四年级数学鸡兔同笼问题与假设法练习题13
- 格式:doc
- 大小:21.50 KB
- 文档页数:1
鸡兔同笼问题讲解及习题例1:小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
解:有兔(44-2×16)÷(4-2)=6(只)有鸡16-6=10(只)。
答:有6只兔,10只鸡。
当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。
我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。
因此只要算出20里面有几个2,就可以求出鸡的只数。
有鸡(4×16-44)÷(4-2)=10(只),有兔16-10=6(只)。
由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。
因此这类问题也叫置换问题。
例2:100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演变而得。
如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。
现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3-1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100-80=20(人)。
同样,也可以假设100人都是小和尚,同学们不妨自己试试。
在下面的例题中,我们只给出一种假设方法。
例3:彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。
小学数学《鸡兔同笼问题》练习题(含答案)【例1】(古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?分析:假设46只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚,这是因为我们把鸡当成了兔子,如果把1只鸡当成1只兔,就要比实际多4-2=2(只)脚,那么56只脚是我们把56÷2=28只鸡当成了兔子,所以鸡的只数就是28,兔的只数是46-28=18。
我们称这种解题的方法为“假设法”。
它是一种重要的解题思路。
当然,这里我们也可以假设46只全是鸡,小朋友们,请你按此思路做做这道题目!鼓励学生从两个方面假设解题,更深一步理解假设法。
【例2】某学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?分析:如果30间都是小宿舍,那么只能住4×30=120人,而实际上住了168人.大宿舍比小宿舍每间多住6-4=2人,所以大宿舍有(168-120)÷2=24间。
【例3】100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?分析:本题由中国古算名题“百僧分馍问题”演变而得。
如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300—140=160(个)。
现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3—1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100—80=20(人)。
同样,也可以假设100人都是小和尚,同学们不妨自己试试。
【例4】刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?分析:假设租的10条船都是大船,那么船上应该坐6×10= 60(人)。
假设后的总人数比实际人数多了60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。
奥数专题:鸡兔同笼(讲练测)-数学四年级下册人教版知识点讲解鸡兔同笼,这是一个古老的数学问题,在现实生活中也是普遍存在的.重点掌握鸡兔同笼问题的解法——假设法,并会将这种方法应用到一些实际问题中.解鸡兔同笼问题的基本关系式是:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数当然,也可以先假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数练习巩固一、选择题1.某新兵连进行野外军训,晴天每天行20千米,雨天每天行10千米,8天共行了140千米(假设8天只有晴天和雨天),晴天有()天。
A.2B.3C.5D.62.在数学活动课上,可可用115根小棒摆了35个三角形和正方形,正方形摆了几个?下面列式正确的是()。
A.(115-35×3)÷4B.(35×4-115)÷(4-3)C.(115-35×3)÷(4-3)D.(35×4-115)÷43.山水酒店有3人房和2人房共50间,总共可以住112位客人,则该酒店有()。
A.3人房12间,2人房38间B.3人房38间,2人房12间C.3人房16间,2人房34间D.3人房8间,2人房42间4.鸡兔同笼,头共50个,脚共140只,鸡有()只。
5.组装车间要装配两轮摩托车和三轮摩托车共21辆,需要51个轮胎。
两轮摩托车有()辆。
A.12B.10C.9D.86.动物园里的孔雀和梅花鹿共有20只,共有脚52只,其中孔雀有()只。
A.14B.12C.10D.67.小明买了钢笔和圆珠笔共6支,其中钢笔每支12元,圆珠笔每支7元,用了52元,小明共买钢笔()支。
A.5B.4C.3D.28.一次学法知识竞赛共20道题,做对一题得5分,做错或者不做倒扣2分,小林考了79分,他答对了()道题。
人教版四年级下册数学鸡兔同笼练习题及答案1. 某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?假设全做对:20×5=100100-64=3636÷=6·错题20-6=14·对题2. 鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只.问:鸡、兔各有几只?100-86=1414÷2=7·兔100-7×4=7272÷=1·兔:7+12=19鸡:12只3. 自行车越野赛全程20千米,全程被分为0个路段,其中一部分路段长14千米,其余的长9千米.问:长9千米的路段有多少个?假设全是9千米的路段:9×20=180220-180=4040÷=8·14千米路段20-8=12·9千米路段4. 有一群鸡和兔,腿的总数比头的总数的2倍多18只,兔有几只?18÷2=9·兔5、某次数学测验共20题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分,问他做对几题?假设全做对:5×20=100100-76=2424÷=4·错题20-4=16·对题6. 12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?假设全部在单打:12×2=2434-24=1010÷=5·双打12-5=7·单打7、鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?100-80÷2=6060÷3=20鸡:40+2×20=80兔:20只8、红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?135+5+7=147147÷3=4949-5=4449-7=429、刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?假设全是小船:4×10=4041-40=110-1=9小船1只大船10、有鸡兔共20只,脚44只,鸡兔各几只?假设全是鸡:20×2=4044-40=44÷=2·兔20-2=18·鸡11、鸡、兔共笼,鸡比兔多26只,足数共274只,问鸡、兔各几只?74-26×2=222222÷=3737+26=63·鸡63-26=37·兔12、六年二班全体同学,植树节那天共栽树180棵.平均每个男生栽5棵、每个女生栽3棵;又知女生比男生多4人,该班男生和女生各多少人?180-3×4=168168÷=2121+4=25·女生男生:21人小学四年级数学奥数练习题鸡兔同笼问题第九节鸡兔同笼问题基本公式是:兔数=÷鸡兔同笼问题例题透析11、有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,也就是244÷2=122.在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数122-88=34,有34只兔子.当然鸡就有54只.答:有兔子34只,鸡54只.上面的计算,可以归结为下面算式:总脚数÷2-总头数=兔子数. 上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,“脚数”就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法.还说此题.如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了8×4-244=108.每只鸡比兔子少只脚,所以共有鸡÷=4.说明我们设想的88只“兔子”中,有54只不是兔子.而是鸡.因此可以列出公式鸡数=÷.当然,我们也可以设想88只都是“鸡”,那么共有脚2×88=176,比244只脚少了244-176=68.每只鸡比每只兔子少只脚,68÷2=34.说明设想中的“鸡”,有34只是兔子,也可以列出公式兔数=÷.上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为“假设法”.鸡兔同笼问题例题透析2红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红、蓝铅笔各买几支?解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚.现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有蓝笔数=÷=24÷8=3.红笔数=16-3=13. 答:买了13支红铅笔和3支蓝铅笔.对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的“脚数”19与11之和是30.我们也可以设想16只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚数是8×=240.比280少40.40÷=5.就知道设想中的8只“鸡”应少5只,也就是“鸡”数是3。
小学四年级鸡兔同笼20道典型数学题假设法解题(含答案解析易中难度)1.有一只笼子装着鸡和兔,从上数头有20个,从下数脚64只,问笼中鸡、兔各有多少只?解:①假设笼中全是兔子,共有多少只脚?4×20=80(只)②比原来的总数多多少只脚?80-64=16(只)③一只兔子比一只鸡多多几只脚?4-2=2④(把看多的兔子换成鸡)有几只鸡?16÷2=8⑤兔子有多少只?20-8=12只答:有鸡8只,兔12只。
2.一个商场有两轮摩托车和三轮摩托车共26辆,其中共有轮子67个,问两轮摩托车和三轮摩托车各有多少辆?解:①假设商场全是三轮摩托车,共有多少个轮子?3×26=78(个)②比原来的总数多多少个轮子?78-67=11(个)③一个三轮摩托车比一辆二轮摩托车多几各轮子?3-2=1④(把看多的三轮摩托车换成两轮摩托车)有几辆两轮摩托车?11÷1=11⑤有多少辆三轮摩托车?26-11=15只答:有两轮摩托车11辆,三轮摩托车15辆。
3. 小明家有200千克油,分别装在48个油瓶中,其中大油瓶每瓶装5千克,小油瓶每瓶装3千可,问大、小油瓶各有多少个?解:①假设全部是大油瓶,共装多少千克油?5×48=240(千克)②比原来的总数多多少千克?240-200=40(千克)③一个大油瓶比一个小油瓶多装多少千克油?5-3=2④(把看多的大油瓶换成小油瓶)有几小油瓶?40÷2=20⑤有多少个大油瓶?48-20=28(个)答:有大油瓶28个,小油瓶20个。
4.小亮存钱罐里有42枚硬币,共有32元,分别是硬币1元和5角的,问1元和5角的各有多少枚?解:①假设全部1元的,即10角,共有多少角?10×42=420(角)②比原来的总数多多少角?420-320=100(角)③1元比5角多多少角?10-5=5(角)④(把看多的1元换成5角)有几5角?100÷5=20(枚)⑤有多少个1元?42-20=22(枚)答:有1元的22枚,5角的20枚。
第十三讲鸡兔同笼问题“鸡兔同笼〞是一类有名的中国古算题.最早出现在?孙子算经?中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--“假设法〞来求解.因此很有必要学会它的解法和思路.方法:①假设法(即可以从头的角度假设也可以从脚的角度假设)②画线段图③画实物简图④注意恰当分组〖经典例题〗例1、一只鸡有一个头2只脚,一只兔有一个头4只脚.如果一个笼子里关着的鸡和兔共有10个头和26只脚,你知道笼子里有几只鸡、有几只兔吗?分析:假设10只全是鸡.一共有21020-=条腿,⨯=条腿,比实际少了26206每把一只鸡换成一只兔子,腿的总数增加422-=条,要增加6条腿就应该把-=只鸡.623÷=只鸡换成兔子.那么有3只兔,有1037例2、一次口算比赛,规定:不能不答,答对一题得8分,答错一题扣5分.小华答了18道题,得92分,小华在此比赛中答错了多少道题?分析:此题是一个实际问题,我们先找到“鸡〞和“兔子〞,我们假设答对题为“兔子〞,答错题为“鸡〞。
那么“兔子〞有8只脚,“鸡〞有“扣5〞只脚。
假设18道题全部做对了,即18只都是“兔子〞,那么小华应得188144⨯=分,比实际多了1449252-=分,我们每把一道对的题换成错的,那么分数应减少-=道题。
÷=道题,所以做对18414+=分,要减少52分就要错:521348513〖方法总结〗此类问题属于鸡兔同笼类的根本问题---“头和、腿和〞解决此类问题所用到的方法为假设法,运用假设法需要注意以下几点:1.如果假设全是兔子,那么先求出来的是鸡的只数;2.如果假设全是鸡,那么先求出来的是兔子的只数.3.如果遇到实际问题,关键是找到“鸡〞和“兔子〞分别代表什么,他们的脚有几只。
例2属于“不得分倒扣分〞、“不得运费倒赔损失费〞问题,解决此类问题我们仍然可以采用假设法,但是运用此法是一定要注意,这里面“倒扣〞这一词的含义,灵活运用。
〖稳固练习〗练习1.一辆自行车有2个轮子,一辆三轮车有3个轮子.车棚里放着自行车和三轮车共10辆,数数车轮共有26个.问自行车有多少辆,三轮车多少辆?练习2.有2分和5分硬币共28枚,总值为1元零7分,问2分硬币有多少枚?练习3.松鼠采松子,晴天每天采20个,雨天每天采12个,共采了112个,平均每天采14个.问有多少天是雨天?练习4.一辆卡车运粮食,每次可运粮食5吨.晴天每天可运9次,雨天每天只能运5次,它一连10天共运粮食370吨,问这几天中有几天是雨天,几天是晴天?练习5.在一次数学考试中规定:做对一道题得5分,做错一道题倒扣3分,不能不答.小红做了10道题共得了34分,请问他做对了多少道题?练习6.张明、李强两人进行射击比赛,规定每中一发得20分,脱靶一发扣12分,两人各打了10发,共得208分,其中张明比李强多64分.那么张明射中多少发,李强射中多少发?〖经典例题〗例3、鸡兔同笼,共24只,兔子腿总数比鸡腿多54条,求鸡、兔各几只?分析1:用假设法.假设24只全是兔子,那么兔子腿总数比鸡腿总数多了24496⨯=条,根据假设做出来的差比实际的差多了965442-=条.每把一只兔子换成一只鸡,兔子腿总数减少4,鸡腿总数增加2,之间的差距就减小6,那么应该将4267÷=只兔子换成鸡,那么有7只鸡,17只兔子.方法2:画图,根据图列算式.注意分组的思想.--÷+=组,所以有兔子31417(24141)(12)3⨯+=只.+=只,有鸡2317例4、鸡兔同笼,鸡比兔子多30只,兔子和鸡的腿数总和为90,求鸡、兔各几只?分析1:假设法。
鸡兔同笼问题三种解题方法及精品练习题例题:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,你能算出鸡和兔子各有多少只吗?方法一:人见人爱的方法“列表法”列举法就是将各种情况一一地罗列出来,再针对要求,筛选符合题意的答案。
根据上面的表格,我们可以看出,鸡为9只,兔子为5只。
我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些!方法二:最常用的方法“假设法”假设法:把两个不同数量假设成相同数量,再找出与假设量之间的差距解决。
其数量关系:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数 - 兔数 = 鸡数在本题中,假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。
或者假设全部是兔子,则有14×4=56条腿,比实际多56-38=18只,一只兔子变成一只鸡腿减少2条,18÷2=9只,所以需要9只鸡9兔子变成鸡,即鸡为9只,兔子为14-9=5只。
方法三:最酷的方法“金鸡独立法”(见文档最后一页)精品练习1.鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只.问:鸡、兔各有几只?2.某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?3.有一群鸡和兔,腿的总数比头的总数的2倍多18只,兔有几只?4.一只货船载重260吨,容积1000米3,现装运甲、乙两种货物,已知甲种货物每吨体积是8米3,乙种货物每吨体积2米3,要使这只船的载重量与容积得到充分利用,甲、乙两种货物应分别装多少吨?5.自行车越野赛全程 220千米,全程被分为 20个路段,其中一部分路段长14千米,其余的长9千米.问:长9千米的路段有多少个?6.如果被乘数增加15,乘数不变,积就增加180;如果被乘数不变,乘数增加4,那么积就增加120.原来两个数相乘的积是多少?7.编一本695页的故事书的页码,一共要用多少个数字?其中数字“5”用去了几个?8.编一本辞典一共用去了6889个数字,这本辞典共有几页?9. 甲乙两人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分,每人各射10发,共命中14发,结算分数时,甲比乙多10分,问甲、乙各中几发?10. 某次数学测验共20题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分,问他做对几题?11. 有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379.6元,问这次搬运中玻璃损坏了几只?12. 鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?13. 今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只,问鸡兔各几只?14. 蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和 23对翅膀,问蜘蛛、蝴蝶、蝉各有几只?15. 12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?。
人教版数学2022-2023学年四年级下册第九单元数学广角—鸡兔同笼练习题学校:___________姓名:___________班级:_________________一、填空题1.选择正确的余数填在括号里。
÷=……( )(3,30)(1)7104017÷=……( )(5,50,500)(2)35006005÷=……( )(1,10,100)(3)190030062.幸福路小学六年级同学利用暑假进行拓展活动,晴天每日行17.5千米,雨天每日行11千米,13天共行201.5千米。
这期间雨天有( )天,晴天有( )天。
3.在投球比赛中,李明2分球和3分球一共进了8个,共得18分,他投进2分球( )个,3分球( )个。
4.6辆小轿车的轮子与( )辆三轮车的轮子相等。
5.张叔叔用90个轮子装配自行车和三轮车,一共装配了33辆。
张叔叔装配的三轮车和自行车各有多少辆?(先假设自行车和三轮车的辆数如下表,再调整)张叔叔装配的自行车有( )辆,三轮车有( )辆。
6.六年级进行计算比赛,共20题,规定算对一题得5分,错一题扣2分。
晓华得了79分,他做对( )题。
二、选择题7.有5元和10元的人民币共20张,一共是145元,5元的人民币有()张。
A.11B.9C.138.鸡和兔的腿共有60条,鸡最多有()只。
9.一场篮球比赛中,3分线外投中一球得3分,3分线内投中一球得2分,李勇总共投中8个球,得21分,他投中了()个3分球。
A.5B.4C.2三、脱式计算10.观察下面式子的特点并用简便方法计算。
25×125×4×8128-37-238×19×125173+428+27138+25+62+175(41×4)×25四、解答题11.小明买5元的钢笔和3元的铅笔共8支,共花了34元。
这两种笔各买多少支?(用列表法完成)12.一头非洲狮有多重?从下面方框中选出两个条件。
鸡兔同笼练习题(共10篇)鸡兔同笼练习题(一): 鸡兔同笼练习题及答案,用假设法小梅数她家的鸡与兔,数头有16个,数脚有44只.问:小梅家的鸡与兔各有多少只分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了.如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只.因此只要算出12里面有几个2,就可以求出兔的只数.有兔(44-2×16)÷(4-2)=6(只),有鸡16-6=10(只).答:有6只兔,10只鸡.当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了.我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只).因此只要算出20里面有几个2,就可以求出鸡的只数.有鸡(4×16-44)÷(4-2)=10(只),有兔16--10=6(只).由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔.因此这类问题也叫置换问题.鸡兔同笼练习题(二): 鸡兔同笼问题练习题答对一题加10分,错一题扣6分.2号回答了8题,64分,她答对了几题1号36分,答了10题,他答对了几题三号16分,答了16题,他对了几题假设1号答对了X道题10X-6(8-X)=64-->10X+6X=64+48-->16X=112-->X=7以此类推鸡兔同笼练习题(三): 求60道小学简单鸡兔同笼练习题,其中鸡兔的数量都不超过15就行我要给学生讲解如何列二元一次方程组并且转化成一次函数的形式,然后用图像解题,需要几道例题……1.鸡兔共有32条腿,一共有10只,鸡兔各有多少只2.鸡兔只数相同,一共有216条腿,鸡兔各有多少只3.鸡兔共有100只,共有320条腿,鸡兔各有多少只4.鸡兔共有39只,共有96条腿,鸡兔各有多少只5.鸡兔共有160条腿,共有50只,鸡兔各有多少只6.鸡兔只数相同,共有372条腿,鸡兔各有多少只7.鸡兔共有300只,共有920条腿,鸡兔各有多少只8.鸡兔只数相同,共有552条腿,鸡兔各有多少只9.鸡兔共有1600条腿,共有500只,鸡兔各有多少只10.鸡兔共有1000只,共有3400条腿,鸡兔共有多少只鸡兔同笼练习题(四): 鸡兔同笼练习题鸡·兔总脚数44只,若将鸡数与兔数对换,则总脚数增为52只,问鸡·兔各几只52-44=8(只)8÷2=4(只)设鸡有x只,则兔有x-4只.2x+4(x-4)=442x+4x-16=446x=44+166x=60x=10兔子:10-4=6(只)答:鸡有10只,兔有6只鸡兔同笼练习题(五): 鸡兔同笼练习题260吨3.某船的载重为260吨,容积为l 000,现有甲、乙两种货物要运,其中甲种货物每吨体积为8,乙种货物每吨体积为2,若要充分利用这艘船的载重量与容积,甲、乙两种货物应各装多少吨鸡兔同笼的问题解答时先设都是同一种物体,然后看差多少.以公鸡和兔子为例假设全部是公鸡,算出脚数,与题目中给出的脚数相比,看差多少,每差一个(4-2)就说明有一只兔子.,将所差的脚数处以(4-2),就可求出兔子的只数甲是用(1000-260*2)/(8-2)=480/6=80(吨)乙=260-80=180(吨)鸡兔同笼练习题(六): 解方程鸡兔同笼练习题不用太多 10即可因为要考试我是5年级北京课改版鸡兔同笼怎样解方程,鸡兔共100只,鸡和兔的脚共有248,求鸡和兔各多少只鸡兔同笼练习题(七): 鸡兔同笼练习题:有一批水果,大筐80筐可装完,小筐120筐可装完,每只大筐比每只小筐多装20kg,大小筐几个大筐每个装60kg 小筐40kg 水果4800kg具体大小筐各多少个要根据题目给的选项设大筐a个小筐b个则3a+2b=240把每个选项带入符合的就是正确答案了鸡兔同笼练习题(八): 鸡兔同笼的数学题~~鸡与兔一共100个头,270只腿,那么鸡有()只,兔有()只.【鸡兔同笼练习题】设:鸡有x只,兔有(100-x)只.2X+400-4X=2702X=130X=65答:鸡有65只,兔有35只.鸡与兔一共100个头,270只腿,那么鸡有(65)只,兔有(35)只.【鸡兔同笼练习题】鸡兔同笼练习题(九): 六年级鸡兔同笼练习急~~~~~~~!有8个谜语让60个人猜,共338人猜对,每人至少猜对3个,猜对3个的有6人,猜对4个的有10人,猜对5个,6个,7个的人数同样多.8个全猜对的有多少人未猜对人数:60*8-338=142(人)猜对5个,6个,7个的人数:[142-(8-3)*6-(8-4)*10]/(8*3-5-6-7)=12(人) 8个全猜对的有人:60-6-10-3*12=8(人)答:8个全猜对的有8人.就这样啦~鸡兔同笼练习题(十): 类似鸡兔同笼的小学数学题一只小兔,晴天每天可摘24个蘑菇,雨天每天可摘16个蘑菇.它一连几天共采了152个蘑菇,平均每天采19个,则共遇几天在下雨152/19=8天24*8-152=40个40/(24-16)=5天答:共遇5天在下雨。
盈亏问题知识梳理在日常生活中经常有这样的问题,一定数量的物品分给一定数量的人,每人多一些,物品就不够;每人少一些,物品就有余。
盈亏问题就是在已知盈亏的情况下确定物品总数和参加分配的人数。
解答盈亏问题的关键就是弄清盈、亏与两次分得的差的关系。
【盈亏问题公式】(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配的差)=份数.两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差)=份数两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差)=份数.(2)每次分配的数量×份数+盈=总数量每次分配的数量×份数-亏=总数量教学重点·难点1、盈亏问题基本公式和“盈+亏”“大亏-小亏”“大盈-小盈”及一般题型。
2、“单位换算”、“迟到早到”、“井深桥高”、“对题错题加减分”类小升初盈亏问题常见题型。
典型例题盈加亏三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?分析:比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块. 这两次搬砖,每人相差5-4=1(块)。
第一种多(盈)7块,第二种少(亏)2块,那么第二次与第一次总共相差砖数:7+2=9(块)每人相差1块,结果总数就相差9块,所以有少先队员9÷1=9(人)。
共有砖:4×9+7=43(块)。
解:(盈+亏)÷(两次分配的差)=份数(7+2)÷(5-4)= 9 (人)4×9+7=43(块)或5×9-2=43(块)答:共有少先队员9人,砖的总数是43块。
大亏减小亏学校将一批铅笔分给三好学生。
如果每人奖9支,则缺45支,每人奖7支,则缺7支。
三好学生有多少人?铅笔有多少支?人数:(45-7)÷(9-7)=38÷2=19(人)铅笔:9×19-45=126(支)答:三好学生有19人,铅笔有126支.大盈减小盈学校将一批铅笔分给三好学生。
练习13
1.鸡、兔共有头100个,脚350只,鸡、兔各有多少只?
2.学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动。
问:象棋与跳棋各有多少副?
3.班级购买活页簿与日记本合计32本,花钱74元。
活页簿每本1.9元,日记本每本3.1元。
问:买活页簿、日记本各几本?
4.龟、鹤共有100个头,鹤腿比龟腿多20只。
问:龟、鹤各几只?
5.小蕾花40元钱买了14张贺年卡与明信片。
贺年卡每张3元5角,明信片每张2元5角。
问:贺年卡、明信片各买了几张?
6.一个工人植树,晴天每天植树20棵,雨天每天植树12棵,他接连几天共植树112棵,平均每天植树14棵。
问:这几天中共有几个雨天?
7.振兴小学六年级举行数学竞赛,共有20道试题。
做对一题得5分,没做或做错一题都要扣3分。
小建得了60分,那么他做对了几道题?
8.有一批水果,用大筐80只可装运完,用小筐120只也可装运完。
已知每只大筐比每只小筐多装运20千克,那么这批水果有多少千克?
9.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。
现有三种小虫共18只,有118条腿和20对翅膀。
问:每种小虫各有几只?
10.鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。
问:鸡、兔各几只?。