睛】本题考查线面平行判定定理以及等体积法,考查基本分析求解能力,属中档题. 20.已知抛物线()21:20C x py p =>和圆()222:12C x y ++=,倾斜角为45°的直线1l 过抛物线1C 的焦点,且1l 与圆2C 相切. (1)求p 的值;(2)动点M 在抛物线1C 的准线上,动点A 在1C 上,若1C 在A 点处的切线2l 交y 轴于点B ,设MN MA MB =+.求证点N 在定直线上,并求该定直线的方程. 【答案】(1)6p ;(2)点N 在定直线3y =上.【解析】 【分析】(1)设出直线1l 的方程为2py x =+,由直线和圆相切的条件:d r =,解得p ;(2)设出(,3)M m -,运用导数求得切线的斜率,求得A 为切点的切线方程,再由向量的坐标表示,可得N 在定直线上;【详解】解:(1)依题意设直线1l 的方程为2py x =+, 由已知得:圆222:(1)2C x y ++=的圆心2(1,0)C -,半径r =因为直线1l 与圆2C 相切,所以圆心到直线1:2pl y x =+的距离d ==,=6p 或2p =-(舍去).所以6p ;(2)依题意设(,3)M m -,由(1)知抛物线1C 方程为212x y =,所以212x y =,所以6x y '=,设11(,)A x y ,则以A 为切点的切线2l 的斜率为16x k =,所以切线2l 的方程为1111()6y x x x y =-+.令0x =,211111111266y x y y y y =-+=-⨯+=-,即2l 交y 轴于B 点坐标为1(0,)y -,所以11(,3)MA x m y =-+, 1(,3)MB m y =--+,∴()12,6MN MA MB x m =+=-, ∴1(,3)ON OM MN x m =+=-.设N 点坐标为(,)x y ,则3y =, 所以点N 在定直线3y =上.【点睛】本题考查抛物线的方程和性质,直线与圆的位置关系的判断,考查直线方程和圆方程的运用,以及切线方程的求法,考查化简整理的运算能力,属于综合题. 21.已知函数()()1ln f x x a ax=+∈R 在1x =处的切线与直线210x y -+=平行. (1)求实数a 的值,并判断函数()f x 的单调性;(2)若函数()f x m =有两个零点1x ,2x ,且12x x <,求证:121x x +>.【答案】(1)()f x 在10,2⎛⎫ ⎪⎝⎭上是单调递减;在1,2⎛⎫+∞ ⎪⎝⎭上是单调递增. (2)详见解析 【解析】 【分析】 (1)由()1'12f =可得2a =,利用导数可求()f x 的单调区间. (2)由121211ln ,ln 22x m x m x x +=+=可得1211212ln x x x x x -=,2121212lnx x x x x -=,令12x t x =,则()0,1t ∈且121+=2ln t t x x t-,构建新函数()()12ln 01h t t t t t=--<<,利用导数可以证明()1h t >即121x x +>.【详解】(1)函数()f x 的定义域:()0,+∞,()11112f a =-=',解得2a =, ()1ln 2f x x x ∴=+,()22112122x f x x x x -∴=-=' 令()0f x '<,解得102x <<,故()f x 在10,2⎛⎫⎪⎝⎭上是单调递减; 令()0f x '>,解得12x >,故()f x 在1,2⎛⎫+∞ ⎪⎝⎭上是单调递增. (2)由12,x x 为函数()f x m =的两个零点,得121211ln ,ln 22x m x m x x +=+= 两式相减,可得121211ln ln 022x x x x -+-= 即112212ln 2x x x x x x -=,1212122ln x xx x x x -=,因此1211212ln x x x x x -=,2121212lnx x x x x -=令12x t x =,由12x x <,得01t <<. 则121111+=2ln 2ln 2ln t t t t x x t t t---+=, 构造函数()()12ln 01h t t t t t=--<<,则()()22211210t h t t t t -=+-=>'所以函数()h t 在()0,1上单调递增,故()()1h t h <,即12ln 0t t t--<,可知112ln t t t->.故命题121x x +>得证.【点睛】(1)一般地,若()f x 在区间(),a b 上可导,且()()()'0'0f x f x ><,则()f x 在(),a b 上为单调增(减)函数;反之,若()f x 在区间(),a b 上可导且为单调增(减)函数,则()()()'0'0f x f x ≥≤.(2)函数()f x 有两个不同的零点12,x x ,考虑它们的和或积的性质时,我们可以通过设12x t x =,再利用()()120,0f x f x ==得到12x x +、12x x 与t 的关系式,最后利用导数证明所考虑的性质成立.选做题:共10分.请考生在第22,23题中任选一题作答.如果多做,那么按所做的第一题计分.22.在直角坐标系xOy 中,直线l 的参数方程为2cos 1sin x t y t αα=+⎧⎨=+⎩(t 为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为()222cos cos23ρθθ+=.(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,线段AB 的中点M 的直角坐标为(2,1),求直线l的方程.【答案】(1)2213y x -=;(2)611y x =- 【解析】 【分析】(1)曲线C 的极坐标方程中将cos ρθ和sin ρθ换成y 和x 即可得到曲线C 的直角坐标方程; (2)将直线l 的参数方程2{1x tcos y tsin αα=+=+代入C 的直角坐标方程得()()2232cos 1sin 3t t αα+-+=,利用韦达定理以及直线参数方程的几何意义可得122212cos 2sin 03cos sin t t αααα-+=-=-,从而可得结果.【详解】(1)由题目知曲线C 的极坐标方程可化为()2223cos sin 3ρθθ-=,即22223cos sin 3ρθρθ-=,即2233x y -=,∴ 曲线C 的直角坐标方程为2213y x -=.(2)将直线l 的参数方程2{1x tcos y tsin αα=+=+代入C 的直角坐标方程得()()2232cos 1sin 3t t αα+-+=,整理可得()()2223cos sin 12cos 2sin 80t t αααα-+-+=,设A ,B 所对应的参数分别为1t ,2t ,则120t t +=, ∴ 122212cos 2sin 012cos 2sin 03cos sin t t αααααα-+=-=⇒-=-,∴ 直线l 的斜率tan 6k α==, ∴ 直线l 的方程为611y x =-.【点睛】本题考查圆的参数方程和普通方程的转化、直线极坐标方程和直角坐标方程的转化以及点到直线距离公式,消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法,极坐标方程化为直角坐标方程,只要将cos ρθ和sin ρθ换成y 和x 即可.23.已知函数()13f x x x =-+- (1)解不等式()1f x x ≤+;(2)设函数()f x 的最小值为c ,实数ab 满足0a >,0b >,a b c +=,求证:22111a b a b +≥++. 【答案】(1)[]1,5;(2)证明见解析. 【解析】 【分析】(1)对x 按1x <,13x ≤≤,3x ≥进行分类讨论,去掉绝对值,得到不等式的解集;(2)根据绝对值三角不等式得到()f x 最小值c 的值,再令1a m +=,1b n +=,由基本不等式进行证明.【详解】①当1x <时,不等式可化为421x x -≤+,1x ≥. 又1x <,x ∴∈∅;②当13x ≤≤时,不等式可化为21x ≤+,1x ≥. 又13x ≤≤,13x ∴≤≤.③当3x >时,不等式可化为241x x -≤+,5x ≤. 又3x >,35x ∴<≤.综上所得,15x ≤≤. ∴原不等式的解集为[]1,5.(2)证明:由绝对值不等式性质得,()13(1)(3)2f x x x x x =-+-≥-+-=,2c ∴=,即2a b +=.令1a m +=,1b n +=,则1m ,1n >,1a m =-,1b n =-,4m n +=,2222(1)(1)11a b m n a b m n--+=+++优质资料\word 可编辑- 21 - / 21- 21 - 21144412m n m n mn m n =+-++=≥=+⎛⎫ ⎪⎝⎭, 原不等式得证.【点睛】本题考查分类讨论解绝对值不等式,绝对值三角不等式,利用基本不等式进行证明,属于中档题.。
2019年宁夏银川市六盘山高中高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设i是虚数单位,则复数(1﹣i)(1+2i)=()A.3+3i B.﹣1+3i C.3+i D.﹣1+i2.(5分)已知集合A={x|2<x<4},B={x|1<x<3},则A∪B()A.(1,3)B.(1,4)C.(2,3)D.(2,4)3.(5分)函数f(x)=的部分图象大致为()A.B.C.D.4.(5分)设=(1,2),=(1,1),若(+k)⊥,则实数k的值为()A.B.C.D.5.(5分)某小组有2名男生和3名女生,从中任选2名同学参加演讲比赛,那么至多一名女生参加的概率是()A.B.C.D.6.(5分)已知双曲线的一条渐近线平行于直线l:y=x+2,一个焦点在直线l上,则双曲线的方程为()A.B.C.D.x2﹣y2=17.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cos A=.且b<c,则b=()A.B.2C.2D.38.(5分)秦九韶是我国南宋时期的数学家,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为4,2,则输出v的值为()A.66B.33C.16D.89.(5分)如图所示,在正三棱柱ABC﹣A1B1C1中,D是AC的中点,AA1=,则异面直线AB1与BD所成的角为()A.30°B.45°C.60°D.90°10.(5分)若f(x)=sin x+cos x在[﹣m,m](m>0)上是增函数,则m的最大值为()A.B.C.D.。
宁夏六盘山高级中学2019届高三上学期期末考试数学(文)试题一、选择題:本大題共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B. C. D.【答案】C【解析】【分析】根据交集的概念,两个集合的交集表示的是两者公共的元素,即表示内大于的整数,由此求得两个集合的交集,并得出正确选项.【详解】表示两个集合的交集,即表示内大于的整数,故,故选C.【点睛】本小题主要考查两个集合交集的概念以及交集的求解,考查区间的定义以及整数集符号的识别,属于基础题.2.复数在复平面内对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】直接由复数的乘法运算化简,求出z对应点的坐标,则答案可求.【详解】复数.对应的点为,位于第四象限.故选D.【点睛】本题考查复数代数形式的乘法运算,考查了复数的代数表示法及其几何意义,是基础题.3.在中,角的对边分别为,且,,,则()A. B. C. 或 D. 或【答案】D【解析】【分析】利用正弦定理,求得的值,由此求得的大小,从而得出正确选项.【详解】由正弦定理得,即,解得,故或,所以选D.【点睛】本小题主要考查利用正弦定理解三角形,考查特殊角的三角函数值,属于基础题.4.已知向量,,,若,则()A. 2B.C.D.【答案】B【解析】【分析】求出,利用向量垂直数量积为零列方程求解即可.【详解】由,,得,若,则,所以.故选B.【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.5.己知双曲线的一条渐近线与直线平行,则双曲线的离心率为()A. 2B.C.D.【答案】B【解析】【分析】利用两直线平行斜率相等,求得渐近线的斜率,在利用离心率公式求得双曲线的离心率.【详解】由于渐近线和直线平行,故渐近线的斜率,所以双曲线的离心率为,故选B.【点睛】本小题主要考查双曲线离心率的求法,考查两条直线平行的条件,考查化归与转化的数学思想方法以及运算求解能力,属于基础题.两条直线平行,那么它们的斜率相等,截距不相等.双曲线的离心率公式除了以外,还可以转化为来求解出来.6.设等比数列前项和为,若,,则()A. 8B. 16C. 32D. 79【答案】B【解析】【分析】根据等比数列的性质可知成等比数列,通过这个数列的前项求得公比,进而求得即的值.【详解】由于数列是等比数列,故有成等比数列,而,故这个数列的公比为,首项为,所以,故选B.【点睛】本小题主要考查等比数列的性质,属于基础题.若一个数列是等比数列,则也成等比数列.同样,如果一个数列是等差数列,则也成等差数列.要熟练记忆一些有关等差数列和等比数列的性质,对于解题有很大的帮助.7.函数f(x)=的大致图像为()A. B. C. D.【答案】A【解析】【分析】此题主要利用排除法,当时,可得,故可排除C,D,当时,可排除选项B,故可得答案. 【详解】当时,,,∴,故可排除C,D选项;当时,,,∴,故可排除B选项,故选A.【点睛】本题考查函数的图象的判断与应用,考查函数的零点以及特殊值的计算,是中档题;已知函数解析式,选择其正确图象是高考中的高频考点,主要采用的是排除法,最常见的排出方式有根据函数的定义域、值域、单调性、奇偶性、周期性等性质,同时还有在特殊点处所对应的函数值或其符号,其中包括等.8.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着C开游春走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的时,则一开始输入的值为()A. B. C. D.【答案】C【解析】【分析】将输入的代入程序,运算程序,直到退出循环结构,利用最后的值等于列方程,由此求得输出的的值.【详解】输入,.,,判断否,,,判断否,,,判断否,,判断是,输出,即.故选C.【点睛】本小题主要考查程序框图的知识,考查已知输出的结果,求输入的值,属于基础题.9.在正四棱锥中,,直线与平面所成角为,为的中点,则异面直线与所成角为()A. B. C. D.【答案】C【解析】试题分析:连接AC,BD交于点O,连接OE,OP;因为E为PC中点,所以OE∥PA,所以∠OEB 即为异面直线PA 与BE 所成的角. 因为四棱锥P-ABCD 为正四棱锥, 所以PO ⊥平面ABCD ,所以AO 为PA 在面ABCD 内的射影,所以∠PAO 即为PA 与面ABCD 所成的角,即∠PAO=60°, 因为PA=2,所以OA=OB=1,OE=1.所以在直角三角形EOB 中∠OEB=45°,即面直线PA 与BE 所成的角为45°. 故选:C .考点:异面直线及其所成的角. 10.将函数的图像向左平移个单位长度后,得到的图像,则函数的单调递减区间为( )A. B.C. D.【答案】A 【解析】 【分析】 利用降次公式化简,平移后得到的表达式,再由此求的单调减区间.【详解】依题意,向左平移各单位长度后得到.由,解得,故选A. 【点睛】本小题主要考查三角函数降次公式,考查三角函数图像变换,考查三角函数的单调区间的求解方法.三角函数的降次公式有两个,一个是.另一个是,只有一个正负号的差别,所以很容易记错,要注意区分和记忆.还要注意到和的单调性是相反的.11.已知是椭圆:的右焦点,点在椭圆上,线段与圆相切于点(其中为椭圆的半焦距),且,则椭圆的离心率为()A. B. C. D.【答案】A【解析】【分析】设椭圆的左焦点为F1,确定PF1⊥PF,|PF1|=b,|PF|=2a﹣b,即可求得椭圆的离心率.【详解】设椭圆的左焦点为F1,连接F1,设圆心为C,则∵∴圆心坐标为,半径为r=∴|F1F|=3|FC|∵∴PF1∥QC,|PF1|=b∴|PF|=2a﹣b∵线段PF与圆(其中c2=a2﹣b2)相切于点Q,∴CQ⊥PF∴PF1⊥PF∴b2+(2a﹣b)2=4c2∴b2+(2a﹣b)2=4(a2﹣b2)∴∴∴故选:A.【点睛】本题考查椭圆的几何性质,考查直线与圆的位置关系,确定几何量的关系是关键.求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围).12.已知,,若存在,,使得,则称函数与互为“度零点函数”.若与互为“度零点函数”,则实数的取值范围为A. B. C. D.【答案】B【解析】易知函数在上单调递增,且,所以函数只有一个零点2,故.由题意知,即,由题意,函数在内存在零点,由,得,所以,记,则,所以当时,,函数单调递增;当时,,函数单调递减.所以.而,,所以,所以的取值范围为.故选B.点睛:本题通过新定义满足“度零点函数”考查函数在给定区间内的零点问题,属于难题,遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决,将函数零点问题转化为,即求函数的值域问题,通过导数得单调性,得值域.第Ⅱ卷(非选择题共90分)二.填空题:共4小题,每小题5分.13.若x,y满足约束条件,则的最小值为__________.【答案】-11【解析】【分析】画出可行域如图,平移动直线根据纵截距的变化情况得到最小值.【详解】画出可行域如图所示,可知目标函数过点时取得最小值,.故答案为:-11【点睛】求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.14.求曲线在处的切线与坐标轴围成的三角形的面积______.【答案】【解析】【分析】先求得函数的导数,然后求得切线的斜率,由点斜式求得切线方程,然后求得横截距以及纵截距,由此计算出三角形的面积.【详解】依题意,故,由点斜式得,与两个坐标轴交点的坐标为,故三角形的面积为.【点睛】本小题主要考查切线方程的求解,考查两个函数相乘的导数,考查直线的点斜式方程以及三角形的面积公式,属于基础题.15.为坐标原点,为抛物线的焦点,为上一点,若,则的面积为__.【答案】【解析】【分析】利用焦半径公式可以计算的横坐标,再由抛物线方程得到的纵坐标后可求面积.【详解】设,则,故,所以.又,所以,填【点睛】一般地,抛物线上的点到焦点的距离为;抛物线上的点到焦点的距离为.16.三棱锥中,面,且,则该三棱锥的外接球的表面积是______.【答案】【解析】【分析】作的外接圆,过点作圆的直径,连结则为三棱锥的外接球的直径,由此能求出三棱锥的外接球表面积.【详解】作的外接圆,过点作圆的直径,连结,则为三棱锥的外接球的直径,∵三棱锥平面,且,∵平面,∴三棱锥的外接球表面积为:.故答案为:.【点睛】本题考查三棱锥的外接球的表面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知数列为等差数列,其中,.(1)求数列的通项公式;(2)记,设的前项和为,求最小的正整数,使得成立.【答案】(1);(2).【解析】【分析】(1)设等差数列的公差为,根据题意可列方程组,即可求解(2)根据,可裂项相消求和,解不等式即可求解.【详解】(1)设等差数列的公差为,依题意可得,解得,,从而数列的通项公式为.(2)由(1)知,所以,所以.令,解得,故使得成立的最小的正整数的值为.【点睛】本题主要考查了等差数列的通项公式,裂项相消法,属于中档题.18.在三角形ABC中,角A、B、C的对边分别为,且(1)求角A的值;(2)若三角形面积为,且,求三角形ABC的周长.【答案】(1)(2)【解析】解:(1)因为,由正弦定理得,即=sin(A+C) .因为B=π-A-C,所以sinB=sin(A+C),所以.因为B∈(0,π),所以sinB≠0,所以,因为,所以.(2)△ABC的面积为,且由,.所以周长19.如图,在直三棱锥中,,,,分别是,的中点.(1)证明:;(2)求点到平面的距离.【答案】(1)见解析.(2).【解析】试题分析:(1)连接,由几何关系可证得平面,而,故∴平面,,由勾股定理可得,则平面,.(2)设点到平面的距离为,转化顶点有,据此得到关于d的方程,解方程可得点到平面的距离为.试题解析:(1)连接,由直三棱柱知,∵又有,∴平面,∵分别为的中点,则,∴平面,∴所以,,平面,∴.(2)设点到平面的距离为,∵,∴平面,由知,,很明显是边长为的等边三角形,其面积为,即,解得.点到平面的距离为.20.已知椭圆的左、右焦点分别为,,过点的直线与椭圆交于两点,延长交椭圆于点,的周长为8.(1)求的离心率及方程;(2)试问:是否存在定点,使得为定值?若存在,求;若不存在,请说明理由.【答案】(1),;(2)存在点,且.【解析】【分析】(1)由已知条件得,,即可计算出离心率和椭圆方程(2)假设存在点,分别求出直线的斜率不存在、直线的斜率存在的表达式,令其相等,求出结果【详解】(1)由题意可知,,则,又的周长为8,所以,即,故的方程为.(2)假设存在点,使得为定值.若直线的斜率不存在,直线的方程为,,,则.若直线的斜率存在,设的方程为,设点,,联立,得,根据韦达定理可得:,,由于,,则因为为定值,所以,解得,故存在点,且.【点睛】本题考查了椭圆方程的求法以及定值问题,在解答定值问题时先假设存在,分别求出斜率不存在和斜率存在情况下的表达式,令其相等求出结果,此类题型的解法需要掌握21.已知函数,.(1)求函数的单调区间;(2)当时,若恒成立,求实数的取值范围.【答案】(1)单调递增区间为和,无单调递减区间;(2).【解析】【分析】(1)化简,求出,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)设,则,对求导,分类讨论,分别判断的单调性,根据单调性求导的最值,验证是否合题意即可【详解】(1)因为(且),所以.设,则.当时,,是增函数,,所以.故在上为增函数;当时,,是减函数,,所以,所以在上为增函数.故的单调递增区间为和,无单调递减区间.(2)设,则.已知条件即为当时.因为为增函数,所以当时,.①当时,,当且仅当,且时等号成立.所以在上为增函数.因此,当时,.所以满足题意.②当时,由,得,解得.因为,所,所以.当时,,因此在上为减函数.所以当时,,不合题意.综上所述,实数的取值范围是.【点睛】本题主要考查利用导数判断函数的单调性、求最值以及不等式恒成立问题,考查分类讨论的思想,属于难题. 不等式恒成立问题常见方法:① 分离参数恒成立(即可)或恒成立(即可);② 数形结合(图象在上方即可);③ 讨论最值或恒成立;④ 讨论参数. 请考生在第22、23题中任选-题作答,如果多做,则按所做的第一题记分,作答时请写清题号.22.在平面直角坐标系,曲线,曲线(为参数),以坐标原点为极点,轴正半轴为极轴,建立极坐标系.(1)求曲线,的极坐标方程;(2)射线分别交,于,两点,求的最大值.【答案】(1),;(2)【解析】【分析】(1)直接利用转换关系,把参数方程和极坐标方程与直角坐标方程进行转化;(2)利用三角函数关系式的恒等变换,变形成正弦型函数,进一步求出函数的最值.【详解】(1)因为,,,所以的极坐标方程为,因为的普通方程为,即,对应极坐标方程为.(2)因为射线,则,则,所以=又,,所以当,即时,取得最大值【点睛】本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,三角函数关系式的恒等变换,正弦型函数的性质的应用.23.已知函数,其中.(1)当时,求不等式的解集;(2)若存在,使得,求实数的取值范围.【答案】(1)或(2)【解析】【分析】(1) 利用零点区分区间,在每个区间内解不等式,等不等式的解集;(2)利用绝对值三角不等式求函数的最小值,因为存在,使得,所以的最小值小于,解得的取值范围【详解】(1)当时,,所以或或,解得或,因此不等式的解集的或(2),易知,由题意,知,,解得,所以实数的取值范围是【点睛】求含绝对值的函数最值时,常用的方法有:1.利用绝对值的几何意义;2.利用绝对值三角不等式,即;3.利用零点区分区间,求每个区间内最值再求函数最值。