构件延性
- 格式:doc
- 大小:26.50 KB
- 文档页数:1
浅谈延性设计在高烈度区抗震设计中的重要性摘要:地震烈度是指遭受地震后房屋建筑被破坏的严重程度,总共分为十二个等级。
地震对人民生命及财产安全造成的损失是不可估量的,尤其是高烈度区。
因此,加强抗震设计对保障国家及人民的安全至关重要。
延性设计在抗震设计中起着重要作用。
本文将对延性设计在高烈度区抗震设计中的重要性作出简单介绍。
关键词:延性设计;高烈度区;抗震设计;重要性延性设计通过塑性铰区域的变形有效地吸收、耗散地震能量。
同时,这种变形降低了结构的刚度,致使结构在地震作用下的反应减小,即减小了地震对结构的作用力,延性设计在高烈度区抗震设计中具有重要意义。
1.抗震设防目标我国地处世界两大地震带环太平洋地震带与地中海地震带的交汇处,受到太平洋板块与印度板块的挤压,地震断裂带十分活跃,加上我国大陆多山脉,山脉附近有很多断裂带,地壳活动频繁,地震频发。
地震活动不是人力可避免的,因此抗震工作尤为重要。
我国《抗震规范》中指出:抗震设防的目标是:第一目标:小震不坏;第二目标:中震可修;第三目标:大震不倒。
在高烈度区,希冀房屋不倒的愿望渺小且困难。
优秀的抗震设计能够增加我们希冀实现的概率,拯救人民脆弱的生命。
虽然房屋结构的强度设计是我们实现抗震目标的基础,但是却不能为我们实现目标提供助力,延性设计才是我们最应该关注的部分。
2.延性设计的定义延性是指构件、结构在受到挤压后,承载力降低不明显或基本不降低,并且有足够塑性变形能力的一种性能。
延性具有两种能力:承受较大的非弹性变形时强度不明显下降;利用滞回特性吸收、耗散地震能量。
延性设计的塑性变形能力强弱通常用延性比来表示,即允许的最大变形与屈服变形的比例。
在抗震设计中,对房屋结构中重要构件的延性设计的重视程度要高于整个结构体系的延性设计,对构件中关键杆件或者部位的延性设计的重视程度又要高于对构件的重视程度。
另外,优秀的延性材料能够建造出优秀的延性杆件,优秀的延性杆件又能建造出优秀的延性结构体系。
梁的延性名词解释梁是建筑工程中常见的横向结构构件,通常用于承载荷载并在建筑物中分散力量。
梁的延性是指该构件在受力时能够发生形变而不断吸收和分散能量的能力。
在这篇文章中,我们将探讨梁的延性概念以及其在建筑工程中的重要性。
1. 延性的定义梁的延性是指该结构构件在遭受外力作用时能够承受大量的形变而不失去稳定性和可靠性的特性。
简单来说,延性可以用来衡量结构在受力时变形程度的大小。
具有较高延性的梁能够在受到较大荷载时产生较大的弯曲变形而不会发生脆性破坏。
2. 延性与脆性的对比与延性梁相对应的是脆性梁,脆性梁在受力时容易发生突然的破坏,而且在破坏发生后无法再承载任何荷载。
这种类型的梁通常是由于材料强度不足或设计缺陷而导致的。
相比之下,延性梁在受力时会产生较大的形变,这在一定程度上减轻了荷载的集中,使梁能够消耗较大量的能量,从而提高结构的稳定性和抗震性能。
3. 延性对结构的重要性梁的延性在结构工程中具有重要的意义。
首先,具有较高延性的梁能够在受力时保持相对稳定,从而延长了结构的使用寿命和安全性。
其次,当结构承受外力时,延性梁能够吸收和分散能量,减小结构其他部分的受力,提高结构的整体承载能力。
最后,延性梁能够在地震等自然灾害中起到减震和消能的作用,降低结构破坏和人员伤亡的风险。
4. 影响延性的因素延性的大小受到多种因素的影响,其中材料的性能是最为重要的因素之一。
强度较高且具有一定延性的材料能够使梁具备更好的延性能力。
此外,梁的几何形状、截面尺寸、截面形状、支撑方式以及连接方式等都会对延性产生影响。
合理的结构设计和施工方法也是确保梁具有良好延性的关键。
5. 延性梁的类型在实际工程中,有多种类型的延性梁可以应用。
其中一种常见的延性梁是钢筋混凝土梁,它具备较好的延性能力,可以在受力时发生较大变形而不会崩溃。
此外,纤维增强复合材料梁和钢结构梁等也具有较好的延性性能,适用于不同类型的建筑工程。
总结:梁的延性是指该构件在受力时能够发生形变而不断吸收和分散能量的能力。
钢筋混凝土受弯构件的延性研究一、引言钢筋混凝土受弯构件的延性是指其在承受荷载作用下,能够发生塑性变形,从而在一定程度上吸收和消散荷载能量的能力。
延性是评价结构抗震性能的重要指标之一。
随着大地震频繁发生,对于钢筋混凝土受弯构件的延性研究已成为结构工程领域中的一个重要研究方向。
二、延性的定义和意义延性是指材料在受到一定的外力作用下,能够发生一定的塑性变形,从而吸收和消散荷载能量的能力。
在结构工程中,延性通常是指结构在极限状态下仍能够维持一定的稳定性并能够继续承受荷载的能力。
延性是评价结构抗震性能的重要指标之一。
三、延性的影响因素钢筋混凝土受弯构件的延性受到以下因素的影响:1. 混凝土的强度和韧性:混凝土的强度和韧性直接影响其塑性变形能力。
2. 钢筋的数量、布置和强度:钢筋的数量、布置和强度对钢筋混凝土受弯构件的延性影响较大。
3. 截面形状和尺寸:截面形状和尺寸对钢筋混凝土受弯构件的延性也有一定的影响。
4. 荷载作用方式:荷载作用方式对钢筋混凝土受弯构件的延性也有重要影响。
四、延性的计算方法钢筋混凝土受弯构件的延性计算方法有很多种,常用的有以下几种:1. 塑性铰法:根据结构中塑性铰的位置和变形形态来计算结构的延性。
2. 变形能法:根据结构在荷载作用下所吸收的变形能量来计算结构的延性。
3. 等效线性化法:将非线性结构化为等效线性结构,通过计算等效线性结构的刚度和阻尼来计算结构的延性。
五、延性的提高方法为了提高钢筋混凝土受弯构件的延性,可以从以下几个方面入手:1. 优化设计:通过优化截面形状和尺寸、钢筋数量和布置等来提高结构的延性。
2. 选用高性能材料:采用高强度混凝土和高强度钢筋等高性能材料,可以提高结构的延性。
3. 塑性铰设置:通过合理设置塑性铰来提高结构的延性。
4. 强度折减法:在设计时考虑强度折减系数,可以减小结构的刚度,提高结构的延性。
六、结论钢筋混凝土受弯构件的延性研究是结构工程领域中的一个重要研究方向,其受到混凝土的强度和韧性、钢筋的数量、布置和强度、截面形状和尺寸、荷载作用方式等因素的影响。
详解结构延性破坏与脆性破坏方式结构与构件的破坏方式的确定是在结构设计之初就要明确的问题,延性破坏显然是工程师们的首选。
所谓延性破坏是指材料、构件或结构具有在破坏前发生较大变形并保持其承载力的能力,宏观表现上为挠度、倾斜、裂缝等明显破坏先兆的破坏模式,更为重要的是,尽管出现明显的破坏征兆,但延性材料或结构仍然能够保持其承载力。
延性破坏的这种性能对于建筑物是十分重要的,其真正的意义在于以下几方面:首先,破坏先兆与示警作用——历史上发生的重特大建筑事故大多属于脆性破坏,如果建筑物在破坏之前的明显征兆可以提醒人们及时撤离现场或进行补救。
完全不能破坏的材料是不存在的,因此材料在破坏之前的示警作用对于建筑物来讲就十分重要了。
其次,延性材料或结构的延性不仅仅要体现在变形上,还要体现在破坏延迟上,即在承载力不降低或不明显降低的前提下,产生较大的明显的变形,即发生屈服。
这种破坏的延迟效应可以为逃生或者建筑物的修补提供宝贵的时间。
第三,正是由于延性材料与结构所产生的变形能力,因此对于动荷载的作用,可以体现出良好的工作性能,这对于结构的抗震是十分关键的。
在地震的作用下,结构所发生的宏观与微观的变形,都会储存大量的能量,避免发生破坏。
相反,脆性是与延性相对应的破坏性质,脆性材料或构件、结构在破坏前几乎没变形能力,在宏观上则表现为突然性的断裂、失稳或坍塌等。
应注意的问题是,虽然有些脆性材料可能具有较高的强度,采用脆性材料或构件、结构可能存在较大的承载力,但因没有破坏征兆或破坏征兆不明显,采用时宜多加慎重。
在结构设计时实现延性与防止脆性的方法其实并不复杂,一般遵循以下原则:其一,要尽可能采用延性材料为建筑结构材料,钢材是很好的延性材料,以往钢结构多用于高层、大跨度建筑、承担动荷载建筑中,随着科学技术的发展,钢结构住宅也已经开始逐步推广。
其二,对于脆性材料,可以采用延性材料改善其不良的性能,是指具有延性材料的破坏特征。
最为明显的例子是钢筋混凝土、劲性混凝土与钢管混凝土的应用。
结构的延性是在外力作用下,结构超过弹性阶段后,其承载能力无显著下降的情况下,结构的后期非弹性变形能力。
结构中某一构件的延性也是如此。
对于受弯构件来说,随着荷载增加,首先受拉区砼出现裂缝,表现出非弹性变形。
然后受拉钢筋屈服,受压区高度减小,压区砼压碎,构件最终破坏。
从受拉钢筋屈服到压区砼压碎,是构件的破坏过程。
在这过程中,构件的承载能力没有多大变化,但其变形的大小却决定了破坏的性质。
如果这种后期非弹性变形能力很大,延性就好,其破坏称为延性破坏(或塑性破坏);相反,延性就差,属于脆性破坏。
讨论延性的必要性我国是世界上多地震国家之一,大部分国土面积属于地震区,因此防震抗震是一项基本国策。
发生地震时,作用于建筑结构上的是一种低周期的交变循环的荷载。
其荷载值接近于结构构件的极限荷载,但反复循环的次数不多。
这种地震作用与静力荷载对结构受力及变形的影响是不同的。
结构的地震作用与结构刚度密切相关,塑性变形可使结构刚度降低,因此有较好延性的结构受到的地震作用比弹性结构小得多。
如果一个结构采用没有延性的构造型式,那么在设计中就必须使结构具有承受极大的地震作用的能力(如加大构件截面尺寸或提高材料的强度等级),这显然是很不经济的。
为此, 抗震设计规范规定,对于抗震结构,允许其在强烈的地震作用下发生一定程度结构性破坏。
延性可以使结构的某些部位进入弹塑性范围内工作,通过某些构件的变化吸收地震能量,产生局部损坏,但整个结构不致倒塌。
因此,抗震设计中强度并不是唯一的安全准则,可以说延性和强度是同等重要的。
此外,延性可以使超静定结构的内力得以充分重分布。
采用塑性内力重分布方法设计时,可以节约钢筋用量,取得较好的经济效果。
提高构件延性的措施1)减小受拉钢筋的配筋率。
μ愈小,ξ愈大,构件延性愈好,因砼是脆性材料,其破坏是突然发生的。
因此几乎所有的实用规范都建议应将受弯构件设计成适筋构件,使其在破坏前具有足够的预兆。
即满足μ<μmax。
摘要:传统的抗震设计对结构构件的延性有特殊要求。
本文介绍了提高混凝土梁延性的几点具体措施,来提高对这一问题的认识。
关键词:混凝土梁延性设计1概述建筑结构的抗震设计中,结构及构件需要一定的变形能力来保证在强烈地震下的可靠度。
结构和构件在遭遇中强地震时的强度、刚度退化要与相关国家规范的规定相匹配。
对于常见的多高层钢筋混凝土房屋来说,“强柱弱梁、强墙弱连梁”的破坏机制与结构在地震作用下的耗能能力和抗倒塌能力有关。
关于框架梁、连梁的抗震性能的特殊要求,下文通过归纳分析来具体说明这一问题。
2提高框架梁延性的措施结构的延性是指它在经受塑性变形中仍能保持一定承载能力的性能。
延性一般分为三个层次———材料的延性、构件的延性和结构的延性,可由下列公式表达:材料的延性:με=εm/εy 构件的延性:μθ=θm/θy 结构的延性:μδ=δm/δy 式中εm、θm、δm 分别为循环加载条件下材料最大应变、构件最大转动能力和结构最大水平位移;εy、θy、δy 分别为材料、构件和结构开始屈服的应变转角和水平位移。
在一般情况下με≥μθ≥μδ。
要期望结构达到一定的延性目标,那么结构中必然有相对较高延性的耗能构件。
对于混凝土结构中的强柱-弱梁部分,框架梁的潜在塑性铰区域需要有足够的转动延性。
文献[1]指出随着梁受拉钢筋配筋率的增大,开裂弯矩变化很小,虽然梁截面抗弯承载力得到了很大提高,但是梁截面的延性逐渐降低。
图1为文献中的算例,梁截面宽度和高度为300x600mm,混凝土强度等级为C30,梁配筋率(钢筋为HRB335级)与曲率延性相关曲线如图所示。
从图1可以看出,随着受拉钢筋配筋率的加大,虽然梁截面抗弯能力逐渐增大了,但是梁截面的延性逐渐在减低。
超筋梁延性会趋于0,呈现出脆性特征。
对于单筋矩形框架梁来说,配筋率与梁的受压区高度和有效高度的比ξb 呈正比关系。
控制梁的相对受压区高度是保证截面延性的措施。
《建筑抗震设计规范》的条文说明解释说:“当相对受压区高度为0.25~0.35范围时,梁的位移延性系数可到达3~4”,工程实践中必须满足这样的要求。
框架结构的延性设计详解1.框架梁的延性影响框架梁延性(Ductility)的因素主要包括:纵筋配筋率(Reinforcement ratio)、剪压比(Shear-compression ratio)、跨高比(Span-depth ratio)、配箍率(Stirrup ratio).(1)纵筋配筋率(Reinforcement ratio).梁的延性(Ductility)指标可以用截面的弯矩--曲率曲线来衡量.因为截面曲率(Sectional curvature)和截面受压区高度成反比,因此构件截面的变形能力也可以用截面达到极限状态时的相对受压区高度(Relative height of compression zone)来表示.下图为单筋矩形截面梁的计算简图,由图及上式可知,纵筋配筋率越大,相对受压区高度越大,截面曲率越小,截面变形能力越小.下图为某双筋矩形截面梁受弯时弯矩与曲率的关系,由图可以看出,当纵筋配筋率(Reinforcement ratio)增加时,强度可以提高,但是延性会变差.当受压区高度为0.25至0.35范围时,梁的位移延性系数可达3~4.因此,抗震规范中对于梁的纵筋配置,有如此规定:“梁端计入受压钢筋的混凝土受压区高度和有效高度之比,一级不应大0.25,二、三级不应大于0.35”;“梁端纵向受拉钢筋的配筋率不宜大于2.5%”.(2)剪压比(Shear-compression ratio)剪压比(Shear-compression ratio)指的是梁载面“名义剪应力V/(bh0)”与混凝土轴心抗压强度(Axial compressive strength)设计值fc的比值.试验表明:梁塑性铰区的截面剪压比对梁的延性、强度、刚度有显著的影响.剪压比越大,梁的强度、刚度越差,当剪压比大于0.15时,增加箍筋(Stirrup)配置量已经不能产生良好的效果了.因此,在结构设计中应该注意梁的剪压比不能过大.如抗震设计规范规定,对于跨高比大于2.5的梁,组合的剪力设计值应该满足如下条件:由上述公式可以看出,对于剪压比的设计条件,其实质是控制梁的截面不能过小.如果剪压比不满足要求时,需要加大梁截面.(3)跨高比(Span-depth ratio)跨高比指的是梁净跨与梁高比.试验表明:梁的跨高比对梁的抗震性能(延性)有明显的影响.当梁的跨高比小于2时,剪切变形的比重加大,极易发生以斜裂缝为主要特征的破坏,梁的延性降低.以下图所示的梁,可以明显的看出,梁的变形主要是弯曲变形.但是,如果跨度不变,随着梁的高度增加,梁的变形特性将会发生改变.如下图所示,对于这样的梁,还能“弯”吗?它的变形主要是剪切变形.因此,抗震规范中规定“梁的跨高比不宜小于4”.这一点,给我们设计的提示是,当梁的设计内力较大时,若截面承载力不满足要求,需要加大截面面积时,宜首先考虑加大梁的宽度,而不是高度.(4)配箍率(Stirrup ratio)在塑性铰(Plastic Hinge)区配置足够的封闭箍筋,对提高塑性铰的转动能力是十分有效的(在满足剪压比的前提下).配置足够的箍筋(Stirrup),对防止梁受压纵筋过早压屈、提高塑性铰区内混凝土的极限压应变(ultimate compression strain)以及防止斜裂缝的开展都有很好的作用,因此保证一定的配箍率有利于充分发挥塑性铰的变形和耗能能力.在工程设计中,在框架梁的塑性铰区范围内,箍筋(Stirrup)必须加密.2.框架柱的延性影响框架柱延性的因素主要包括:剪跨比、轴压比、配箍率及纵筋配筋率.(1)剪跨比(Shear-span Ratio)剪跨比是反映柱截面弯矩和剪力比值的一个参数,表示为M/(V·h0)(h0为柱截面高度),它所表达的是截面上弯矩和剪力的比值.如果截面上弯矩越大,那么构件将会是以受弯为主,破坏形式将是延性,有利于抗震;反之,如是截面剪力过大,截面的破坏形式将是脆性剪切破坏.试验表明,剪跨比大于2的柱,为长柱,柱的破坏形式为压弯型,延性较好;当剪跨比在[1.5,2.0]之间时,为短柱,柱破坏形式以剪切变形为主,有一定的延性;当剪跨比小于1.5时,为极短柱,柱的破坏为剪切破坏,延性极差,一般设计中就避免.那么,这个参数为何叫做“剪跨比”呢?哪能体现出“跨”的概念呢?看下图就可以理解了.图中所示为一根简支梁,在两个集中荷载作用下的弯矩图和剪力图.以左边集中荷载作用处的位置为例,该截面的剪力V=P,弯矩M=P·a.那么,该截面处的剪跨比为M/(V·h0)=(P·a)/(P·h0)=(P·a)/(P·h0)=a/h0,可见,在这种受力情况下,剪跨比可以表达为荷载作用点和支座之间的距离(a)与梁的截面高度(h0),而荷载作用点和支座之间的距离(a)称之为“剪跨”,这就是剪跨比的来历.抗震设计规范中规定,剪跨比大于2的柱和抗震墙,需满足下式:剪跨比不大于2的柱和抗震墙、部分框支抗震墙结构的框支柱和框支梁、以及落地抗震墙的底部加强部位:(2)轴压比(Axial-compression Ratio)轴压比是结构设计中另一个非常关心的参数.这里的“轴”指的是柱子的轴力,“压”指的是柱子的混凝土的抗压强度,轴压比的计算公式为N/(fc·b·h0),这里N是柱子的轴力,fc·为混凝土的抗压强度,b和h0分别为截面的宽度和高度.下图为位移延性比与轴压比的曲线,可以看出,随着柱子的轴压比增加,柱子的延性变差.关于柱子箍筋的配置要求,请参考抗震设计规范6.3.9条文内容.(4)纵筋配筋率试验研究表明:柱截面在纵筋发生屈服后的转动能力,主要受纵向钢筋配筋率的影响,且大致随纵筋配筋率的增大而线性的提高.因此,为避免柱过早进入屈服阶段,保证柱的延性,柱的全部纵筋的配筋率也不能过小.关于柱子纵筋配筋率的要求,请参考抗震设计规范6.3.7和6.3.8条文内容.。
钢筋混凝土结构构件的延性设计摘要:钢筋混凝土结构的各类构件应具有必要的强度和刚度,并具有良好的延性性能,避免构件的脆性破坏,从而导致主体结构受力不合理,地震时出现过早破坏。
因此,可以采取措施,做好延性设计,防止构件在地震作用下提前破坏,并避免结构体系出现不应有的破坏。
关键词:钢筋混凝土结构构件延性设计1 前言在现代房屋结构设计中,延性研究越来越显得重要,钢筋混凝土结构延性的研究是塑性设计方法和抗震设计理论发展的基础。
所谓延性是指材料、构件和结构在荷载作用下,进入非线性状态后在承载能力没有显著降低情况下的变形能力。
描写延性常用的变量有:材料的韧性,截面的曲率延性系数,构件或结构的位移延性系数,塑性铰转角能力,滞回曲线,耗能能力等。
试验和非线性计算分析表明:构件的结构的破坏由受拉钢筋引起的,常表现出良好的延性,如适筋梁、大偏心受压柱等;而破坏由混凝土拉断、剪坏和压溃控制的常表现为脆性,如素混凝土板、超尽梁、地震作用下剪切破坏的短柱等。
对于建筑结构系统来说,一方面,钢筋混凝土构件的功能依赖于整体结构系统功能,任何构件一旦离开整体结构,就不再具有它在结构系统中所能发挥的功能;另一方面,构件又影响整体结构系统的功能,任何构件一旦离开整体结构,整体结构丧失的功能不等于该构件在结构系统中所发挥的功能,可能更大,也可能更小。
在地震作用下,有可能由于部分构件的破坏乃至退出工作,整个结构体系会因此破坏,这里的部分构件包括了结构构件以及非结构构件。
在地震作用下,混凝土结构或构件的破坏可分为脆性破坏和延性破坏两种,其中脆性破坏的危害时非常大的,设计上是一定要避免的,而延性破坏时指构件承载力没有显著降低的情况下,经历很大的非线性变形后所发生的破坏,在破坏前能给人以警示。
钢筋混凝土结构的各类构件应具有必要的强度和刚度,并具有良好的延性性能,避免构件的脆性破坏,从而导致主体结构受力不合理,地震时出现过早破坏。
因此,可以采取措施,做好延性设计,防止构件在地震作用下提前破坏,并避免结构体系出现不应有的破坏。
结构的延性是在外力作用下,结构超过弹性阶段后,其承载能力无显著下降的情况下,结构的后期非弹性变形能力。
结构中某一构件的延性也是如此。
对于受弯构件来说,随着荷载增加,首先受拉区砼出现裂缝,表现出非弹性变形。
然后受拉钢筋屈服,受压区高度减小,压区砼压碎,构件最终破坏。
从受拉钢筋屈服到压区砼压碎,是构件的破坏过程。
在这过程中,构件的承载能力没有多大变化,但其变形的大小却决定了破坏的性质。
如果这种后期非弹性变形能力很大,延性就好,其破坏称为延性破坏(或塑性破坏);相反,延性就差,属于脆性破坏。
讨论延性的必要性
我国是世界上多地震国家之一,大部分国土面积属于地震区,因此防震抗震是一项基本国策。
发生地震时,作用于建筑结构上的是一种低周期的交变循环的荷载。
其荷载值接近于结构构件的极限荷载,但反复循环的次数不多。
这种地震作用与静力荷载对结构受力及变形的影响是不同的。
结构的地震作用与结构刚度密切相关,塑性变形可使结构刚度降低,因此有较好延性的结构受到的地震作用比弹性结构小得多。
如果一个结构采用没有延性的构造型式,那么在设计中就必须使结构具有承受极大的地震作用的能力(如加大构件截面尺寸或提高材料的强度等级),这显然是很不经济的。
为此, 抗震设计规范规定,对于抗震结构,允许其在强烈的地震作用下发生一定程度结构性破坏。
延性可以使结构的某些部位进入弹塑性范围内工作,通过某些构件的变化吸收地震能量,产生局部损坏,但整个结构不致倒塌。
因此,抗震设计中强度并不是唯一的安全准则,可以说延性和强度是同等重要的。
此外,延性可以使超静定结构的内力得以充分重分布。
采用塑性内力重分布方法设计时,可以节约钢筋用量,取得较好的经济效果。
提高构件延性的措施
1)减小受拉钢筋的配筋率。
μ愈小,ξ愈大,构件延性愈好,因砼是脆性材料,
其破坏是突然发生的。
因此几乎所有的实用规范都建议应将受弯构件
设计成适筋构件,使其在破坏前具有足够的预兆。
即满足μ<μmax。
为
了承受温度应力并保证受拉区的延性破坏,受拉筋配筋率还须大于最小
配筋率, 即μ≥μmin。
2)增大受压钢筋配筋率。
在受压区配钢筋,可以减小受压区高度ξ和增加
砼的极限压应变εcu,因而构件延性提高,双筋梁的延性通常较单筋梁
好。
3)增大箍筋数量。
箍筋可以约束受压区砼的横向变形,使截面和构件的延
性增大。
这一特点,在轴心受压构件中表现的也相当明显。
配置密排螺
旋箍筋的柱较普通箍筋柱的延性好得多。
4)选择强度等级适中的材料。
钢筋强度高低对构件延性亦有影响,随钢筋
屈服强度的增高,构件延性降低。
砼的组成、配合比等质量指标要严格
把关,因为砼的收缩对构件延性也有一定程度的降低。