成人高考专升本《高等数学二》公式大全
- 格式:doc
- 大小:769.50 KB
- 文档页数:19
成人高考专升本《高等数学二》公式大全1.函数的导数公式:1)常数函数求导:(C)'=02)幂函数求导:(x^n)' = nx^(n-1), 其中n为常数3)指数函数求导:(a^x)' = a^x * ln(a), 其中a>0且a≠14)对数函数求导:(log_a(x))' = 1 / (x * ln(a)), 其中a>0且a≠15)三角函数求导:(sin(x))' = cos(x), (cos(x))' = -sin(x), (tan(x))' = sec^2(x), (cot(x))' = -csc^2(x)6)反三角函数求导:(arcsin(x))' = 1 / sqrt(1 - x^2), (arccos(x))' = -1 / sqrt(1 - x^2), (arctan(x))' = 1 / (1 + x^2)2.高等数学中的极限公式:1)常数函数极限:lim(C) = C, 其中C为常数2)多项式函数极限:lim(a_n*x^n + a_(n-1)*x^(n-1) + ... +a_1*x + a_0) = a_n*x^n, 其中n为正整数,a_n为非零常数3)指数函数极限:lim(a^x) = 1, 其中a>0且a≠14)对数函数极限:lim(log_a(x)) = log_a(1) = 0, 其中a>0且a≠15)三角函数极限:lim(sin(x) / x) = 1, lim((1 - cos(x)) / x) = 0, 当x趋近于0时3.定积分公式:1)换元积分法:∫f(g(x)) * g'(x)dx = ∫f(u)du, 其中u = g(x) 2)分部积分法:∫u * dv = u * v - ∫v * du3)凑微分法:∫f(x)dx = ∫f(x) *1dx = ∫f(x) *[g'(x)/g'(x)]dx = ∫(f(x) * g'(x))/g'(x)dx4.微分方程公式:1)一阶线性微分方程:dy/dx + P(x)y = Q(x), y = e^(-∫P(x)dx) * ∫[Q(x) * e^(∫P(x)dx)]dx2)一阶齐次线性微分方程:dy/dx = f(y/x), 令v = y/x, 可得dv = [(f(v) - v)/x]dx5.级数公式:1)等比数列前n项和:S_n=a(1-q^n)/(1-q),其中a为首项,q为公比2)调和级数:∑(1/n)是发散级数3)幂级数展开:e^x = ∑(x^n)/n!, sin(x) = ∑[(-1)^n *(x^(2n+1))/(2n+1)!], cos(x) = ∑[(-1)^n * (x^(2n))/(2n)!]。
第一章极限和连续 3. 理解事件之间并(和)、交(积)、差运算的第一节极限意义,掌握其运算规律。
1,0 ,1,0 ,⋯有界: 0, 1[ 复习考试要求 ] 4. 理解概率的古典型意义,掌握事件概率的基本 2. 数列极限的存在准则1.了解极限的概念(对极限定义性质及事件概率的计算。
定理 1.3(两面夹准则)若数列 {x n},{y n},{z n} 满等形式的描述不作要 5. 会求事件的条件概率;掌握概率的乘法公式及足以下条件:求)。
会求函数在一点处的左极限与右极限,了事件的独立性。
( 1),6. 了解随机变量的概念及其分布函数。
解函数在一点处极限存在的充分必要条件。
2.了解极限的有关性质,掌握极限的四则运算法7. 理解离散性随机变量的意义及其概率分布掌握( 2),则 2. 当 x→∞时,函数 f ( x)的极限则。
概率分布的计算方法。
定理 1.4若数列 {x n} 单调有界,则它必有极限。
(1 )当 x →∞时,函数 f ( x)的极限3.理解无穷小量、无穷大量的概念,掌握无穷小8. 会求离散性随机变量的数学期望、方差和标准 3. 数列极限的四则运算定理。
y=f(x)x→∞ f(x)→?量的性质、无穷小量与无穷大量的关系。
会进行差。
定理 1.5无穷小量阶的比较(高阶、低阶、同阶和等价)。
y=f(x)=1+会运用等价无穷小量代换求极限。
( 1)4.熟练掌握用两个重要极限求极限的方法。
x→∞ f(x)=1+→ 1第二节函数的连续性( 2)[ 复习考试要求 ]1.理解函数在一点处连续与间断的概念,理解函定义对于函数 y=f (x ),如果当 x→∞时, f (x)数在一点处连续与极限存在之间的关系,掌握判( 3)当时,无限地趋于一个常数 A,则称当 x→∞时,函数 f断函数(含分段函数)在一点处连续性的方法。
(三)函数极限的概念(x )的极限是 A,记作2.会求函数的间断点。
1. 当 x→ x0时函数 f (x )的极限或 f ( x)→ A(当 x →∞时)3.掌握在闭区间上连续函数的性质会用它们证明( 1)当 x→ x0时 f (x)的极限(2 )当 x →+∞时,函数 f ( x)的极限一些简单命题。
专升本高数二公式常用在专升本的考试中,高等数学二是许多考生需要攻克的重要科目。
而熟练掌握常用公式,无疑是取得好成绩的关键之一。
首先,让我们来谈谈函数的相关公式。
函数是高等数学的基础,其中一元函数的基本公式包括导数公式。
例如,对于幂函数 y = x^n,其导数为 y' = nx^(n 1)。
这是一个非常基础且常用的公式,在求曲线的斜率、函数的单调性等问题中经常会用到。
再来说说三角函数的公式。
正弦函数 sin(x) 和余弦函数 cos(x) 的导数分别为 cos(x) 和 sin(x) 。
这两个公式在涉及三角函数的计算和应用中不可或缺。
比如,求解三角函数的极值问题、周期性问题时都要用到。
还有反三角函数的公式。
反正弦函数 arcsin(x) 的导数是 1 /√(1x^2) ,反正切函数 arctan(x) 的导数是 1 /(1 + x^2) 。
这些公式在解决一些复杂的积分问题时会发挥重要作用。
接下来是极限的相关公式。
极限是高等数学中的重要概念,常用的极限公式有:lim(x→0) sin(x) / x = 1 ,lim(x→∞)(1 + 1 / x)^x= e 。
这两个极限公式在求解一些复杂的极限问题时,可以通过变形和巧妙运用来得出答案。
在积分方面,定积分和不定积分的公式众多。
例如,∫x^n dx =(1 /(n + 1)) x^(n + 1) + C (n ≠ -1),∫sin(x) dx = cos(x) + C ,∫cos(x) dx = sin(x) + C 。
积分公式在计算图形的面积、体积、以及解决物理问题等方面都有广泛的应用。
在微分方程中,常见的一阶线性微分方程的公式:形如 y' + P(x) y= Q(x) 的方程,其通解为 y = e^(∫P(x)dx) ∫Q(x) e^(∫P(x)dx) dx + C 。
这个公式在解决实际的物理、工程等问题中的动态变化时经常被用到。
多元函数的部分,偏导数的公式也很重要。
专升本高数二概念和公式高等数学(二)是专升本数学考试中的一门重要学科,主要涵盖了函数、极限、导数等内容。
下面将详细介绍高等数学(二)中的一些重要概念和公式。
一、函数的概念和性质1.1函数的定义:函数是一个将一个集合的每个元素映射到另一个集合的元素的规则。
一般地,若对于集合A中的任意元素x,存在集合B中有唯一元素y与之对应,则称y是x的函数值,记作f(x)=y,并称f(x)为定义在A上的函数。
1.2函数的性质:(1)定义域:函数中所有可能输入的集合。
(2)值域:函数的所有可能输出的集合。
(3)奇偶函数:当函数满足f(x)=f(-x)时,称其为偶函数;当满足f(-x)=-f(x)时,称其为奇函数。
(4)单调性:函数在定义域的任意两个点上,函数值的大小关系保持不变。
(5)周期性:对于其中一正常数T,若对于定义域中的任意一个值x,有f(x+T)=f(x),则称f(x)为周期函数,T称为该函数的周期。
二、极限的概念和性质2.1 极限的定义:设函数f(x)在点x0的其中一去心邻域内有定义,当自变量x趋近于x0时,如果存在常数A,使得对于任意给定的正数ε,总存在正数δ,使得当x满足0 < ,x - x0,< δ时,有,f(x) - A,< ε,那么称常数A为函数在点x0处的极限,记为lim(x→x0) f(x) = A。
2.2极限的性质:(1)极限的唯一性:如果函数f在x0的其中一去心邻域内有定义,并且lim(x→x0) f(x)存在,则该极限是唯一的。
(2)无穷小量的性质:如果lim(x→x0) f(x) = A,则A为常数,若A=0,则称f(x)当x趋于x0时是无穷小量。
(3)夹逼定理:设在点x0的其中一去心邻域上有g(x) ≤ f(x) ≤ h(x),且lim(x→x0) g(x) = lim(x→x0) h(x) = A,则lim(x→x0) f(x) = A。
(4)极限的四则运算:设lim(x→x0) f(x) = A,lim(x→x0) g(x) = B,则有以下结论:①lim(x→x0) [f(x) ± g(x)] = A ± B;②lim(x→x0) [f(x)g(x)] = AB;③lim(x→x0) [f(x)/g(x)] = A/B(其中B≠0)。
高等数学公式导数公式:基本积分表:三角函数的有理式积分: 222212211cos 12sin udu dx x tg u uu x uu x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx xtgx a xxln 1)(logln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin xarcctgx xarctgx xx xx +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x ax dx Cshx chxdx C chx shxdx Caadx aC x ctgxdx x C x dx tgx x Cctgx xdx xdxC tgx xdx x dxxx)ln(ln csc csc sec sec cscsinsec cos 22222222Cax xa dxCx a x a ax a dx C a x a x a a x dx C ax arctg a x a dxCctgx x xdx Ctgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Ca x ax a x dx x a Ca x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n nnn arcsin22ln 22)ln(221cos sin22222222222222222222220ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin2cos cos 2cos 2cos 2cos cos 2sin2cos2sin sin 2cos 2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xx arthx x x archx x x arshx ee e e chxshx thx ee chx ee shx xxx x xxxx-+=-+±=++=+-==+=-=----11ln 21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim==+=∞→→e xx x xx x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctgtg·正弦定理:R Cc Bb Aa 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k nn uvvuk k n n n v un n v nuv uvuCuv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
第一章极限和连续第一节极限[复习考试要求] 1.了解极限的概念(对极限定义 3. 理解事件之间并(和)、交(积)、差运算的意义,掌握其运算规律。
4. 理解概率的古典型意义,掌握事件概率的基本性质及事件概率的计算。
1,0,1,0,… 有界:0, 12.数列极限的存在准则定理 1.3(两面夹准则)若数列{x n },{y n },{z n }满 等形式的描述不作要求)。
5.会求事件的条件概率;掌握概率的乘法公式及足以下条件:会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
2. 了解极限的有关性质,掌握极限的四则运算法则。
3. 理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。
会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。
会运用等价无穷小量代换求极限。
4. 熟练掌握用两个重要极限求极限的方法。
第二节函数的连续性[复习考试要求]1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。
2.会求函数的间断点。
3. 掌握在闭区间上连续函数的性质会用它们证明一些简单命题。
4. 理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。
第二章一元函数微分学第一节导数与微分 事件的独立性。
6. 了解随机变量的概念及其分布函数。
7. 理解离散性随机变量的意义及其概率分布掌握概率分布的计算方法。
8. 会求离散性随机变量的数学期望、方差和标准差。
第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念(对极限定义(1) ,(2) , 则定理 1.4 若数列{x n }单调有界,则它必有极限。
3.数列极限的四则运算定理。
定理 1.5(三)函数极限的概念 1. 当 x→x 0 时函数f (x )的极限 (1)当 x→x 0 时f (x )的极限 定义对于函数 y=f (x ),如果当 x 无限地趋于 x 0时,函数 f (x )无限地趋于一个常数A ,则称当x→x 0 时,函数 f (x )的极限是A ,记作或f (x )→A(当 x→x 0 时) 例 y=f (x )=2x+12. 当x→∞时,函数 f (x )的极限 (1) 当x→∞时,函数 f (x )的极限y=f(x)x→∞f(x)→?y=f(x)=1+x→∞f(x)=1+ →1定义对于函数y=f (x ),如果当 x→∞时,f (x )无限地趋于一个常数A ,则称当x→∞时,函数 f (x )的极限是A ,记作或 f (x )→A(当x→∞时)(2) 当x→+∞时,函数 f (x )的极限定义对于函数y=f (x ),如果当 x→+∞时,f (x )无限地趋于一个常数A ,则称当 x→+∞时,函数f (x )的极限是A ,记作这个定义与数列极限的定义基本上一样,数列极限的定义中n→+∞的 n 是正整数;而在这个定义[复习考试要求] 等形式的描述不作要求)。
成考高等数学二必背公式一、极限与连续1. 重要极限:- $\lim_{x\to0}\frac{\sin x}{x}=1$- $\lim_{x\to\infty}(1+\frac{1}{x})^x=e$- $\lim_{n\to\infty}(1+\frac{1}{n})^n=e$- $\lim_{x\to0}(1+x)^{\frac{1}{x}}=e$- $\lim_{x\to\infty}\frac{\ln x}{x}=0$2. 无穷小量计算:- 当$x$是无穷小量时,$a^x-1\approx x\ln a$,其中$a>0$且$a\neq1$- 当$x$是无穷小量时,$(1+x)^n-1\approx nx$,其中$n$为常数- 当$x$是无穷小量时,$\sqrt[m]{1+x}-1\approx\frac{x}{m}$,其中$m$为常数3. 极限的四则运算:- $\lim_{x\to x_0}(f(x)+g(x))=\lim_{x\to x_0}f(x)+\lim_{x\to x_0}g(x)$- $\lim_{x\to x_0}(f(x)-g(x))=\lim_{x\to x_0}f(x)-\lim_{x\to x_0}g(x)$- $\lim_{x\to x_0}(f(x)\cdot g(x))=\lim_{x\to x_0}f(x)\cdot\lim_{x\to x_0}g(x)$- $\lim_{x\to x_0}(\frac{f(x)}{g(x)})=\frac{\lim_{x\to x_0}f(x)}{\lim_{x\to x_0}g(x)}$(其中$\lim_{x\to x_0}g(x)\neq0$)二、导数与微分1. 基本求导公式:- $(C)'=0$,其中$C$为常数- $(x^n)'=nx^{n-1}$,其中$n$为常数- $(e^x)'=e^x$- $(\ln x)'=\frac{1}{x}$,其中$x>0$- $(\sin x)'=\cos x$- $(\cos x)'=-\sin x$- $(\tan x)'=\sec^2 x$- $(\cot x)'=-\csc^2 x$- $(\sec x)'=\sec x\tan x$- $(\csc x)'=-\csc x\cot x$2. 常用求导法则:- $(u\pm v)'=u'+v'$- $(cu)'=cu'$,其中$c$为常数- $(uv)'=u'v+uv'$- $(\frac{u}{v})'=\frac{u'v-uv'}{v^2}$,其中$v\neq0$- $(f(g(x)))'=f'(g(x))\cdot g'(x)$3. 高阶导数:- 若$f'(x)$存在,则称$f(x)$可导,$f''(x)$为$f(x)$的二阶导数,以此类推- $f^{(n)}(x)$表示$f(x)$的$n$阶导数- $f^{(n)}(x)$可表示为$f^{(n)}(x)=\frac{d^n}{dx^n}f(x)$三、定积分与不定积分1. 基本积分公式:- $\int x^n dx=\frac{1}{n+1}x^{n+1}+C$,其中$n\neq-1$,$C$为常数- $\int e^x dx=e^x+C$- $\int \frac{1}{x} dx=\ln|x|+C$,其中$x\neq0$,$C$为常数- $\int \sin x dx=-\cos x+C$- $\int \cos x dx=\sin x+C$- $\int \tan x dx=-\ln|\cos x|+C$- $\int \cot x dx=\ln|\sin x|+C$- $\int \sec x dx=\ln|\sec x+\tan x|+C$- $\int \csc x dx=\ln|\csc x-\cot x|+C$2. 基本定积分公式:- $\int_a^b f(x)dx=F(b)-F(a)$,其中$F(x)$为$f(x)$的一个原函数3. 常用积分法则:- 第一换元法:设$u=g(x)$可导,则$\int f(g(x))g'(x)dx=\int f(u)du$- 第二换元法(逆函数法):设$u=f(x)$可导且$f'(x)\neq0$,则$\int f(x)dx=\int f(f^{-1}(u))du$四、级数1. 常见级数:- 等比数列:$S_n=a+ar+ar^2+\ldots+ar^{n-1}=\frac{a(1-r^n)}{1-r}$,其中$r\neq1$- 幂级数:$S_n=\sum_{k=0}^n a_k=\sum_{k=0}^n q^k=\frac{1-q^{n+1}}{1-q}$,其中$q\neq1$2. 收敛级数:- 若级数$\sum_{n=1}^\infty a_n$的部分和数列$S_n$有极限$S$,则称级数$\sum_{n=1}^\infty a_n$收敛于$S$,记作$\sum_{n=1}^\infty a_n=S$- 若级数$\sum_{n=1}^\infty a_n$收敛,则$\lim_{n\to\infty}a_n=0$3. 常见收敛级数:- 调和级数:$\sum_{n=1}^\infty\frac{1}{n}$收敛- 几何级数:$\sum_{n=1}^\infty q^n$收敛当且仅当$|q|<1$总结:本文介绍了成考高等数学二中的必背公式。
成人高考高数二公式大全1.代数1.1二次方程的解:一元二次方程的通解:若ax^2+bx+c=0(a≠0),则其根的求解公式为 x = (-b±√(b^2-4ac))/(2a)。
1.2一次方程组的解:设要解的方程为:a₁₁x₁+a₁₂x₂+…+a₁ₙxₙ=b₁a₂₁x₁+a₂₂x₂+…+a₂ₙxₙ=b₂aₙ₁x₁+aₙ₂x₂+…+aₙₙxₙ=bₙ用初等行变换将系数矩阵化为行简化阶梯形矩阵,得出方程的解。
1.3逻辑与命题包括逻辑运算(与、或、非、异或等)、命题的充分条件和必要条件、充要条件等。
2.几何2.1直线的方程点斜式方程:设直线上一点为P(x₁,y₁),直线的斜率为k,则该直线的点斜式方程为y-y₁=k(x-x₁)。
斜截式方程:设直线与y轴交于点A(0,b),直线的斜率为k,则该直线的斜截式方程为y = kx + b。
截距式方程:设直线与x轴交于点B(a,0),直线与y轴交于点A(0,b),则该直线的截距式方程为x/a+y/b=12.2圆的方程圆的标准方程:(x-h)²+(y-k)²=r²,其中(h,k)为圆心坐标,r为半径。
2.3三角函数相关公式正弦定理:a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的边长,A、B、C为对应的角。
余弦定理:c² = a² + b² - 2abcosC,其中c为三角形的边长,A、B、C为对应的角。
正切定理:tanA = a/b,tanB = b/a,tanC = c/a。
2.4平面向量向量叉积:若A(a₁,a₂)和B(b₁,b₂)是两个向量,其向量叉积AB=a₁b₂-a₂b₁。
向量模的计算:向量AB的模(长度)为,AB,=√(a²+b²)。
3.概率与统计3.1概率事件A的概率P(A)=事件A发生的次数/总的可能性次数。
事件的互斥:事件A和事件B互斥的概率P(A∪B)=P(A)+P(B)。
第一章节公式1、数列极限的四则运算法则如果那么推广:上面法则可以推广到有限多个数列的情况。
例如,若,,有极限,则:特别地,如果C是常数,那么2、函数极限的四算运则如果那么推论设都存在,为常数,为正整数,则有:3、无穷小量的比较:第二章节公式1.导数的定义:函数y=f(x)在x=x0处的瞬时变化率是=,我们称它为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0即f′(x0)= .2.导数的几何意义函数f(x)在x=x0处的导数就是切线的斜率k,即k==f′(x0).3.导函数(导数)当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数),y=f(x)的导函数有时也记作y′,即f′(x)=y′= .4.几种常见函数的导数(1)c′=0(c为常数),(2)(xn)′=nxn-1(n∈Z),(3)(ax)′=axlna(a>0,a1), (ex)′=ex(4)(ln x)′=,(log ax)′=log a e=(a>0,a1)(5)(sin x)′=cos x,(6)(cos x)′=-sin x(7) , (8)(9) , (10)(11) , (12)5.函数的和、差、积、商的导数(u±v)′=u′±v′,(uv)′=u′v+uv′′=,(ku)′=cu′(k为常数).(uvw)′=u′vw+uv′w+ uvw′微分公式:(1)(7) , (8)(9) , (10)(11) , (12)6.微分的四算运则d(u±v)=d u±d v, d(uv)=v du+udvd(ku)=k du(k为常数).洛必达法则:在一定条件下通过分子分母分别求导,再求极限来确定未定式的值的方法。
7.导数的应用:=0 的点为函数的驻点,求极值;(1)时,;,,;(2)时,;,,;(3);=0 的点为函数的拐点,求凹凸区间;第三章知识点概况不定积分的定义:函数f(x)的全体原函数称为函数f(x)的不定积分,记作,并称为积分符号,函数为被积函数,为被积表达式,x 为积分变量。
不定积分的性质:基本积分公式:换元积分(凑微分)法:1.凑微分。
对不定积分,将被积表达式g(x)dx凑成2.作变量代换。
令3.用公式积分,,并用换式中的u常用的凑微分公式主要有:分部积分法:适用于分部积分法求不定积分的常见题型及u和dv的选取法上述式中的P(x)为x的多项式,a,b为常数。
一些简单有理函数的积分,可以直接写成两个分式之和,或通过分子加减一项之后,很容易将其写成一个整式与一个分式之和或两个分式之和,再求出不定积分。
定积分:(1)定积分的值是一个常数,它只与被积函数f(x)及积分区间[a,b]有关,而与积分变量的字母无关,即应有(2)在定积分的定义中,我们假定a<b;如果b<a,我们规定:如果a=b,则规定:(3)对于定义在上的连续奇(偶)函数,有为奇函数为偶函数定积分的性质:定积分的计算:一、变上限函数设函数在区间上连续,并且设x为上的任一点,于是,在区间上的定积分为这里x既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为如果上限x在区间上任意变动,则对于每一个取定的x值,定积分有一个确定值与之对应,所以定积分在上定义了一个以x 为自变量的函数,我们把称为函数在区间上变上限函数记为推理:定积分计算公式利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。
因此,必须寻求计算定积分的简便方法。
我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s为图 5-11另一方面,如果物体经过的路程s是时间t的函数,那么物体从t=a到t=b所经过的路程应该是(见图5-11)即由导数的物理意义可知:即是一个原函数,因此,为了求出定积分,应先求出被积函数的原函数,再求在区间上的增量即可。
如果抛开上面物理意义,便可得出计算定积分的一般方法:设函数在闭区间上连续,是的一个原函数,即,则这个公式叫做牛顿-莱布尼兹公式。
为了使用方便,将公式写成牛顿-莱布尼兹公式通常也叫做微积分基本公式。
它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。
它揭示了定积分和不定积分的内在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。
定积分的换元公式:计算要领是:定积分的分部积分法:图5.85.4.2定积分求平面图形的面积1.直角坐标系下面积的计算(1)由曲线和直线所围成曲边梯形的面积的求法前面已经介绍,此处不再叙述.(2)求由两条曲线,及直线所围成平面的面积(如图5.8所示).下面用微元法求面积.①取为积分变量,.②在区间上任取一小区间,该区间上小曲边梯形的面积可以用高,底边为的小矩形的面积近似代替,从而得面积元素.③写出积分表达式,即.⑶求由两条曲线,及直线所围成平ydy+dyyc面图形(如图5.9)的面积.这里取为积分变量,,用类似 (2)的方法可以推出:.第四章知识点多元函数微分学§4.1 偏导数与全微分一. 主要内容:1. 多元函数的概念1. 二元函数的定义:2. 二元函数的几何意义:二元函数是一个空间曲面。
(而一元函数是平面上的曲线)Z=ax+by+c表示一个平面;表示球心在原点、半径为R的上半个球面;,表示开口向上的圆锥面;,表示开口向上的旋转剖物面。
2. 二元函数的极限和连续:1. 极限定义:设z=f(x,y)满足条件:2. 连续定义:设z=f(x,y)满足条件:㈢.偏导数:㈣.全微分:1.定义:z=f(x,y)则称在点(x,y)处的全微分。
3. 全微分与偏导数的关系㈤.复全函数的偏导数:1.2.㈥.隐含数的偏导数:1.2.㈦.二阶偏导数:(八)隐函数的导数和偏导数(九).二元函数的无条件极值1. 二元函数极值定义:☆ 极大值和极小值统称为极值,极大值点和极小值点统称为极值点。
2.极值的必要条件:两个一阶偏导数存在,则:而非充分条件。
例:∴驻点不一定是极值点。
3. 极值的充分条件:求二元极值的方法:二倍角公式:(含万能公式) ①②③④⑤第五章排列与组合(1)加法原理:完成一件事情与分类有关,即每一类各自独立完成,此事即可完成。
(2)乘法原理:完成一件事情与步骤有关,即一次完成每一步骤,此事才能完成。
排列:从n个不同元素里,任取个元素,按照一定的顺序排列成一列,称为从n个不同元素里取出m个元素的一个排列,计算公式:组合:从n个不同元素里,任取个元素组成一组,叫做从n个不同元素里取出m个元素的一个组合,组合总数记为,计算公式:第六章概率论符号概率论集合论样本空间全集不可能事件空集基本事件集合的元素A 事件子集A的对立事件 A的余集事件A发生导致A是B的子集事件B发生A=B A与B两事件相等集合A与B相等事件A与事件B至少有一个发生A与B的并集事件A与事件B同时发生 A与B的交集A-B 事件A发生而事件B不发生 A与B的差集事件A与事件B互不相容A与B没有相同元素由于随机事件都可以用样本空间中的某个集合来表示,于是事件间的关系和运算就可以用集合论的知识来讨论和表示,为了直观,可以用集合的韦恩图来表示事件的各种关系和运算法则,一般用某个矩形区域表示样本空间,该区域的一个子区域表示某个事件。
于是各事件的关系运算如图中的图示所示。
各事件的关系运算如图示:9.完备事件组n个事件,如果满足下列条件:(1);(2),则称其为完备事件组。
显然任何一个事件A与其对立事件构成完备事件组。
10.事件运算的运算规则:(1)交换律(2)结合律(3)分配律(4)对偶律率的古典定义定义:在古典概型中,若样本空间所包含的基本事件总数为n,事件A包含的基本事件数为m,则事件A发生的概率为。
概率的基本性质与运算法则性质1.0≤P(A)≤1特别地,P(Φ)=0,P(Ω)=1性质2.若,则P(B-A)=P(B)-P(A)性质3.(加法公式).对任意事件A,B,有P(A∪B)=P(A)+P(B)-P(AB) 。
推论1.若事件A,B互不相容(互斥),则P(A+B)=P(A)+P(B)推论2.对任一事件A,有推论3.对任意事件A,B,C,有P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)条件概率、乘法公式、事件的独立性条件概率定义1:设有事件A,B,且P(B)>0,称类似地,如果P(A)>0,则事件B对事件A的条件概率为概率的乘法公式乘法公式可推广到有限多个事件的情况,例如对事件A,B,C,有事件的独立性一般地说, P(A︱B)≠P(A),即说明事件B的发生影响了事件A发生的概率。
若P(A︱B)≠P(A),则说明事件B的发生在概率意义下对事件A的发生无关,这时称事件A,B相互独立。
定义:对于事件A,B,若P(AB)=P(A)P(B) ,则称事件A与事件B相互独立。
独立试验序列概型在相同的条件下,独立重复进行n次试验,每次试验中事件A可能发生或可能不发生,且事件A发生的概率为p,则在n次试验中事件A恰好发生k次的概率为一维随机变量及其概率分布(一)随机变量1.随机变量定义:设Ω为样本空间,如果对每一个可能结果,变量X都有一个确定的实数值与之对应,则称X为定义在Ω上的随机变量,简记作。
2.离散型随机变量定义:如果随机变量X只能取有限个或无限可列个数值,则称X为离散型随机变量。
(二)分布函数与概率分布1.分布函数定义:设X是一个随机变量,x是任意实数,则函数称为随机变量X的分布函数。
分布函数F(x)有以下性质:(2)F(x)是x的不减函数,即对任意(4)F(x)是右连续的,即(5)对任意实数a<b,有P{a<X≤b}=F(b)-F(a)2.离散型随机变量的概率分布则称上式为离散型随机变量X的概率分布(或概率函数或分布列)。
离散型随机变量X的概率分布也可以用下列列表形式来表示:3.分布函数与概率分布之间的关系若X为离散型随机变量,则。
随机变量的数字特征1.数学期望(1)数学期望的概念定义:设X为离散型随机变量,其概率函数为若级数绝对收敛,则称为X的数学期望,简称期望或均值,记作EX,即(2)数学期望的性质①若C为常数,则E(C)=C②若a为常数,则E(aX)=aE(X)③若b为常数,则E(X+b)=E(X)+b④若X,Y为随机变量,则E(X+Y)=E(X)+E(Y)2.方差(1)方差的概念定义:设X为随机变量,如果存在,则称为X的方差,记作DX,即方差的算术平方根称为均方差或标准差,对于离散型随机变量X,如果X的概率函数为,则X的方差为(2)方差的性质①若C为常数,则D(C)=0②若a为常数,则③若b为常数,则D(X+b)=D(X)④。