2016-2017学年苏科版八年级数学下册期末测试卷及答案
- 格式:doc
- 大小:677.50 KB
- 文档页数:25
2016-2017学年云南省昆明市盘龙区八年级(下)期末数学试卷2016-2017学年云南省昆明市盘龙区八年级(下)期末数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)计算:$\sqrt{27}=$.2.(3分)若一组数据3,x,4,5,6的众数是3,则这组数据的中位数是$\frac{4+5}{2}=$.3.(3分)已知△ABC的各边长度分别为3cm、4cm、5cm,则连结各边中点的三角形的周长为$6+8+10=$.4.(3分)如图,函数$y=ax+4$和$y=bx$的图象相交于点A,则不等式$bx\geq ax+4$的解集为$x\geq 4\frac{1}{b-a}$.5.(3分)已知:在▱ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交AD于E、BC于F,$S_{\triangle AOE}=3$,$S_{\triangle BOF}=5$,则▱ABCD 的面积是$24$.6.(3分)如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则BF的长为$5$.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)要使式子$\sqrt{x+1}$有意义,则x的取值范围是(B).A.$x>1$ B.$x\geq -1$ C.$x\geq 1$ D.$x\geq 0$8.(4分)下列式子成立的是(B).A.$2+3=3$ B.$2-3=2-5$ C.$2\times3=6$ D.$\frac{2}{3}=0.6$9.(4分)为了考察甲、乙、丙3种小麦的苗高,分别从中随机各抽取了100株麦苗,测得数据,并计算其方差分别是:$S_{甲}^2=1.4$,$S_{乙}^2=18.8$,$S_{丙}^2=2.5$,则苗高比较整齐的是(A).A.甲种 B.乙种 C.丙种 D.无法确定10.(4分)下列各曲线中表示y是x的函数的是(D).A.$\sqrt{x+y}=1$ B.$x^2+y^2=1$ C.$y=\pmx$ D.$y=2x-1$11.(4分)如图,△ABC中,CD⊥AB于D,且E是AC 的中点.若AD=6,DE=5,则CD的长等于(C).A.$5$ B.$6$ C.$7$ D.$8$12.(4分)菱形ABCD的周长是20,对角线AC=8,则菱形ABCD的面积是(B).A.$12$ B.$24$ C.$40$ D.$48$13.(4分)将一次函数$y=-3x-2$的图象向上平移4个单位长度后,图象不经过(C).A.第一象限 B.第二象限 C.第三象限 D.第四象限14.(4分)已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是(D).A.$2n-2$ B.$2n-1$ C.$2n$ D.$2n+1$三、解答题(本大题共9小题,共70分)15.(4分)计算:$\frac{3}{5}\times \frac{5}{7}\times\frac{7}{9}=$.解:$\frac{3}{5}\times \frac{5}{7}\times\frac{7}{9}=\frac{3\times 5\times 7}{5\times 7\times9}=\frac{1}{3}$.16.(5分)计算:$\frac{2}{3}+\frac{1}{5}-\frac{1}{6}-\frac{1}{15}=$.解:$\frac{2}{3}+\frac{1}{5}-\frac{1}{6}-\frac{1}{15}=\frac{10+3-5-2}{15}=\frac{6}{15}=\frac{2}{5}$.17.(8分)如图,在△ABC中,$AB=AC$,$D$是$BC$的中点,$E$是$AD$的垂足,$F$是$BE$的中点,$G$是$AF$的垂足,$AG$交$BC$于点$H$,求证:$BH=HC$.证明:因为$AB=AC$,所以XXX又因为$D$是$BC$的中点,所以$AD\perp BC$,即$\angle ADE=90^\circ$.又因为$E$是$AD$的垂足,所以$AE=DE$,又$\angle AFE=90^\circ$,所以$AF=EF$.因为$F$是$BE$的中点,所以$BF=FE$.又因为$AG\perp BF$,所以$AG$是$BF$的高,所以$AG=GF$.设$BH=x$,则$HC=BF-BH=2x-BC$.由勾股定理得$AE=\sqrt{AB^2-BE^2}=\sqrt{AB^2-\left(\frac{AD}{2}\right)^2}=\sqrt{AB^2-\left(\frac{AB}{2}\right)^2}=\frac{\sqrt{3}}{2}AB$.由相似三角形可得$\frac{EF}{AB}=\frac{1}{2}$,$\frac{AG}{AB}=\frac{2}{\sqrt{3}}$,$\frac{HC}{AB}=\frac{2x-AB}{AB}$.由正弦定理得$\frac{EF}{\sin \angle A}=\frac{AE}{\sin\angle AEF}$,即$\frac{EF}{AB}=\frac{\sin \angle A}{\sin\angle AEF}$.又$\angle AEF=90^\circ-\angle BAE=\angle C$,$\sin \angle A=\sin \angle B$,所以$\frac{EF}{AB}=\frac{\sin \angle B}{\sin \angle C}$.由正弦定理得$\frac{AG}{\sin \angle B}=\frac{AB}{\sin\angle BAG}$,即$\frac{AG}{AB}=\frac{\sin \angle B}{\sin\angle BAG}$.又$\angle BAG=90^\circ-\angle BAF=90^\circ-\angle C$,所以$\frac{AG}{AB}=\frac{\sin \angle B}{\cos\angle C}$.综上所述,$\frac{\sin \angle B}{\sin \angleC}=\frac{EF}{AB}=\frac{1}{2}$,$\frac{\sin \angle B}{\cos\angle C}=\frac{AG}{AB}=\frac{2}{\sqrt{3}}$,$\frac{2x-AB}{AB}=\frac{HC}{AB}$,即$\frac{2x-AB}{AB}=\frac{2x-2BH}{AB}=\frac{2x-2BC}{AB}+1$,即$x=BC$,所以XXX.18.(8分)已知函数$f(x)=\frac{2x^2-8x}{x-2}$,求$f(2+\frac{1}{x})$的值.解:$f(2+\frac{1}{x})=\frac{2(2+\frac{1}{x})^2-8(2+\frac{1}{x})}{2+\frac{1}{x}-2}=\frac{2(4+\frac{4}{x}+\frac{1}{x^2})-8-\frac{8}{x}}{\frac{1}{x}}=-2x^2-4x-8+\frac{16}{x}$.所以$f(2+\frac{1}{x})=-2x^2-4x-8+\frac{16}{x}$.19.(10分)如图,已知$\odot O$是正方形ABCD内切圆,P是线段AD上一点,连接PB、PC,交$\odot O$于点E、F,交BC于点Q,求证:$PQ=2QF$.证明:因为$\odot O$是正方形ABCD内切圆,所以$\angle AOE=45^\circ$,所以$\angle EOF=90^\circ$,所以$\angle EPF=45^\circ$,所以XXX.因为$BE=BF$,所以XXX,又因为$\angle EFB=90^\circ$,所以$\angle FBE=45^\circ$,所以$\angle EPQ=90^\circ+\angle FPQ$.所以$\angle EPQ+\angle FPQ=135^\circ$,所以$\anglePQF=45^\circ$,所以$\angle FQP=45^\circ$,所以$\triangle PQF$是等腰直角三角形,所以$PQ=2QF$.20.(10分)如图,在△ABC中,$D$、$E$、$F$分别是$BC$、$AC$、$AB$上的三个点,$AD$、$BE$、$CF$交于点$O$,且$\frac{BO}{OE}=\frac{CO}{OF}=2$,求证:$AD$、$BE$、$CF$交于一点,并且$S_{\triangle ABC}=4S_{\triangle OEF}$.证明:作$BE$的平行线$GH\parallel BE$,交$AC$于点$H$,则$\frac{AH}{HC}=\frac{BG}{GE}=2$.作$AD$的平行线$IJ\parallel AD$,交$BC$于点$J$,则$\frac{BJ}{JC}=\frac{AI}{ID}=2$.作$CF$的平行线$KL\parallel CF$,交$AB$于点$L$,则$\frac{BL}{LA}=\frac{CK}{KF}=2$.设$\triangle ABC$的面积为$S$,则$\triangle AHE\sim\triangle ABC$,$\triangle BGF\sim \triangle ABC$,$\triangle CKE\sim \triangle ABC$,所以$S_{\triangleAHE}=\frac{1}{9}S$,$S_{\triangle BGF}=\frac{1}{9}S$,$S_{\triangle CKE}=\frac{1}{9}S$,所以$S_{\triangle OEF}=S-S_{\triangle AHE}-S_{\triangle BGF}-S_{\triangleCKE}=\frac{4}{9}S$.又因为$\frac{BO}{OE}=\frac{CO}{OF}=2$,所以$\frac{BG}{GE}=\frac{BO}{OE}-1=1$,$\frac{CK}{KF}=\frac{CO}{OF}-1=1$,所以$GH\parallel BE$,$KL\parallel CF$,所以XXX$,所以$\frac{AJ}{JC}=\frac{HL}{LK}=\frac{3}{2}$。
苏科版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如果m2+2m﹣2=0,那么代数式(m+ )•的值是()A.﹣2B.﹣1C.2D.32、在平行四边形ABCD中,∠A∶∠B∶∠C∶∠D的值可以是().A.1∶2∶3∶4B.1∶2∶2∶1C.1∶1∶2∶2D.2∶1∶2∶13、在正数范围内定义一种运算☆,其规则为a☆b=+,根据这个规则x☆(x+1)=的解为()A.x=B.x=1C.x=- 或1D.x= 或-14、下列调查中,适合用普查方法的是()A.了解中央电视台《中国诗词大会》的收视率B.了解太和县某学校初一(1)班学生的身高情况C.了解太和县出产的樱桃的含糖量D.调查某品牌笔芯的使用寿命5、下列计算正确的是()A. B. C. D.6、如图,在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()A.35°B.45°C.50°D.55°7、小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是()A. B. C. D.8、若反比例函数y= 的图象经过点(2,﹣6),则k的值为()A.﹣12B.12C.﹣3D.39、小明使用电脑软件探究函数的图象,他输入了一组a,b的值,得到了下面的函数图象,由学习函数的经验,可以推断出小明输入的a,b的值满足()A. ,B. ,C. ,D.,10、如图,E,F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE、DF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB =S四边形DEOF中正确的有()A.4个B.3个C.2个D.1个11、下列说法正确的是( )A.平行四边形的对角线互相平分且相等B.矩形的对角线相等且互相平分 C.菱形的对角线互相垂直且相等 D.正方形的对称轴是正方形的对角线12、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.13、电视剧《铁血将军》在我市拍摄,该剧展示了抗日英雄范筑先的光辉形象.某校为了解学生对“民族英雄范筑先”的知晓情况,从全校2400名学生中随机抽取了100名学生进行调查.在这次调查中,样本是( )A.2400名学生B.100名学生C.所抽取的100名学生对“民族英雄范筑先”的知晓情况D.每一名学生对“民族英雄范筑先”的知晓情况14、若二次根式有意义,则的取值范围是()A. B. C. D.15、花城中学初一(1)班有50名同学,其中必然有()A.5名同学在同一个月过生日B.5名同学与班主任在同一个月过生日 C.5名同学不在同一个月过生日 D.5名同学与班主任不在同一个月过生日二、填空题(共10题,共计30分)16、如图,长方形,,,将长方形折叠,使得顶点落在边上的点处,连结、.动点在线段上(点与点、不重合),动点在线段的延长线上,且,连结交于点,作于点.点、在移动过程中,线段的长度是________.17、如图,梯形ABCD中,AB∥DC,∠ADC+∠BCD=90°,且DC=2AB,分别以DA,AB,BC为边向梯形外作正方形,其面积分别为S1, S2, S3,则S1,S 2, S3之间的关系是 ________.18、已知a= ﹣,b= + ,求a2+b2的值为________.19、如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=2 ,反比例函数y= 的图象经过点B,则k的值为________.20、计算:=________.21、小明和小乐一起玩“石头、剪刀、布”的游戏,两位同学同时出布的概率是________.22、如图,正方形ABCD,点E在CD上,连接AE,BD,点G是AE中点,过点G作FH⊥AE,FH分别交AD,BC于点F,H,FH与BD交于点K,且HK=2FG,若EG=,则线段AF的长为________.23、如图,正方形ABCD的边长为3,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转至正方形的位置,与CD相交于点M,则点M的坐标为________.24、袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有________个.25、若分式的值为正,则的取值范围是________.三、解答题(共5题,共计25分)26、先化简再求值:,其中,.27、某厂拟生产一种七年级使用的文具,但无法确定颜色,为此委托贝贝同学进行调查,贝贝调查了七年级(2)班的50名同学,结果是喜欢红色的20人,喜欢黄色的10人,喜欢绿色的15人,喜欢蓝色的5人.(1)你认为贝贝的调查结果能反映实际情况吗?(2)为更准确地为厂商提供信息,调查时应注意什么问题.28、不透明的布袋里装有红、蓝、黄三种颜色小球共40个,它们除颜色外其余都相同,其中红色球20个,蓝色球比黄色球多8个.(1)求袋中蓝色球的个数;(2)现再将2个黄色球放入布袋,搅匀后,求摸出1个球是黄色球的概率.29、如图,在△ABC中,∠A=90°,点D为BC的中点,DE⊥DF,DE交AB于点E,DF 交AC于点F,试写出线段BE,EF,FC之间的数量关系,并说明理由.30、将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、B5、C7、A8、A9、D10、B11、B12、D13、C14、B15、A二、填空题(共10题,共计30分)17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
2016-2017学年第二学期八年级数学期末测试卷姓名座号成绩一、选择题(每小题3分,共24分.)1.二次根式、、、、、中,最简二次根式有()个.2.若式子有意义,则x的取值范围为()3,,74567D(7题图)(8题图)8.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为二、填空题(每小题3分,共27分.)9.某一次函数的图象经过点(﹣1,3),且函数y随x的增大而减小,请你写出一个符合条件的函数解析式.10.林州市今年5月份某一周的日最高气温(单位:℃)分别为:25、28、30、29、31、32、28,这周的日最高气温的平均值是℃,众数是_________℃,中位数是℃.11.为备战全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,方差分别为0.23,0.20,则成绩较为稳定的是(填“甲”或“乙”)12.在直角三角形ABC中,∠C=90°,CD是AB边上的中线,∠A=30°,AC=5,则△ADC 的周长为.13.如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24cm,△OAB的周长是18cm,则EF= .(13题图)(14题图)14.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为.15.一次函数y=x+4分别交x轴、y轴于A、B两点,在x轴上取一点,使△ABC为等腰三角形,则这样的点C最多有个.16.如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为.(16题图)(17题图)17.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则Bn的坐标是.三、解答题(共69分)18.(12分)计算:(1)(﹣)﹣(+);(2)÷19.(9分)已知,直线y=2x+3交y轴于点A,直线y=﹣2x﹣1交y轴于点B.(1)画出两函数图像;(2)求两直线交点C的坐标;(3)求△ABC的面积.20.(9分)某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一:其次,对三名候选人进行了笔试和面试两项测试.各项成绩如上表所示:图二是某同学根据上表绘制的一个不完全的条形图.请你根据以上信息解答下列问题:(1)补全图一和图二;(2)请计算每名候选人的得票数;(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?21.(9分)小红和小亮上王相岩游玩,小红乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小红颖在小亮出发后50min 才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m,图中的折线表示小亮在整个行走过程中y与x的函数关系.(1)小亮行走的总路程是m,他途中休息了min;(2)①当50≤x≤80时,求y与x的函数关系式;②当小红到达缆车终点时,小亮离缆车终点的路程是多少?22.(9分)如图,在菱形ABCD中,AB=4,60DAB∠= ,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形。
2016-2017学年苏教版八年级数学上册期末试卷(含答案)word版2016-2017学年苏教版八年级数学上册期末试卷一、细心填一填本大题共有13小题,20空,每空2分,共40分。
1.4的平方根是2;124的算术平方根是11;9的立方根为-2.2.计算:(1)a÷a=1;(2)(m+2n)(m-2n)=m^2-4n^2;(3)0.3.在数轴上与表示3的点距离最近的整数点所表示的数是3.4.如图,△ABC中,∠ABC=38°,BC=6cm,E为BC 的中点,平移△ABC得到△DEF,则∠DEF=38°,平移距离为6cm。
5.正九边形绕它的旋转中心至少旋转40°后才能与原图形重合。
6.如图,若□ABCD与□EBCF关于BC所在直线对称,且∠ABE=90°,则∠F=90°。
7.如图,在正方形ABCD中,以BC为边在正方形外部作等边三角形BCE,连结DE,则∠CDE的度数为60°。
8.如图,在□ABCD中,∠ABC的平分线交AD于点E,且AE=DE=1,则□ABCD的周长等于4+2√2.9.AD∥BC,∠A=2∠B=40°。
10.在梯形ABCD中,∠C=90°,则∠D的度数为90°。
11.如图,在△ABC中,AB=AC=5,BC=6,点E,F是中线AD上的两点,则图中阴影部分的面积是6.12.直角三角形三边长分别为2,3,m,则m=√5.13.矩形ABCD的周长为24,面积为32,则其四条边的平方和为100;对角线AC、BD相交于点O,其中AC+BD=28,CD=10.(1)若四边形ABCD是平行四边形,则△OCD的周长为22;(2)若四边形ABCD是菱形,则菱形的面积为48;(3)若四边形ABCD是矩形,则AD的长为8.二、精心选一选本大题共有7小题,每小题2分,共14分。
在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内。
2016-2017学年度上学期期末考试八年级数学试题 2017.01第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A .B .C .D . 2. 若分式51+x 有意义,则x 的取值范围是 A .5->x B .5-<x C .5≠x D .5-≠x3. 下列运算正确的是A . ()623a a -=-B .842a a a ÷=C . 222)(b a b a +=+D .4)21(2=-- 4. 多项式m mx -2与多项式122+-x x 的公因式是A.1-xB.1+xC.12-xD.2)1(-x5.如图,在△ABC 中,AB =AC ,过A 点作AD ∥BC ,若∠BAD =110°,则∠BAC 的大小为A .30°B .40°C .50°D .70°6. 在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值 是A .-1B .1C .6D .-67.若2(1)(3)x x x mx n -+=++,则m n +=A .-1B .-2C .-3D .28. 已知4x y +=,3xy =,则22x y +的值为A .22B .16C .10D .4(第5题图)9. 在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:①在直角边BC 上;②在∠CAB 的角平分线上;③在斜边AB 的垂直平分线上,那么∠B 等于A .60°B .45°C .30°D .15°10.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF =AC ,则∠ABC 的大小是A .40°B .45°C .50°D .60°11. 下列判断中,正确的个数有①斜边对应相等的两个直角三角形全等;②有两个锐角相等的两个直角三角形不一定全等;③一条直角边对应相等的两个等腰直角三角形全等;④一个锐角和一条直角边分别相等的两个直角三角形全等.A. 4个B. 3个C. 2个D. 1个12. 化简2221121a a a a a a +-÷--+的结果是 A.1a B.a C.11a a +- D.11a a -+ 13.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是 A. 15B. 30C. 45D. 6014. 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .则下列结论:①DE=DF ;②△ADE ≌△ADF ;③︒=∠+∠90CDF BDE ;④AD 垂直平分EF.其中正确结论的个数是A. 1个B. 2个C. 3个D. 4个(第10题图) (第13题图) (第14题图)第Ⅱ卷 非选择题(共78分)二、填空题:(本题共5小题,每小题3分,共15分)15.分解因式:822-x =________________.16. 如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =______度.17. 请在横线上补上一项,使多项式9_______42++x 成为完全平方式.18. 如图,已知AB ∥CF ,E 为DF 的中点,若AB =7cm ,CF =4cm ,则BD =cm .19. 阅读理解:若3,253==b a ,试比较b a ,的大小关系.小明同学是通过下列方式来解答问题的:因为322)(55315===a a ,273)(33515===b b ,而2732>,∴1515b a > ∴b a >.解答上述问题逆用了幂的乘方,类比以上做法,若3,297==y x ,试比较x 与y 的大小关系为x ______y .(填“>”或“<”)三、解答题(本题满分63分)20.(本题满分8分,每小题4分)(1)计算:()343212a b a b •÷-2 ;(2)分解因式:322484y xy y x -+-.21.(本题满分7分)解方程:31.11x x x -=-+(第16题图) (第18题图)22.(本题满分8分)先化简,再求值: 9)3132(2-÷-++x x x x ,其中5x .=-23. (本题满分9分)已知:如图,C 是AB 上一点,点D ,E 分别在AB 两侧,AD ∥BE ,且AD =BC ,BE =AC .(1)求证:CD =CE ;(2)连接DE ,交AB 于点F ,猜想△BEF 的形状,并给予证明.24.(本题满分10分)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?(第23题图)小丽同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)她用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是___________________;(2)如果要拼成一个长为)2(b a +,宽为)(b a +的大长方形,则需要2号卡片______ 张,3号卡片 张;(3)当她拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式2223b ab a ++分解因式,其结果是 ;(4)动手操作,请你依照小丽的方法,利用拼图分解因式2265b ab a ++=________________;并画出拼图.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.(第26题图1)【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB还成立吗?请说明理由.(第26题图2)2016-2017学年度上学期期末考试八年级数学参考答案 2017-1一、选择题(每小题3分,共42分)1-~5 CDDAB 6~10 DACCB 11~14 BABC二、填空题(每小题3分,共15分)15.)2)(2(2-+x x 16. ︒25 17. x 12 (或x 12-或x 12±) 18. 3 19.<三、解答题(本大题共7小题,共63分)20. (8分)解:(1)原式3432812a b a b =-÷ ……2分 (2)223484x y xy y -+- 223b =- …………4分 224(2)y x xy y =--+ ……2分 21.(7分)解:方程两边同乘()(1)1x x +-,得 24()y x y =-- ………4分 ()()()()11131x x x x x +-+-=- ……………………………………2分解得,2x = ……………………………………………5分检验:当2x =时,()(1)10x x +-≠ …………………………………………6分 ∴2x =是原分式方程的解. ……………………………………………7分 22.(8分).xx x x x )3)(3()3132(-+⨯--+=原式 ………………………...2分 xx x x 3)3(2+--= ……………………….….4分 xx x x x 9362-=---= …………………………………..6分 当2-=x 时,原式=2112929=---=-x x ……………………8分 23. (9分)(1)证明:∵AD ∥BE ,∴∠A =∠B ,………………………………..1分在△ADC 和△BCE 中⎪⎩⎪⎨⎧=∠=∠=BE AC B A BCAD ∴△ADC ≌△BCE (SAS ),………………………3分∴CD =CE ;……………………………………..…..4分(2)△BEF 为等腰三角形,……………………………………5分证明如下:由(1)可知CD =CE ,∴∠CDE =∠CED ,………………………………………….…6分 由(1)可知△ADC ≌△BEC ,∴∠ACD =∠BEC ,…………………………………………….7分∴∠CDE +∠ACD =∠CED +∠BEC ,即∠BFE =∠BED ,……………………………………..……...8分∴BE=BF , ∴△BEF 是等腰三角形.………………………………….….9分24.(10分)解:(1)设该商家第一次购进机器人x 个,……………….…1分 依题意得:+10=,……………..3分解得x =100.…………………………………....5分经检验x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.……………………6分(2)设每个机器人的标价是a 元.则依题意得:(100+200)a ﹣11000﹣24000≥(11000+24000)×20%,..8分解得a ≥140.……………………………………………...9分答:每个机器人的标价至少是140元.…………………..10分25.(10分)解:(1)222)(2b a b ab a +=++……………….…2分(2) 2, 3 …………….…4分(3) ))(2(2322b a b a b ab a ++=++ …………….…6分(4) )2)(3(6522b a b a b ab a ++=++………….…8分 作图正确 ………….…10分26.(11分)(1)证明:∵△ABC 和△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,….1分∴∠BAM +∠MAC =∠MAC +∠CAN , ∴∠BAM =∠CAN ,………………………….2分在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB ∴△ABM ≌△ACN (SAS ), (4)分∴∠ACN =∠ABM =60°……………………………..5分∵∠ACB=60° ∴∠BCN+∠ABM=180°;…………6分∴CN ∥AB…………………………………………….7分(2)成立,…………………………………………8分理由如下:∵△ABC 和△AMN 都是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC+∠CAM=∠CAM+∠MAN , ∴∠BAM=∠CAN在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB , ∴△ABM ≌△ACN (SAS ),………9分∴∠ACN=∠ABM =60°…………………………….10分∵∠ACB=60° ∴∠BCN+∠ABM=180°;∴CN∥AB……………………………………………………...11分。
2016-2017学年度下学期期末考试八年级数学试卷一、选择题(3分×10)1.下列二次根式中,是最简二次根式的是()A.2.0B.12C.3D.18 2.下列各式中,正确的是()A.2<15<3B.3<15<4C.4<15<5D.14<15<16 3.以下列长度(单位:cm )为边长的三角形是直角三角形的是() A.5,6,7 B.7,8,9 C.6,8,10 D.5,7,9 4.一次函数y=-2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限 5.能判定四边形ABCD 为平行四边形的条件是() A.AB ∥CD,AD=BC; B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC; D.AB=AD,CB=CD6.8名学生的平均成绩是x ,如果另外2名学生每人得84分,那么整个组的平均成绩是() A.284x + B.101688+ C.1084x 8+ D.10168x 8+ 7.已知一个直角三角形的两边长分别为3和4,则第三边长为() A.5 B.7 C.7 D.7或5 8.如图,菱形ABCD 的对角线AC 、BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF.若EF=3,BD=4,则菱形ABCD 的周长为() A.4 B.64 C.47 D.289.A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中21l l 和分别表示甲、乙两人所走路程s (千米)与时间t (小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地,其中正确的个数是() A.4 B.3 C.2 D.110.如图,点A 、B 、C 在一次函数y=-2x+m 的图像上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m —1)D.23(m —1)二、填空题(3分×6)11.函数y=1-x 中,自变量x 的取值范围是 。
八年级数学下册第九章《中心对称图形—平行四边形》测试卷-苏科版(含答案)一.选择题1.下列每组大写字母中,旋转180°和原来形状一样的是()A.HIOE B.HION C.HIOU D.HIOB2.如图,将△OAB绕点O按逆时针方向旋转至△OA′B′,使点B恰好落在边A′B′上,已知AB=4,BB′=1,则A′B的长为()A.3B.4C.5D.63.如图,其中是旋转对称图形的有()A.1个B.2个C.3个D.4个4.经过矩形对称中心的任意一条直线,把这个矩形分成两部分,设这两部分的面积分别为S1和S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.不能确定5.两块含30°角的全等的三角尺,能拼出的平行四边形的个数是()A.1B.2C.3D.无数6.如图,在3×3的方格图案中,正方形的个数是()A.8个B.10个C.12个D.14个7.如图,8×8方格纸上的两条对称轴EF,MN相交于中心点O,对三角形ABC分别作下列变换:①先以点A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格.②先以点O为中心作其中心对称图形,再以点A的对应点为中心逆时针方向旋转90°.③先以直线MN为轴作其轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90°.其中变换后的图形为三角形PQR的是()A.①②B.①③C.②③D.①②③8.下列图形:等边三角形、平行四边形、等腰三角形、梯形、矩形、正方形、菱形.是中心图形的有()A.3个B.4个C.5个D.6个9.已知一矩形的两边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6 cm和9 cm B.5 cm和10 cmC.4 cm和11 cm D.7 cm和8 cm10.有两个内角分别为90°,60°,30°的完全一样的三角形拼成四边形,其形状不同的有()A.2个B.3个C.4个D.6个二.填空题11.梯形的中位线长为6cm,上底长为4cm,那么这个梯形的下底长为.12.在△ABC中,AB=AC,∠A=60°,D为AB的中点,过点D作DE∥AC交BC于点E,连接AE,则△DBE是三角形;△ADE是三角形;△ABE是三角形.13.如图所示,已知矩形ABCD的对角线AC与BD相交于点O,AE⊥BD于点E,且DE =OE,则∠OAB=.14.根据两条对角线的关系判断一个四边形是矩形或菱形或正方形的必不可少的条件是.15.如图,AC是平行四边形ABCD的对角线,点E,F在AC上,要使四边形BEDF是平行四边形,还需要添加的一个条件是.16.一个圆形绕一个定点旋转,与初始图形,这个图形叫做中心对称图形.17.国旗上的五角星是旋转对称图形,它的旋转角度是(填最小的度数),请你再举一个旋转角度与五角星相同的正多边形是.18.如图,已知四边形ABCD是一个平行四边形,则只须补充条件,就可以判定它是一个菱形.19.在△ABC中,D为AB的中点,且CD=AD=BD,那么∠ACB=度.20.用反证法证明命题“△ABC中,若∠A>∠B+∠C,则∠A>60°”时,可以先假设.三.解答题21.如图,钟摆的摆动是旋转,图中的旋转中心是哪一点?试用量角器测量旋转角度的大小.(精确到1°)22.如图1,在正方形ABCD中,E是AD的中点,F是BA延长线上的一点,AF=.(1)求证△ABE≌△ADF;(2)阅读下列材料:如图2,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置;如图3,以BC为轴把△ABC翻折180°,可以变到△DBC的位置;如图4,以点A为中心把△ABC旋转180°,可以变到△AED的位置.像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.(3)回答下列问题:①在图1中,可以通过平行移动、翻折、旋转中的哪一种方法使△ABE变到△ADF的位置,答:.②指出图1中,线段BE与DF之间的关系.答:.23.如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.当AB≠AC时,求证:四边形ADFE为平行四边形.24.平行四边形ABCD的两条对角线AC、BD相交于点O,AB=,AO=2,OB=1.四边形ABCD是菱形吗?为什么?25.如图,在正方形ABCD中,E,F,G,H分别在它的四条边上,且AE=BF=CG=DH.四边形EFGH是什么特殊四边形?你是如何判断的?26.在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为的中点,连接DE.证明:DE∥CB.27.如图,已知M是Rt△ABC斜边AB的中点,CD=BM,DM与CB的延长线交于点E.求证:∠E=∠A.参考答案一.选择题1.解:根据旋转的性质,根据题意要求旋转180°和原来形状一样,故旋转180°和原来形状一样的字母必须是中心对称的图形,分析可得只有B的4个字母是中心对称的图形.故选:B.2.解:∵将△OAB绕点O按逆时针方向旋转至△OA′B′,∴△OAB≌△OA′B′,∴AB=A′B′=4,∴A′B=A′B′﹣BB′=4﹣1=3,故选:A.3.解:(1)绕中心旋转120°后与原图重合,是旋转对称图形;(2)绕中心旋转180°后与原图重合,是旋转对称图形;(3)绕中心旋转120°后与原图重合,是旋转对称图形;(4)绕中心旋转90°后与原图重合,是旋转对称图形;四个图形都是旋转对称图形.故选D.4.解:矩形ABCD中,AD=BC,AO=BO=CO=DO,∴△AOD≌△BOC(SSS),∵∠ECO=∠FAO,OA=OC,∠EOC=∠FOA,∴△OEC≌△OFA,同理可证,△DEO≌△BFO,∴S1=S2.故选:C.5.解:∵三角形三条边各不相等,∴可得到三个不同的平行四边形.故选:C.6.解:在该3×3方格纸上最多可画出的正方形是9个边长为1个小方格的小正方形、边长为2个小格的正方形4个、边长为3个小格的大正方形1个,共有9+4+1=14个,故选D.7.解:①通过认真的画图可知,此方法可以将△ABC变换成△PQR,故此方法正确,②通过认真的画图可知,此方法可以将△ABC变换成△PQR,故此方法正确,③通过认真的画图可知,此方法可以将△ABC变换成△PQR,故此方法正确,故选:D.8.解:中心对称图形有:平行四边形、矩形、正方形、菱形共4个,故选B.9.解:如图,∵矩形ABCD中,BE是角平分线.∴∠ABE=∠EBC.∵AD∥BC.∴∠AEB=∠EBC.∴∠AEB=∠ABE∴AB=AE.当AB=15cm时:则AE=15cm,不满足题意.当AB=10cm时:AE=10cm,则DE=5cm.故选:B.10.解:根据平行四边形的基本性质:平行四边形的两组对角分别相等,可知角分别为,(1)90°,90°,90°90°;(2)120°,60°,120°,60°;(3)150°,30°,150°,30°;不是平行四边形的四边形为(4)60°,90°,120°,90°.共4种,故选:C.二.填空题11.解:∵梯形的中位线长为6cm,∴梯形的两底和为:12cm,∵上底长为4cm,∴这个梯形的下底长为:8cm.故答案为:8cm.12.解:∵AB=AC,∠A=60°,∴△ABC为等边三角形,∴∠C=∠B=60°,∵DE∥AC,∴∠BDE=∠BAC=60°,又∵∠B=60°,∴△DBE是等边三角形,∴DE=DB=AB=AD,∴△ADE为等腰三角形,∵DE=AD,∴∠DAE=∠DEA=∠BDE=30°,∴∠AEB=180°﹣∠DAE﹣∠B=90°,∴△ABE是直角三角形,故答案为:等边;等腰;直角.13.解:∵四边形ABCD是矩形,∴∠DAB=90°,AC=BD,AO=OC,BO=DO,∴OD=OA=OB,∵AE⊥BD,DE=OE,∴AD=AO,∴△AOD是等边三角形,∴∠ADO=60°,∵∠DAB=90°,OA=OB,∴∠OAB=∠OBA=30°,故答案为:30°.14.解:∵矩形、菱形、正方形的对角线都具有平分的性质,则根据两条对角线的关系判断一个四边形是矩形或菱形或正方形的必不可少的条件是平分.故答案为平分.15.解:添加:AE=CF.理由:如图,设AC与BD交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,∴四边形BEDF是平行四边形.故答案为:此题答案不唯一,如AE=CF或AF=CE等.16.解:一个图形绕一个定点旋转180°,与初始图形重合,这个图形叫做中心对称图形.故答案为:180°,重合.17.解:由分析可知,旋转度数为360°÷5=72°.而旋转角度与五角星相同的正多边形为正五边形.18.解:补充的条件是AB=BC,理由是:∵AB=BC,四边形ABCD是平行四边形,∴平行四边形ABCD是菱形,故答案为:AB=BC.19.解:已知D为AB的中点,即CD为AB边的中线,CD=AD=BD=AB,因为直角三角形的斜边上的中线等于斜边的一半,则∠ACB=90°,故填90.20.解:用反证法证明命题“△ABC中,若∠A>∠B+∠C,则∠A>60°”时,应先假设∠A≤60°.三.解答题21.解:图中的旋转中心是点O,旋转角度的大小约为30°.22.解:(1)由正方形ABCD得:AD=AB,∠DAF=∠BAE=90°,又∵AF=,且E为AD的中点,∴AF=AE,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS);(2)①由图形可得:△ABE经过旋转可变到△ADF的位置.②由(1)得:BE⊥DF,BE=DF.23.证明:∵△ABE、△BCF为等边三角形,∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°.∴∠FBE=∠CBA,在△FBE和△CBA中,,∴△FBE≌△CBA(SAS).∴EF=AC.又∵△ADC为等边三角形,∴CD=AD=AC.∴EF=AD.同理可得AE=DF.∴四边形AEFD是平行四边形.24.解:在△AOB中,∵AB=,AO=2,OB=1,∴AB2=()2=5,AO2+OB2=22+12=5,∴AB2=AO2+OB2,∴△AOB为直角三角形,即∠AOB=90°.∴AC、BD互相垂直.∴四边形ABCD是菱形(对角线互相垂直的平行四边形是菱形).25.解:四边形EFGH是正方形.证明:∵AE=BF=CG=GH,∴AH=DG=CF=BE.∵∠A=∠B=∠C=∠D=90°,∴△AEH≌△DHG≌△CGF≌△BFE,∴EF=EH=HG=GF,∠EHA=∠HGD.∴四边形EFGH是菱形.∵∠EHA=∠HGD,∠HGD+∠GHD=90°,∴∠EHA+∠GHD=90°.∴∠EHG=90°.∴四边形EFGH是正方形.26.证明:连结CE.∵点E为Rt△ACB的斜边AB的中点,∴CE=AB=AE,∵△ACD是等边三角形,∴AD=CD,在△ADE与△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE=30°,∵∠DCB=150°,∴∠EDC+∠DCB=180°,∴DE∥CB.27.证明:∵M是Rt△ABC斜边AB的中点,∴AM=BM,∵CD=BM,∴CD=AM.∵CM是ABC的中线,∴CD=CM=BM,∴△CDM是等腰三角形,∠MCB=∠MBC,∠CDM=∠CMD.∵∠CDM=∠A+∠AMD,∠CMD=∠MCB+∠E=∠BME+2∠E,即∠A+∠AMD=∠BME+∠E+∠E,∴∠A=2∠E.即∠E=∠A.。
2016-2017学年浙江省杭州市余杭区八年级下学期期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)=()A.1B.2C.3D.42.(3分)下列函数中不是反比例函数的是()A.y=B.y=C.y=4x﹣1D.y=﹣3.(3分)学校食堂午餐供应6元、8元和10元三种价格的盒饭,如图是食堂某月销售三种午餐盒饭数量的统计图,则该月食堂销售午餐盒饭的平均价格为()A.7.9元B.8元C.8.9元D.9.2元4.(3分)如果一个多边形的内角和等于外角和的3倍,那么这个多边形的边数为()A.6B.7C.8D.95.(3分)如图,已知菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD 边上的中点,连接EF.若EF=2,BD=4,则菱形ABCD的面积为()A.2B.4C.8D.166.(3分)在一幅长90cm,宽40cm的风景画的四周的外边镶宽度相同的金色纸边,制成一幅挂图,使风景画的面积是整个挂图面积的58%,设金色纸边的宽度为xcm,则可列方程为()A.(90+x)(40+x)×58%=90×40B.(90+x)(40+2x)×58%=90×40C.(90+2x)(40+x)×58%=90×40D.(90+2x)(40+2x)×58%=90×407.(3分)已知一次函数y=﹣x+4与反比例函数y=在同一平面直角坐标系中的图象有两个公共点,则k的取值范围为()A.k<4B.k≤4C.k≤4且k≠0D.k<4且k≠0 8.(3分)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④9.(3分)如图,反比例函数y=(x>0)的图象上有四个点P1,P2,P3,P4,它们的横坐标分别为1,2,3,4,分别向x轴,y轴作垂线,图中所构成的阴影部分面积分别为S1,S2,S3,则S1+S3﹣S2的值为()A.k B.k C.k D.k10.(3分)如图,矩形纸片ABCD中,AB=6,AD=10,折叠纸片,使点A落在BC 边上的点A1处,折痕为PQ,当点A1在BC边上移动时,折痕的端点P、Q分别在AB、AD边上移动,则点A1在BC边上可移动的最大距离为()A.3B.4C.5D.6二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)二次根式中字母x的取值范围是.12.(4分)甲、乙两人进行射击比赛,在相同条件下射击20次,已知他们的平均环数相同,方差分别是S甲2=1.6,S乙2=2.1,那么甲、乙两人中成绩较为稳定的是(填“甲”或“乙”)13.(4分)用反证法证明命题:四边形中至少有一个角是钝角或直角,则应假设:.14.(4分)已知直角三角形的两条边长恰好是方程x2﹣7x+10=0的两个根,则此直角三角形的斜边长是.15.(4分)如图,已知Rt△ABC,∠ACB=90°,以AB为斜边向外作等腰直角三角形ABO,连结OC,已知AC=4,OC=6,则另一直角边BC的长为.16.(4分)如图,分别过反比例函数y=(x>0)图象上的点P1(1,y1),P2(2,y2)…P n(n,y n)作x轴的垂线,垂足分别为A1,A2,…A n,连结A1P2,A2P3,…A nP n,再以A1P1,A1P2为一组邻边作平行四边形A1P1B1P2,以A2P2,A2P3为邻边﹣1作平行四边形A2P2B2P3,以此类推,则B1的纵坐标为,B n的纵坐标为(用含n的代数式表示)三、解答题17.(6分)计算:(1)+×(2)已知a=+,b=﹣,求a2+ab+b2的值.18.(8分)解方程:(1)(2x﹣1)2=(x+3)2(2)x2﹣2x﹣=0.19.(8分)为了了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查,已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm)组别身高A x<160B160≤x<165C165≤x<170D170≤x<175E x≥175根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在组,中位数在组;(2)样本中,女生身高在E组的人数有人;(3)已知该校共有男生600人,女生480人,请估计身高在165≤x<175之间的学生约有多少人?20.(10分)已知一次函数与反比例函数的图象交于点P(﹣3,M),Q(2,﹣3).(1)求这两个函数的关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)结合图象,直接写出当x为何值时,一次函数的值大于反比例函数的值?21.(10分)已知关于x的一元二次方程x2﹣(2k﹣4)x+k2﹣4k=0(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为6,当△ABC是等腰三角形时,求k的值.22.(12分)在四边形ABCD中,AB,BC,CD,DA的中点分别为P,Q,M,N.(1)如图1,试判断四边形PQMN是什么特殊四边形,并证明你的结论.(2)若在AB边上存在一点E,连接DE,CE,恰好△ADE和△BCE都是等边三角形(图2);①判断此时四边形PQMN的形状,并证明你的结论;②当AE=5,BE=4时,求此时四边形PQMN的周长(结果保留根号)23.(12分)在正方形ABCD中,AB=2,.(1)如图1,点P是对角线AC上任一点,若M是AB中点,求PM+PB的最小值;(2)如图2,点P是对角线AC上任一点,若M,N分别是边AB,BC上的点,且AM=AB,CN=BC,求PM+PN的最小值.(3)如图3,若M1,M2是AB边三等分点,P1,P2是对角线AC上任意两点,求(P1B+P1M1)2+(P2M1+P2M2)2的最小值.2016-2017学年浙江省杭州市余杭区八年级下学期期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.【考点】22:算术平方根.【解答】解:=2,故选:B.【点评】本题考查了算术平方根的应用,主要考查学生的计算能力.2.【考点】G1:反比例函数的定义.【解答】解:A、该函数是正比例函数,故本选项正确;B、该函数是反比例函数,故本选项错误;C、该函数是反比例函数,故本选项错误;D、该函数是反比例函数,故本选项错误.故选:A.【点评】本题考查的是反比例函数的定义,熟知判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断是解答此题的关键.3.【考点】W2:加权平均数.【解答】解:10×60%+8×25%+6×15%=6+2+0.9=8.9(元).故该月食堂销售午餐盒饭的平均价格为8.9元.故选:C.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求6,8,10这三个数的平均数,对平均数的理解不正确.同时考查了扇形统计图,扇形统计图直接反映部分占总体的百分比大小.4.【考点】L3:多边形内角与外角.【解答】解:设多边形的边数为n,依题意,得(n﹣2)•180°=3×360°,解得n=8,故选:C.【点评】此题考查根据多边形的内角和计算公式,多边形的外角和.关键是利用不变的数量多边形的外角和360°.5.【考点】KX:三角形中位线定理;L8:菱形的性质.【解答】解:∵E、F分别是AD,CD边上的中点,即EF是△ACD的中位线,∴AC=2EF=4,则S菱形ABCD=AC•BD=×4×4=8.故选:C.【点评】本题考查了三角形的中位线定理和菱形的面积公式,理解中位线定理求的AC 的长是关键.6.【考点】AC:由实际问题抽象出一元二次方程.【解答】解:依题意,设金色纸边的宽为xcm,(90+2x)(40+2x)×58%=90×40,故选:D.【点评】此题主要考查了由实际问题抽象出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据题意列出方程是解题关键.7.【考点】G8:反比例函数与一次函数的交点问题.【解答】解:联立两解析式得:,消去y得:x2﹣4x+k=0,∵两个函数在同一直角坐标系中的图象有两个公共点,∴△=b2﹣4ac=16﹣4k>0,即k<4,则当k满足k<4且k≠0时,这两个函数在同一直角坐标系中的图象有两个公共点.故选:D.【点评】此题考查了一次函数与反比例函数的交点问题,以及反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解本题的关键.8.【考点】LF:正方形的判定.【解答】解:A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选:B.【点评】此题主要考查了正方形的判定以及矩形、菱形的判定方法,正确掌握正方形的判定方法是解题关键.9.【考点】G5:反比例函数系数k的几何意义;G6:反比例函数图象上点的坐标特征.【解答】解:∵反比例函数y=(x>0)的图象上有四个点P1,P2,P3,P4,它们的横坐标分别为1,2,3,4,∴P1(1,k),P2(2,),P3(3,),P4(4,),∴S1+S3﹣S2=1•(k﹣)+1•(﹣)﹣1•(﹣)=+﹣=k.故选:A.【点评】本题考查的是反比例函数图象上点的坐标特征,矩形的面积公式,根据题意得出P1、P2、P3、P4的坐标是解答此题的关键.10.【考点】LB:矩形的性质;PB:翻折变换(折叠问题).【解答】解:①当p与B重合时,BA1=BA=6,CA1=BC﹣BA1=10﹣6=4,②当Q与D重合时,由勾股定理,得CA1==8,CA1最远是8,CA1最近是4,点A1在BC边上可移动的最大距离为8﹣4=4,故选:B.【点评】本题考查了翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.二、填空题(本大题共6小题,每小题4分,共24分)11.【考点】72:二次根式有意义的条件.【解答】解:由题意得:4﹣x≥0,解得:x≤4,故答案为:x≤4.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.12.【考点】W7:方差.【解答】解:∵1.6<2.1,∴S甲2<S乙2,∴甲、乙两人中成绩较为稳定的是甲.故答案为:甲.【点评】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.13.【考点】O3:反证法.【解答】解:反证法证明命题:四边形中至少有一个角是钝角或直角,则应假设:四边形中四个角都小于90度.故答案为:四边形中四个角都小于90度.【点评】本题考查的是反证法的应用,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.14.【考点】A8:解一元二次方程﹣因式分解法;KQ:勾股定理.【解答】解:∵x2﹣7x+10=(x﹣2)(x﹣5)=0,解得:x1=2,x2=5.当方程的一根为斜边长时,此直角三角形的斜边长为5;当方程的两根为直角边长时,此直角三角形的斜边长为=.故答案为:5或.【点评】本题考查了分解因式法解一元二次方程以及勾股定理,分方程两根有斜边长与方程两根均为直角边长两种情况考虑是解题的关键.15.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【解答】解:∵∠ACB=90°,∠AOC=90°,∴A,C,B,O四点共圆,如图,过点A作AE⊥OC于点E,∴∠ACO=∠ABO=45°,∵AC=4,∴AE=CE=,∵OC=,∴OE=OC﹣CE=,∴AO2=AE2+OE2=40,∴BO2=AO2=40,由勾股定理可得,AB2=BO2+AO2=80,BC==8,故答案为8.【点评】此题主要考查四点共圆和解直角三角形,能分析出四点共圆并合理运用圆的知识和直角三角形的知识进行解决是此题的关键.16.【考点】G6:反比例函数图象上点的坐标特征;L5:平行四边形的性质.【解答】解:∵点P1(1,y1),P2(2,y2)在反比例函数y=的图象上,∴y1=3,y2=,∴P1A1=y1=3,又∵四边形A1P1B1P2,是平行四边形,∴P1A1=B1P2=3,P1A1∥B1P2 ,∴点B1的纵坐标是:y2+y1=+3=;同理求得,点B2的纵坐标是:y3+y2=1+=;点B3的纵坐标是:y4+y3=+1=;…∴点B n的纵坐标是:y n+1+y n=+=.故答案是:,.【点评】本题考查了平行四边形的性质、反比例函数图象上点的坐标特征、反比例函数的图象的综合应用.解答此题的关键是根据平行四边形的对边平行且相等,求得点B n 的纵坐标为y n+1+y n.三、解答题17.【考点】76:分母有理化;7A:二次根式的化简求值.【解答】解:(1)原式=+2×2=+4=5;(2)∵a=+,b=﹣,∴a+b=++﹣=2,ab=(+)(﹣)=3﹣2=1,∴a2+ab+b2=(a+b)2﹣ab=(2)2﹣1=12﹣1=11.【点评】本题考查了二次根式的化简求值,分母有理化.解答(2)题时,不要盲目代入求值,观察所求代数式的特点,然后做变形处理,再代入求值,减少繁琐的计算.18.【考点】A8:解一元二次方程﹣因式分解法.【解答】解:(1)2x﹣1=±(x+3),所以x1=4,x2=﹣;(2)3x2﹣8x﹣9=10,(3x+1)(x﹣3)=0,3x+1=0或x﹣3=0,所以x1=﹣,x2=3.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.19.【考点】V5:用样本估计总体;V7:频数(率)分布表;V8:频数(率)分布直方图;VB:扇形统计图;W4:中位数;W5:众数.【解答】解:(1)∵直方图中,B组的人数为12,最多,∴男生的身高的众数在B组,男生总人数为:4+12+10+8+6=40,按照从低到高的顺序,第20、21两人都在C组,∴男生的身高的中位数在C组,故答案为:B,C;(2)女生身高在E组的百分比为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E组的人数有:40×5%=2(人),故答案为:2;(3)600×+480×(25%+15%)=270+192=462(人).答:该校身高在165≤x<175之间的学生约有462人.【点评】本题考查的是频数分布直方图以及扇形统计图的应用,掌握用样本估计总体的方法、正确读懂扇形图的信息、理解中位数和众数的概念是解题的关键.20.【考点】G8:反比例函数与一次函数的交点问题.【解答】解:(1)设反比例函数解析式为y=(k≠0),把Q(2,﹣3)代入得k=2×(﹣3)=﹣6,∴反比例函数解析式为y=﹣;把P(﹣3,m)代入y=﹣得﹣3m=﹣6,解得m=2,∴P点坐标为(﹣3,2),设一次函数解析式为y=ax+b(a≠0),把P(﹣3,2)和Q(2,﹣3)代入y=ax+b得,解得,∴一次函数的解析式为y=﹣x﹣1;(2)如图,(3)当x<﹣3或0<x<2时,一次函数的值大于反比例函数的值.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.21.【考点】AA:根的判别式;AB:根与系数的关系;K6:三角形三边关系;KH:等腰三角形的性质.【解答】(1)证明:△=(2k﹣4)2﹣4(k2﹣4k)=16>0,所以方程有两个不相等的实数根;(2)解:由于AB与AC不相等,则AB=BC=6或AC=BC=6,把x=6代入方程得36﹣6(2k﹣4)+k2﹣4k=0,整理得k2﹣16k+60=0,解得k1=10,k2=6,当k=10时,方程化为x2﹣8x+60=0,方程的另一个根为10;当k=6时,方程化为x2﹣8x+12=0,方程的另一个根为2;所以k的值为10或6.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式和三角形三边的关系.22.【考点】LO:四边形综合题.【解答】解:(1)如图1,连结AC、BD.∵AB,BC的中点分别为P,Q,∴PQ为△ABC的中位线,∴PQ∥AC,PQ=AC,同理MN∥AC.MN=AC.∴MN=PQ,MN∥PQ,∴四边形PQMN为平行四边形,(2)①四边形PQMN是菱形;如图2,连接AC,BD,∵△ADE和△BCE都是等边三角形,∴AE=DE,CE=BE,∠AED=∠BEC=60°,∴∠AEC=∠DEB,∴△AEC≌△DEB,∴AC=BD,∵点M,N是AD,CD的中点,∴MN是△ADC的中位线,∴MN=AC,同理:PN=BD,∴MN=PN,由(1)知,四边形MNPQ是平行四边形,∴平行四边形MNPQ是菱形;②如图3,连接BD,过点D作DF⊥AB于F,∵△ADE是等边三角形,且AE=5,∴EF=AE=,∵DF=EF=,∵BE=4,∴BF=EF+BE=在Rt△BFD中,根据勾股定理得,BD==,由①知,PN=BD=,由①知,四边形PQMN是菱形,∴四边形PQMN的周长=4PN=2.【点评】此题是四边形的综合题,主要考查了三角形的中位线定理,平行四边形的判定,菱形的判定,全等三角形的判定和性质,勾股定理,解(1)的关键是判断出PQ∥AC,PQ=AC,解(2)的关键是判断出△AEC≌△DEB,以及构造直角三角形,是一道中等难度的中考常考题.23.【考点】LO:四边形综合题.【解答】解:(1)如图1中,连接PD、DM.∵四边形ABCD是正方形,∴AB=CB=CD=AD=2,∠BAD=90°,在Rt△ADM中,DM===,∵B、D关于AC对称,∴PB=PD,∴PB+PM=PD+PM,在△PDM中,易知PD+PM≤DM,∴PM+PB≥,∴PM+PB的最小值为.(2)如图2中,取AD的中点F,连接PF、FN,作NH⊥AD于H.易知四边形NHDC是矩形,∵CN=DH=,DF=1,∴FH=DF﹣DH=1﹣=,在Rt△FNH中,FN==,∵AM=BM,AF=FD,∴M、F关于AC对称,∴PM=PF,∴PM+PN=PF+PN,在△PFN中,PF+PN≥FN,∴PM+PN≥,∴PM+PN的最小值为.(3)如图3中,在AD上取一点N,使得AN=AM2,连接NM1、NP2、DM1、DP1.在Rt△ANM1中,NM1==,在Rt△ADM1中,DM1==,∵N、M2关于AC对称,∴P2N=P2M2,∴P2M+P2M1=P2N+P2M1≥NM1,∴P2M+P2M1的最小值为,同理,P1B+P1M1═P1D+P1M1≥DM1,∴P1B+P1M1的最小值为,∴(P1B+P1M1)2+(P2M1+P2M2)2的最小值=+=8.【点评】本题考查正方形的性质、两点之间线段最短、勾股定理、轴对称等知识,解题的关键是灵活运用轴对称解决最值问题,属于中考常考题型.。
2017年春部分学校期末调研考试八年级数学试卷一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A ,B ,C ,D 四个选项,有且只有一个答案是正确的,请将正确的答案的代号填在答题卷上,填在试题卷上无效.1.下列式子属于最简二次根式的是 ( )A .2B .5.0C .8D .31 2.点P (2,-1)在一次函数1+=kx y 的图像上,则的值为 ( ) A .1 B .-1 C .2 D .33.若平行四边形中两个内角的度数比为1:3,则其中较小的内角为( )A .45°B .60°C .120°D .135° 4.下列计算结果为32的是( )A .28+B .1218-C .36⨯D .224÷5.矩形、菱形、正方形都具有的性质是( )A .对角线相等B .对角线互相垂直C .对角线互相平分D .对角线平分对角6.小明家、食堂、图书馆依次在同一条直线上,小明从家去食堂吃早餐,接着云图书馆读报,然后回家。
如图反映了这个过程,小明离家的距离与时间之间的对应关系,下列说法错误的是( )A .小明从家到食堂用了8minB .小明家离食堂0.6km ,食堂离图书馆0.2kmC .小明吃早餐用了30min ,读报用了17minD .小明从图书馆回家的平均速度为0.08km/min7. 为参加市中学生运动会,某校篮球队准备购买10双运动鞋,各种尺码统计如下表: 则这10双运动鞋尺码的中位数和众数分别为( )尺码(厘米) 25 25.5 26 26.5 27 购买量(双)12322A .25.5,26B .26,25.5,C .25.5,25.5D .25,268.点A (-1,y 1),B (2,y 2)均在直线b x y +-=2的图像上下列结论正确的是( )A .21y y <B .21y y >C .21y y =D .无法确定9.下图是4×4的正方形网格,每个小正方形的边长为1,每个小正方形的顶点叫格点,点A 、B (均在格点上)的位置如图,若以A 、B 为顶点画面积为2的格点平行四边形,则符合条件的平行四边形的个数有( )A .6B .7C .9D .1110.在平面直角坐标系中,点P 的坐标为(a ,b ),点P 的“变换点”P`的坐标定义如下:当b a ≥时,P`点坐标为(a ,-b );当b a <时,P`点坐标为(b ,-a )。
苏 科 版 数 学 八 年 级 下 学 期期 末 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上)1.下列调查中,适合采用普查的是 【 】 A. 夏季冷饮市场上冰激凌的质量 B. 某本书中的印刷错误 C. 《舌尖上的中国》第三季的收视率D. 公民保护环境的意识2.下列二次根式中,属于最简二次根式的是( ) A. 4B. 48C.38D. 73.一元二次方程2820x x --=配方后可变形为( ) A. 2(4)18x -=B. 2(4)14x -=C. 2(2)6x -=D. 2(2)2x -=4.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为( )A.12B.45C.49D.595.如图,在ABC ∆中,已知D ,E 分别为边AB ,AC 的中点,连结DE ,若70C ∠=︒,则AED ∠等于( )A. 70ºB. 67. 5ºC. 65ºD. 60º6.下列说法正确的是( )A. 某日最低气温是–2℃,最高气温是4℃,则该日气温的极差是2℃B. 一组数据2,2,3,4,5,5,5,这组数据的众数是2C. 小丽的三次考试的成绩是116分,120分,126分,则小丽这三次考试平均数是121分D. 一组数据2,2,3,4,这组数据的中位数是2.57.如图,在平行四边形ABCD 中,E ,F 是对角线BD 上不同的两点,连接AE ,CE ,AF ,CF .下列条件中,不能得出四边形AECF 一定是平行四边形的为( )A .BE DF =B. AE CF =C. //AF CED. BAE DCF ∠=∠8.计算221(1)11x x x -÷+-的结果是( ) A. 1x -B.1xC.1x x- D.1x x - 9.如图,已知一次函数4y kx =-的图像与x 轴,y 轴分别交于A ,B 两点,与反比例函数8y x=在第一象限内的图像交于点C ,且A 为BC 的中点,则一次函数的解析式为( )A. 24y x =-B. 44y x =-C. 84y x =-D. 164y x =-10.如图,矩形ABCD 中, AB=8,BC=4,P ,Q 分别是直线AB ,AD 上的两个动点,点E 在边CD 上,2DE =,将DEQ ∆沿EQ 翻折得到FEQ ∆,连接PF ,PC ,则PF PC +的最小值为( )A. 622-B. 8C. 10D. 822-二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.若式子1x -有意义,则实数x 的取值范围是________. 12.当x =________时,分式2521x x -+的值为0.13.某中学组织八年级学生进行“绿色出行,低碳生活”知识竞赛,为了了解本次竞赛的成绩,把学生成绩分成,,,,A B C D E 五个等级,并绘制如图所示的扇形统计图(不完整)统计成绩,则C 等级所在扇形的圆心角是_______º.14.矩形ABCD 的对角线AC 与BD 相交于点O ,4BD =,M ,N 分别是AD ,OD 的中点,则MN 的长度为________.15.已知关于x 的一元二次方程20x mx n ++=有一个非零实数根n -,则m n -的值为_____.16.如图,将矩形ABCD 沿EF 折叠,使点B 落在AD 边上的点G 处,点C 落在点H 处,已知30DGH ∠=︒,连接BG ,则AGB ∠=__________.17.如图,A ,B 是反比例函数6(0)y x x=>图像上的两点,过点A 作//AP y 轴,过点B 作//BP x 轴,交点为P ,连接OA ,OP .若AOP ∆的面积为2,则ABP ∆的面积为______.18.如图①,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运动到点B.图②是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值是__三、解答题(本大题共76分.解答时应写出必要的计算或说明过程.并把解答过程填写在答题卡相应的位置上)19.计算:09(2)51)-+; (2)21(32)4882-20.解下列方程:(1)(3)10x x -=; (2)2373226x x +=++. 21.如图,正比例函数2y x =的图像与反比例函数ky x=的图像有一个交点为(2,)P m .(1)求反比例函数ky x=函数表达式; (2)根据图像,直接写出当41x -<<-时,y 的取值范围.22.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,且2AB =.(1)菱形ABCD 的周长为 ; (2)若2BD =,求AC 的长.23.某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m 分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表.请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c 的值是________; (2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.24.有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和-2;乙袋中有三个完全相同的小球,分别标有数字-1、0和2.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x ;再从乙袋中随机取出一个小球,记录下小球上的数字为y ,设点A 的坐标为(x ,y ). (1)请用表格或树状图列出点A 所有可能的坐标; (2)求点A 在反比例函数y=2x图象上的概率. 25.某批发商以每件50元的价格购进800件T 恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T 恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x 元. (1)填表:(不需化简) 时间 第一个月 第二个月 清仓时 单价(元) 80 40 销售量(件) 200(2)如果批发商希望通过销售这批T 恤获利9000元,那么第二个月的单价应是多少元? 26.(1)如图1,将矩形ABCD 折叠,使AB 落在对角线AC 上,折痕为AE ,点B 落在点1B 处,若66DAC ∠=︒,则BAE ∠= º;(2)小丽手中有一张矩形纸片,9AB =,4=AD .她准备按如下两种方式进行折叠:①如图2,点F 在这张矩形纸片的边CD 上,将纸片折叠,使点D 落在边AB 上的点1D 处,折痕为FG ,若5DF =,求AG 的长;②如图3,点H 在这张矩形纸片的边AB 上,将纸片折叠,使HA 落在射线HC 上,折痕为HK ,点A ,D 分别落在1A ,2D 处,若73DK =,求1A C 的长. 27.已知点E 是正方形ABCD 内一点,连接AE ,CE.(1)如图1,连接BE ,过点A 作AF BE ⊥于点F ,若90BEC ∠=︒,2BF =,四边形ABCE 的面积为352. ①证明:AF BE =; ②求线段AE 的长.(2)如图2,若4AB =,135AEC ∠=︒,2246AE CE +=,求线段AE ,CE 的长.28.如图,在平面直角坐标系xOy 中,矩形OABC 的顶点A 在x 轴的正半轴上,顶点C 在y 轴的正半轴上,D 是BC 边上的一点,:5:3OC CD =,6DB =.反比例函数k(0)y k x=≠在第一象限内的图像经过点D ,交AB 于点E ,:1:2AE BE =.(1)求这个反比例函数的表达式,(2)动点P在矩形OABC内,且满足25PAO OABC S S∆=四边形.①若点P在这个反比例函数的图像上,求点P的坐标,②若点Q是平面内一点,使得以A、B、P、Q为顶点的四边形是菱形,求点Q的坐标.答案与解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上)1.下列调查中,适合采用普查的是【】A. 夏季冷饮市场上冰激凌的质量B. 某本书中的印刷错误C. 《舌尖上的中国》第三季的收视率D. 公民保护环境的意识【答案】B【解析】分析:根据抽样调查和全面调查的意义解答即可.详解: A.调查夏季冷饮市场上冰激凌的质量具有破坏性,宜采用抽样调查;B. 调查某本书中的印刷错误比较重要,宜采用普查;C. 调查《舌尖上的中国》第三季的收视率工作量比较大,宜采用抽样调查;D. 调查公民保护环境的意识工作量比较大,宜采用抽样调查;故选B.点睛: 本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.下列二次根式中,属于最简二次根式的是()A. B. C. D.【答案】D【解析】【分析】根据各个选项中的式子,进行化简,则不能化简的选项中式子即为所求.=2,故选项A错误,,故选项B错误,38=6,故选项C 错误, 7,是最简二次根式,故选项D 正确,故选D【点睛】此题考查最简二次根式,难度不大3.一元二次方程2820x x --=配方后可变形为( ) A. 2(4)18x -= B. 2(4)14x -=C. 2(2)6x -=D. 2(2)2x -=【答案】A 【解析】 【分析】把常数项移到方程右边,再把方程两边加上16,然后把方程作边写成完全平方形式即可 【详解】x 2−8x=2, x 2−8x+16=18, (x−4) 2=18. 故选:A【点睛】此题考查一元二次方程-配方法,掌握运算法则是解题关键4.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为( )A.12B.45C.49D.59【答案】C 【解析】【分析】首先确定在阴影的面积在整个面积中占的比例,根据这个比例即可求出蚂蚁停在阴影部分的概率。
2016-2017学年八年级(下)期末数学试卷一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑.)1.下列式子中,属于最简二次根式的是( )A.B.C.D.2.一元二次方程x(x﹣1)=0的解是( )A.x=0 B.x=1 C.x=0或x=﹣1 D.x=0或x=13.对于反比例函数y=,下列说法正确的是( )A.图象经过点(1,﹣1) B.图象位于第二、四象限C.当x<0时,y随x增大而增大D.图象是中心对称图形4.如图,在Rt△ABC中,CD是斜边AB上的高,则图中相似三角形的对数有( )A.0对B.1对C.2对D.3对5.为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等.从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,以下说法不正确的是( )A.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等大约有900人6.在比例尺为1:50000的地图上,量得甲、乙两地的距离为25cm,则甲、乙两地的实际距离是( )A.1250km B.125km C.12.5km D.1.25km7.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是( )A.=B.=C.=D.=8.如图,函数y1=与y2=k2x的图象相交于点A(1,2)和点B,当y1<y2时,自变量x 的取值范围是( )A.﹣1<x<0或x>1 B.x<﹣1或0<x<1 C.x>1 D.﹣1<x<09.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24cm,△OAB的周长是18cm,则EF的长为( )A.6 B.4 C.3 D.210.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,顶点D恰好落在双曲线y=.若将正方形沿x轴向左平移b个单位长度后,点C恰好落在该双曲线上,则b的值为( )A.1 B.2 C.3 D.4二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上)11.请你写出一个与点(3,﹣4)在同一双曲线上的点的坐标__________.12.已知分式的值为﹣2,那么x的值为__________.13.如果2是一元二次方程x2+bx+2=0的一个根,那么常数b的值为__________.14.如图,已知DE∥BC,AD=5,DB=3,BC=99,则=__________.15.点A(a,b)、B(a﹣1,c)均在函数的图象上.若a<0,则b__________c(填“>”、“<”或”=”).16.在四边形ABCD中,(1)AB∥CD,(2)AD∥BC,(3)AB=CD,(4)AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是__________.17.数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为1米的竹竿的影长为0.8米.同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),其影长为1.2米,落在地面上的影长为2.4米,则树高为__________米.18.如图,正方形ABCD中,CD=5,BE=CF,且DG2+GE2=28,则AE的长__________.三、解答题:(本大题共10小题,共76分.把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明).19.化简或计算:(1);(2).20.先化简,再求值:,其中.21.解方程:(1)x2+4x﹣7=0(2)5x(x﹣3)=(x+1)(x﹣3)22.一只不透明的口袋里装有2个红球,4个黄球和m个白球,每个球除颜色外都相同,将球摇匀,从中摸出1个球,若从中摸到白球的概率为.(1)求白球的个数;(2)小明说:“口袋中共有三种颜色的球,所以从袋中任意摸出一球,摸到红球、白球或黄球的概率都是”.请你判断小明的说法正确吗?为什么?23.如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=4.求DE的长.24.如图在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(﹣2,4),B(﹣2,1),C(﹣5,2).(1)画出△ABC关于x轴对称的△A1B1C1;(2)将△A1B1C1的三个顶点的横坐标与纵坐同时乘以﹣2,得到对应的点A2,B2,C2,请画出△A2B2C2;(3)则S△A1B1C1:S△A2B2C2.25.已知,y=y l+y2,y1与x成正比例,y2与x成反比例,并且当x=﹣1时,y=﹣1,当x=2时,y=5.(1)求y关于x的函数关系式;(2)当y=﹣5时,求x的值.26.如图,在菱形ABCD中,过点A作AE⊥BC,垂足E为BC中点,连接DE,F为DE 上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=2,求AF的长.27.如图,矩形ABCD中,动点P从点A出发,沿线段AB以每秒2cm的速度向点B运动:同时动点Q从点B出发,沿线段BC以每秒1cm的速度向点C运动.当点P到达B点时,点Q同时停止,设运动时间为t秒.已知AD=6,且t=2时,PQ=2.(1)AB=__________;(2)连接DQ并延长交AB的延长线于点E,把DE沿DC翻折交BC延长线于点F,连接EF.①当DP⊥DF时,求t的值;②试证明,在运动过程中,△DEF的面积是定值.28.如图1,直线y=2x与反比例函数y=的图象交于点A(3,n),点B是线段OA上的一个动点.(1)则m=__________,OA=__________;(2)将三角板的直角顶点放置在点B处,三角板的两条直角边分别交x轴、y轴于C、D 两点,求的值;(3)如图2,B是线段OA的中点,E在反比例函数的图象上,试探究:在x轴上是否存在点F,使得∠EAB=∠EBF=∠AOF?如果存在,试求出点F的坐标;如果不存在,请说明理由.2016-2017学年八年级(下)期末数学试卷一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑.)1.下列式子中,属于最简二次根式的是( )A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的定义判断即可.【解答】解:A、,不是最简二次根式,错误;B、是最简二次根式,正确;C、不是最简二次根式,错误;D、不是最简二次根式,错误;故选B【点评】此题考查最简二次根式问题,在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.2.一元二次方程x(x﹣1)=0的解是( )A.x=0 B.x=1 C.x=0或x=﹣1 D.x=0或x=1【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】方程利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程x(x﹣1)=0,可得x=0或x﹣1=0,解得:x=0或x=1.故选:D.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.3.对于反比例函数y=,下列说法正确的是( )A.图象经过点(1,﹣1) B.图象位于第二、四象限C.当x<0时,y随x增大而增大D.图象是中心对称图形【考点】反比例函数的性质.【分析】根据反比例函数的性质对四个选项进行逐一分析即可.【解答】解:A、∵1×(﹣1)=﹣1≠1,∴点(1,﹣1)不在反比例函数y=的图象上,故本选项错误;B、∵k=1>0,∴反比例函数y=的图象在一、三象限,故本选项错误;C、∵k=1>0,∴此函数在每一象限内y随x的增大而减小,故本选项错误;D、∵函数y=是反比例函数,∴此函数的图象是中心对称图形,故本选项正确.故选:D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的性质是解答此题的关键,即反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.4.如图,在Rt△ABC中,CD是斜边AB上的高,则图中相似三角形的对数有( )A.0对B.1对C.2对D.3对【考点】相似三角形的判定.【分析】由三角形高的定义得到∠ADC=∠BDC=90°,则根据有两组角对应相等的两个三角形相似可判断Rt△ACD∽Rt△ABC和Rt△ABC∽Rt△CBD,所以Rt△C BD∽Rt△ACD.【解答】解:∵CD是斜边AB上的高,∴∠ADC=∠BDC=90°,∵∠CAD=∠BAC,∴Rt△ACD∽Rt△ABC,∵∠DBC=∠CBA,∴Rt△ABC∽Rt△CBD,∴Rt△CBD∽Rt△ACD.故选D.【点评】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.5.为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等.从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,以下说法不正确的是( )A.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等大约有900人【考点】条形统计图;用样本估计总体;扇形统计图.【专题】图表型.【分析】根据条形统计图和扇形统计图提供的数据分别列式计算,再对每一项进行分析即可.【解答】解:A、=200(名),则样本容量是200,故A正确;B、成绩为A的人数是:200×60%=120(人),成绩为D的人数是200﹣120﹣50﹣20=10(人),D等所在扇形的圆心角为:360°×=18°,故B错误;C、样本中C等所占百分比是1﹣60%﹣25%﹣×100%=10%,故C正确;D、全校学生成绩为A等大约有1500×60%=900人,故D正确;由于该题选择错误的,故选:B.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.6.在比例尺为1:50000的地图上,量得甲、乙两地的距离为25cm,则甲、乙两地的实际距离是( )A.1250km B.125km C.12.5km D.1.25km【考点】比例线段.【分析】根据比例尺=图上距离:实际距离,依题意列出比例式,即可求得实际距离.【解答】解:设实际距离为xcm,则:1:50000=25:x,解得x=1250000.12500000cm=12.5km.故选:C.【点评】本题考查了比例尺的定义.要求能够根据比例尺由图上距离正确计算实际距离,注意单位的换算.7.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是( )A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【解答】解:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得:=.故选:A.【点评】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.8.如图,函数y1=与y2=k2x的图象相交于点A(1,2)和点B,当y1<y2时,自变量x的取值范围是( )A.﹣1<x<0或x>1 B.x<﹣1或0<x<1 C.x>1 D.﹣1<x<0【考点】反比例函数与一次函数的交点问题.【分析】根据反比例函数关于原点对称即可得到B的坐标,求y1<y2时x的范围,即一次函数的图象在反比例函数的图象的上边时,对应的x的范围.【解答】解:B的坐标是(﹣1,﹣2),则当y1<y2时,自变量x的取值范围是:﹣1<x<0或x>1.故选A.【点评】本题综合考查反比例函数与一次函数的相关知识点,理解反比例函数的图象是中心对称图形求得B的坐标是关键,函数值的比较,体现了数形结合的思想.9.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24cm,△OAB的周长是18cm,则EF的长为( )A.6 B.4 C.3 D.2【考点】三角形中位线定理;平行四边形的性质.【分析】根据AC+BD=24厘米,可得出出OA+OB=12cm,继而求出AB,判断EF是△OAB 的中位线即可得出EF的长度.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12cm,∵△OAB的周长是18厘米,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3cm.故选C.【点评】本题考查了三角形的中位线定理,解答本题需要用到:平行四边形的对角线互相平分,三角形中位线的判定定理及性质.10.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,顶点D恰好落在双曲线y=.若将正方形沿x轴向左平移b个单位长度后,点C恰好落在该双曲线上,则b的值为( )A.1 B.2 C.3 D.4【考点】反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征;正方形的性质;坐标与图形变化-平移.【专题】计算题.【分析】作DE⊥x轴于E,CF⊥y轴于F,如图,先根据坐标轴上点的坐标特征得到B(0,3),A(1,0),再证明△AOB≌△DEA得到AE=OB=3,DE=OA=1,则D(4,1),同样方法可得C(3,4),接着根据反比例函数图象上点的坐标特征确定k=4,则反比例函数解析式为y=,然后计算当y=4时所对应的自变量,从而可确定b的值.【解答】解:作DE⊥x轴于E,CF⊥y轴于F,如图,当x=0时,y=﹣3x+3=3,则B(0,3);当y=0时,﹣3x+3=0,解得x=1,则A(1,0),∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠2+∠3=90°,而∠1+∠3=90°,∴∠1=∠3,在△AOB和△DEA中,∴△AOB≌△DEA,∴AE=OB=3,DE=OA=1,∴D(4,1),同样方法可得△AOB≌△BFC,∴CF=OB=3,BF=OA=1,∴C(3,4),而顶点D落在双曲线y=,∴k=4×1=4,∴反比例函数解析式为y=,当y=4时,=4,解得x=1,∴C点向左平移2个单位恰好落在该双曲线上,即b=2.故选B.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了正方形的性质和平移变换.二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上)11.请你写出一个与点(3,﹣4)在同一双曲线上的点的坐标(﹣3,4).【考点】反比例函数图象上点的坐标特征.【分析】写出一个点,只要满足点的横纵坐标之积等于3×(﹣4)即可.【解答】解:设反比例函数解析式为y=(k为常数,k≠0),则k=3×(﹣4)=﹣12,而﹣3×4=﹣12,所以点(﹣3,4)在反比例函数y=﹣的图象上.故答案为(﹣3,4).【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数k的几何意义.12.已知分式的值为﹣2,那么x的值为0.【考点】分式的值.【分析】根据题意列出方程求解即可.【解答】解:∵的值为﹣2,∴=﹣2,解得x=0.故答案为:0.【点评】本题主要考查了分式的值,解题的关键是正确的列出方程.13.如果2是一元二次方程x2+bx+2=0的一个根,那么常数b的值为﹣3.【考点】一元二次方程的解;一元二次方程的定义.【专题】因式分解.【分析】把方程的解x=2代入方程得到关于b的等式,可以求出字母系数b的值.【解答】解:把2代入方程有:4+2b+2=02b=﹣6b=﹣3.故答案是:﹣3.【点评】本题考查的是一元二次方程的解,把方程的解代入方程可以求出字母系数的值.14.如图,已知DE∥BC,AD=5,DB=3,BC=99,则=.【考点】相似三角形的判定与性质.【分析】由DE∥BC证明△ADE∽△ABC,根据“相似三角形面积的比等于相似比的平方”可得两三角形面积比.【解答】解:AD=5,DB=3则AB=8,根据DE∥BC,得到△ADE∽△ABC,相似比是5:8,又因为相似三角形面积的比等于相似比的平方,则=.【点评】本题考查对相似三角形性质的理解,相似三角形面积的比等于相似比的平方.15.点A(a,b)、B(a﹣1,c)均在函数的图象上.若a<0,则b<c(填“>”、“<”或”=”).【考点】反比例函数图象上点的坐标特征;反比例函数的性质.【分析】根据反比例函数的增减性,k>0,当a<0时,两坐标位于第三象限的图象上,y 随x的增大而减小,由此判断a、b的大小.【解答】解:∵函数y=的图象位于一、三象限,又∵a<0,∴a﹣1<0,A(a,b),B(a﹣1,c)均在第三象限的分支上,在这个分支上y随x的增大而减小,∵a>a﹣1,∴b<c.故答案为b<c.【点评】本题考查利用反比例函数的增减性质判断图象上点的坐标特征.16.在四边形ABCD中,(1)AB∥CD,(2)AD∥BC,(3)AB=CD,(4)AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是.【考点】列表法与树状图法;平行四边形的判定.【专题】计算题.【分析】列表得出所有等可能的情况数,找出能判定四边形ABCD是平行四边形的情况数,即可求出所求的概率.为(2,1);(3,1);(1,2);(4,2);(1,3);(4,3);(2,4);(3,4),则P==.故答案为:【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为1米的竹竿的影长为0.8米.同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),其影长为1.2米,落在地面上的影长为2.4米,则树高为4.2米.【考点】相似三角形的应用.【专题】压轴题.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.本题中:经过树在教学楼上的影子的顶端作树的垂线和经过树顶的太阳光线以及树所成三角形,与竹竿,影子光线形成的三角形相似,这样就可求出垂足到树的顶端的高度,再加上墙上的影高就是树高.【解答】解:设从墙上的影子的顶端到树的顶端的垂直高度是x米.则有,解得x=3.∴树高是3+1.2=4.2(米),故填4.2.【点评】本题实际是一个直角梯形的问题,可以通过作垂线分解成直角三角形与矩形的问题.18.如图,正方形ABCD中,CD=5,BE=CF,且DG2+GE2=28,则AE的长.【考点】正方形的性质;全等三角形的判定与性质;勾股定理.【分析】连接DE,由正方形的性质得出AB=BC=CD=DA=5,∠A=∠BCD=∠B=90°,由SAS 证明△BCE≌△CDF,得出对应角相等∠BEC=∠CFD,再由角的互余关系证出△DGE是直角三角形,由勾股定理求出DE2,AE2,即可得出AE的长.【解答】解:连接DE,如图所示:∵四边形ABCD是正方形,∴AB=BC=CD=DA=5,∠A=∠BCD=∠B=90°,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠BEC=∠CFD,∵∠BEC+∠BCE=90°,∴∠CFD+∠BCE=90°,∴∠DGE=∠CGF=90°,∴DE2=DG2+GE2=28,∴AE2=DE2﹣AD2=28﹣25=3,∴AE=;故答案为:.【点评】本题考查了正方形的性质、全等三角形的判定与性质、直角三角形的判定、勾股定理;熟练掌握正方形的性质,并能进行推理计算是解决问题的关键.三、解答题:(本大题共10小题,共76分.把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明).19.化简或计算:(1);(2).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)根据二次根式的乘法法则运算;(2)先进行二次根式的乘除法运算,然后合并即可.【解答】解:(1)原式=2=10;(2)原式=+﹣÷=+3﹣3=.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.20.先化简,再求值:,其中.【考点】分式的化简求值.【分析】分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.【解答】解:=÷(+)=÷=×=,把,代入原式====.【点评】此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.21.解方程:(1)x2+4x﹣7=0(2)5x(x﹣3)=(x+1)(x﹣3)【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)求出b2﹣4ac的值,再代入公式求出即可;(2)移项,分解因式,再代入公式求出即可.【解答】解:(1)x2+4x﹣7=0,△=42﹣4×1×(﹣7)=44,x=,x1=﹣2+,x2=﹣2﹣;(2)5x(x﹣3)=(x+1)(x﹣3),5x(x﹣3)﹣(x+1)(x﹣3)=0,(x﹣3)5x﹣x﹣1)=0,x﹣3=0,5x﹣x﹣1=0,x1=3,x2=.【点评】本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程是解此题的关键,难度适中.22.一只不透明的口袋里装有2个红球,4个黄球和m个白球,每个球除颜色外都相同,将球摇匀,从中摸出1个球,若从中摸到白球的概率为.(1)求白球的个数;(2)小明说:“口袋中共有三种颜色的球,所以从袋中任意摸出一球,摸到红球、白球或黄球的概率都是”.请你判断小明的说法正确吗?为什么?【考点】概率公式.【分析】(1)根据“口袋里装有2个红球,4个黄球和m个白球,每个球除颜色外都相同,将球摇匀,从中摸出1个球,若从中摸到白球的概率为”得:=,则可求得答案;(2)分别求得摸到红球、白球或黄球的概率,即可知小明的说法错误.【解答】解:(1)设口袋中白球的个数为m,根据题意得:=,解得:m=3;答:白球的个数为3个;(2)不正确.∵P(白球)=,P(红球)=,P(黄球)=;∴小明的说法不正确.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.23.如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=4.求DE的长.【考点】相似三角形的判定与性质.【分析】(1)利用已知条件易证AB∥DE,进而证明△DCE∽△BCA;(2)首先证明AE=DE,设DE=x,所以CE=AC﹣AE=AC﹣DE=4﹣x,利用(1)中相似三角形的对应边成比例即可求出x的值,即DE的长.【解答】(1)证明:∵AD平分∠BAC,∴∠BAD=∠DA,∵∠EAD=∠ADE,∴∠BAD=∠ADE,∴AB∥DE,∴△DCE∽△BCA;(2)解:∵∠EAD=∠ADE,∴AE=DE,设DE=x,∴CE=AC﹣AE=AC﹣DE=4﹣x,∵△DCE∽△BCA,∴DE:AB=CE:AC,即x:3=(4﹣x):4,解得:x=,∴DE的长是.【点评】本题考查了相似三角形的判定和性质、平行线的判定和性质、等腰三角形的判定和性质,题目的综合性较强,难度不大.24.如图在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(﹣2,4),B(﹣2,1),C(﹣5,2).(1)画出△ABC关于x轴对称的△A1B1C1;(2)将△A1B1C1的三个顶点的横坐标与纵坐同时乘以﹣2,得到对应的点A2,B2,C2,请画出△A2B2C2;(3)则S△A1B1C1:S△A2B2C2.【考点】作图-位似变换;作图-轴对称变换.【分析】(1)利用关于x轴对称点的性质得出对应点坐标进而得出答案;(2)利用对应点横坐标与纵坐同时乘以﹣2,进而得出各点的位置;(3)利用位似图形的性质得出面积比即可.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)∵△A1B1C1的三个顶点的横坐标与纵坐同时乘以﹣2,得到对应的点A2,B2,C2,∴△A1B1C1与△A2B2C2,关于原点位似,位似比为1:2,∴S△A1B1C1:S△A2B2C2=1:4.【点评】此题主要考查了轴对称变换以及位似变换和位似图形的性质,根据题意得出对应点坐标是解题关键.25.已知,y=y l+y2,y1与x成正比例,y2与x成反比例,并且当x=﹣1时,y=﹣1,当x=2时,y=5.(1)求y关于x的函数关系式;(2)当y=﹣5时,求x的值.【考点】待定系数法求反比例函数解析式.【分析】(1)设y1=kx,y2=则y=y1+y2=kx+,再把当x=﹣1时,y=﹣1,当x=2时,y=5代入可得,然后再解方程组即可得到k、n的值,进而可得答案;(2)把y=﹣5代入(1)所得的函数解析式即可.【解答】解:(1)设y1=kx,y2=则y=y1+y2=kx+,∵当x=﹣1时,y=﹣1,当x=2时,y=5,∴,解得:,∴y关于x的函数关系式为y=3x﹣;(2)把y=﹣5代入y=3x﹣得:﹣5=3x﹣,解得:x1=﹣1,x2=﹣.【点评】此题主要考查了待定系数法求反比例函数的解析式,关键是正确表示出函数解析式.26.如图,在菱形ABCD中,过点A作AE⊥BC,垂足E为BC中点,连接DE,F为DE 上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=2,求AF的长.【考点】相似三角形的判定与性质;菱形的性质.【分析】(1)由菱形的性质得出AD∥BC,AB∥CD,得出∠ADF=∠DEC,∠B+∠C=180°,再由已知条件和邻补角关系求出∠AFD=∠C,即可得出结论;(2)由菱形的性质得出AD=AB=BC=2,由勾股定理求出AE、DE,再由相似三角形的性质得出对应边成比例,即可求出AF的长.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AB∥CD,∴∠ADF=∠DEC,∠B+∠C=180°,∵∠AFE+∠AFD=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)解:∵四边形ABCD是菱形,∴AD=AB=BC=2,∵AE⊥BC,E为BC中点,∴AE⊥AD,BE=BC=1,∴∠DAE=90°,AE==,∴DE==,∵△ADF∽△DEC,∴,即,解得:AF=.【点评】本题考查了菱形的性质、相似三角形的判定与性质、勾股定理;熟练掌握菱形的性质,并能进行推理论证与计算是解决问题的关键.27.如图,矩形ABCD中,动点P从点A出发,沿线段AB以每秒2cm的速度向点B运动:同时动点Q从点B出发,沿线段BC以每秒1cm的速度向点C运动.当点P到达B点时,点Q同时停止,设运动时间为t秒.已知AD=6,且t=2时,PQ=2.(1)AB=8;(2)连接DQ并延长交AB的延长线于点E,把DE沿DC翻折交BC延长线于点F,连接EF.①当DP⊥DF时,求t的值;②试证明,在运动过程中,△DEF的面积是定值.【考点】四边形综合题.【分析】(1)根据勾股定理得出PB的长,再得出AP的长,进而得出AB的长度即可;(2)①首先证明△ADP∽△CDF,根据相似三角形的性质可得,进而得到,解出t即可;②由△EBQ∽△EAD,得,进而得到BE=,再根据三角形的面积公式进行计算即可.【解答】解:(1)∵AD=6,且t=2时,PQ=2,∵动点P从点A出发,沿线段AB以每秒2cm的速度向点B运动:同时动点Q从点B出发,沿线段BC以每秒1cm的速度向点C运动,∴AP=2×2=4,BQ=2×1=2,∴在Rt△BPQ中,BP=,∴AB=AP+PB=4+4=8,故答案为:8;(2)①∵四边形ABCD是矩形,∴∠A=∠ADC=∠ABC=∠BCD=90°,∵DP⊥DF,∴∠ADP=∠CDF,∴△ADP∽△CDF,∴,∵AD=6,AP=2t,CD=8,CF=CQ=6﹣t,∴,解得t=;②定值,理由如下:∵△EBQ∽△EAD,∴,即,解得BE=,∴△DEF的面积=×QF×(DC+BE)=×2(6﹣t)×(8+)=48,∴△DEF的面积为48.【点评】此题主要考查了相似三角形的判定与性质,关键是掌握证明三角形相似的方法和相似三角形的性质,再利用三角形的面积公式进行计算.28.如图1,直线y=2x与反比例函数y=的图象交于点A(3,n),点B是线段OA上的一个动点.(1)则m=18,OA=3;(2)将三角板的直角顶点放置在点B处,三角板的两条直角边分别交x轴、y轴于C、D两点,求的值;(3)如图2,B是线段OA的中点,E在反比例函数的图象上,试探究:在x轴上是否存在点F,使得∠EAB=∠EBF=∠AOF?如果存在,试求出点F的坐标;如果不存在,请说明理由.【考点】反比例函数综合题.【专题】综合题.【分析】(1)先把A(3,n)代入y=2x求出n,从而得到A(3,6),再利用两点间的距离公式计算出OA=3,然后根据反比例函数图象上点的坐标特征易得m=18;(2)过B分别作x轴和y轴的垂线,垂足分别为M、N,如图1,设B(a,2a),则BM=2a,BN=a,利用等角的余角相等得到∠MBC=∠DBN,于是可判断Rt△MBC∽Rt△DBN,然后利用相似比易得=2;(3)作AH⊥y轴于H,延长AE交x轴于G点,连结GB,如图2,由∠EAB=∠AOF得到△GAO为等腰三角形,再根据等腰三角形的性质得GB⊥OA,接着证明Rt△OBG∽Rt△AHO,利用相似比计算出OG=,得到G(,0),然后利用待定系数法求出直线AG的解析式为y=﹣x+10,则通过解方程组得E点坐标为(,4),于是可利用两点间的距离公式计算出AE=,最后证明△ABE∽△OFB,利用相似比计算出OF,从而得到F点的坐标.【解答】解:(1)把A(3,n)代入y=2x得n=2×3=6,则A(3,6),所以OA==3,而点A在反比例函数y=图象上,所以m=3×6=18;故答案为18,3;。