全等三角形中的动点问题(教师版)
- 格式:doc
- 大小:422.91 KB
- 文档页数:24
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】难点探究专题:全等三角形中的动态问题◆类型一全等三角形中的动点问题1.如图,在△MAB中,MA=MB,过M点作直线MN交AB于N点.P是直线MN 上的一个动点,在点P移动的过程中,若NA=NB,则∠PAM与∠PBM是否相等?说明理由.2.如图①,在△ABC中,∠BAC=90°,AB=AC(∠ABC=∠ACB=45°),点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想:如图①,当点D在线段BC上时,①BC与CF的位置关系为________;②线段BC,CD,CF之间的数量关系为______________ (将结论直接写在横线上);(2)数学思考:如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.◆类型二 全等三角形中的动图问题3.已知等边三角形的三条边相等、三个角都等于60°.如图,△ABC 与△CDE 都是等边三角形,连接AD ,BE.(1)如果点B ,C ,D 在同一条直线上,如图①所示,试说明:AD =BE ;(2)如果△ABC 绕C 点转过一个角度,如图②所示,(1)中的结论还能否成立?请说明理由.◆类型三 全等三角形中的翻折问题 4.如图,将Rt △ABC 沿斜边翻折得到△ADC ,E ,F 分别为DC ,BC 边上的点,且∠EAF =12∠DAB.试猜想DE ,BF ,EF 之间有何数量关系,并说明理由.参考答案与解析1.解:∠P AM =∠PBM .理由如下:∵NA =NB ,MA =MB ,MN 是公共边,∴△AMN ≌△BMN (SSS),∴∠MAN =∠MBN ,∠MNA =∠MNB .又∵NA =NB ,PN 是公共边,∴△P AN ≌△PBN (SAS),∴∠P AN =∠PBN .∴∠P AM =∠PBM .2.解:(1)①垂直 ②BC =CD +CF(2)CF ⊥BC 成立;BC =CD +CF 不成立,正确结论:CD =CF +BC .证明如下:∵正方形ADEF 中,AD =AF ,∠DAF =∠BAC =90°,∴∠BAD =∠CAF .在△DAB 与△F AC 中,⎩⎪⎨⎪⎧AD =AF ,∠BAD =∠CAF ,AB =AC ,∴△DAB ≌△F AC (SAS),∴∠ABD =∠ACF ,DB =CF .∵∠ACB =∠ABC =45°,∴∠ABD =180°-45°=135°,∴∠BCF =∠ACF -∠ACB =∠ABD -∠ACB =90°,∴CF ⊥BC .∵CD =DB +BC ,DB =CF ,∴CD =CF +BC .3.解:(1)∵△ABC ,△CDE 都是等边三角形,∴AC =BC ,CD =DE ,∠ACB =∠DCE =60°.∵点B ,C ,D 在同一条直线上,∴∠ACE =60°,∴∠BCE =∠ACD =120°.在△ACD 与△BCE 中,∵⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴AD =BE .(2)成立.理由如下:∵∠ACB =∠DCE =60°,∴∠ACB +∠ACE =∠DCE +∠ACE ,即∠BCE =∠ACD .又∵AC =BC ,CD =CE ,∴△ACD ≌△BCE ,∴AD =BE .4.解:DE +BF =EF .理由如下:延长CB 至G ,作∠5=∠1,如图所示.∵将Rt △ABC 沿斜边翻折得到△ADC ,∠EAF =12∠DAB ,∴AB =AD ,∠ABC =∠ADE =90°,∠2+∠3=∠1+∠4,∴∠ABG =90°=ADE .∵∠5=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF =∠EAF .在△AGB 和△AED 中,⎩⎪⎨⎪⎧∠GAB =∠EAD ,AB =AD ,∠ABG =∠ADE ,∴△AGB ≌△AED (ASA),∴AG =AE ,BG =DE .在△AGF 和△AEF 中,⎩⎪⎨⎪⎧AG =AE ,∠GAF =∠EAF ,AF =AF ,∴△AGF ≌△AEF (SAS),∴GF =EF ,∴BG +BF=EF ,∴DE +BF =EF .中考数学知识点代数式一、 重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
全等三角形动点问题(人教版)一、单选题(共8道,每道12分)1.已知:如图,在长方形ABCD中,AB=6厘米,BC=9厘米,点P从点A出发,沿AB边向终点B以1厘米/秒的速度移动,同时点Q从点B出发沿BC边向终点C以2厘米/秒的速度移动,如果P,Q两点同时出发,当其中一点到达终点后停止运动,另一点也随之停止运动,设点P的运动时间为t秒,连接PQ,DQ.若△DCQ≌△QBP,则t的值为( )A.1B.2C. D.3答案:D解题思路:试题难度:三颗星知识点:动点问题2.已知:如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=12,BC=24,动点P从点A出发沿AD向点D以每秒1个单位的速度运动,动点Q从点C出发沿CB向点B以每秒2个单位的速度运动,P,Q同时出发,当点P停止运动时,点Q也随之停止,连接PQ,DQ.设点P的运动时间为t秒,当t为( )时,△PDQ≌△CQD.A.12B.8C.6D.4答案:D解题思路:试题难度:三颗星知识点:动点问题3.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE.动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t 秒.当t的值为( )时,△ABP和△DEC全等.A.1B.1或3C.1或7D.3或7答案:C解题思路:试题难度:三颗星知识点:动点问题4.已知:如图,在△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.点P在线段BC上以每秒2cm的速度由点B向点C运动,同时点Q在线段CA上由点C向点A运动.设点P 运动时间为t秒,当t的值为( )时,△BPD与△CQP全等.A. B.3C.或2D.或3答案:C解题思路:试题难度:三颗星知识点:动点问题5.已知:如图,在矩形ABCD中,AB=4cm,BC=6cm,点E为AB中点,如果点P在线段BC 上以每秒2cm的速度由点B向点C运动,同时,点Q在线段CD上由点C向点D运动.设点P的运动时间为t秒,若某一时刻△BPE与△CQP全等,则点Q的运动速度是( )A.cm/sB.2cm/sC.2cm/s或4cm/sD.cm/s或2cm/s答案:D解题思路:1.思路分析首先判断这是一道动点问题,对于动点问题,我们的解决套路是:①研究基本图形,动点的运动状态;②分析状态转折点,分段;③画出符合题意的图形,表达线段长,建等式.2.解题过程试题难度:三颗星知识点:动点问题6.如图,在矩形ABCD中,AB=6m,BC=8m,AC=10m,动点P以2m/s的速度从点A出发,沿AC方向向点C移动,同时动点Q以1m/s的速度从点C出发,沿CB方向向点B移动,当P,Q两点中其中一点到达终点时则停止运动.设运动时间为t秒,则当t为( )时,△PQC 是以PQ为底的等腰三角形.A.5B.C.4D.答案:D解题思路:试题难度:三颗星知识点:动点问题7.如图,在矩形ABCD中,AB=20cm,BC=4cm,动点P以3cm/s的速度从B点出发,沿BA 方向向点A移动,同时动点Q以1cm/s的速度,沿CD方向向点D移动,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t(s),则当t为( )时,线段PQ恰好平分矩形ABCD的面积.A.3B.4C.5D.6答案:C解题思路:试题难度:三颗星知识点:动点问题8.已知:如图,等边△ABC的边长为6,动点P从点A出发沿AB-BC-CA方向以每秒2个单位的速度运动,再次回到点A时停止运动.连接BP,CP,设点P运动的时间为t秒.若△BCP的面积是△ABC面积的,则t的值为( )A.2或7B.4或14C.2或14D.4或7答案:A解题思路:1.思路分析首先判断这是一道动点问题,对于动点问题,我们的解决套路是:①研究基本图形,动点的运动状态;②分析状态转折点,分段;③画出符合题意的图形,表达线段长,建等式.2.解题过程试题难度:三颗星知识点:动点问题。
全等三角形中的动点问题全等三角形的判断与定义1.定义:能够完全重合的两个三角形叫做全等三角形,“全等”用符号“≌”表示,读作“全等于”。
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
由此,可以得出:全等三角形的对应边相等,对应角相等。
2.判定:(1)三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
(2)有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
(3)有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
(4)有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)(5)直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) 所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
3.性质:(1)全等三角形的对应角相等。
(2)全等三角形的对应边相等。
(3)全等三角形的对应边上的高对应相等。
(4)全等三角形的对应角的角平分线相等。
(5)全等三角形的对应边上的中线相等。
(6)全等三角形面积相等。
(7)全等三角形周长相等。
(8)全等三角形的对应角的三角函数值相等。
1、如图,在△ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AF=10cm,AC=14cm,动点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为.(1)求证:在运动过程中,不管取何值,都有S△AED=2S△DGC;(2)当取何值时,△DFE与△DMG全等;(3)在(2)的前提下,若,,求S△BFD.(1)证明:∵∠BAD=∠DAC,DF⊥AB,DM⊥AC,∴DF=DM,∵S△AED=AE•DF,S△DGC=CG•DM,∴=,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,∴AE=2tcm,CG=tcm,∴=2,即=2,∴在运动过程中,不管取何值,都有S△AED=2S△DGC.(2)解:设时间为t时,△DFE与△DMG全等,则EF=MG,①当M在线段CG的延长线上时,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,∴EF=AF-AE=10-2t,MG=AC-CG-AM=4-t,即10-2t=4-t,解得:t=6,当t=6时,MG=-2,所以舍去;②当M在线段CG上时,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,∴EF=AF-AE=10-2t(cm),MG=AM-(AC-CG)=t-4(cm),即10-2t=t-4,解得:t=,综上所述当t=时,△DFE与△DMG全等.(3)∵t=,∴AE=2t=(cm),∵DF=DM,∴S△ABD:S△ACD=AB:AC=BD:CD=119:126,∵AC=14cm,∴AB=(cm),∴BF=AB-AF=-10=(cm),∵S△ADE:S△BDF=AE:BF=:,S△AED=28cm2,∴S△BDF=(cm2).解析:(1)由角平分线的性质可知DF=DM,所以△AED和△DEG的面积转化为底AE和CG的比值,根据路程=速度×时间求出AE和CG的长度即可证明在运动过程中,不管取何值,都有S△AED=2S△DGC.(2)若△DFE与△DMG全等,则EF=MG,利用已知条件求出EF和MG的长度,建立方程解方程即可求出运动的时间.(3)利用等高三角形的面积比等于对应底的比,即可求得答案.2、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=8cm,点P从A出发向C以1cm/s的速度运动、点Q同时从C出发向B以1cm/s的速度运动,当一个点运动到终点时,该点停止运动,另一个点继续运动,当两个点都到达终点时也停止运动.(1)几秒后,△CPQ的面积为Rt△ABC的面积的?(2)填空:①点经过_____秒,点P在线段AB的垂直平分线上.②点Q经过_____秒,点Q在∠BAC的平分线上.(1)设经过x秒,首先求得线段BC的长,然后分x≤6和6<x≤8两种情况列方程求解即可;(2)①点P在线段AB的垂直平分线上,即可得到PA=PB,从而求得时间;②点Q在∠BAC的平分线上,则Q点到AC和AB的距离相等.解;(1)设经过x秒.在Rt△ABC中,根据题意得;当x≤6时,(8-x)x=××8×6解得:当6<x≤8时,(8-x)×6=37解得:x=7答:经过7秒或秒.(2)当点P在线段AB的垂直平分线上时,PA=PB,∵设经过x秒后点P在线段AB的垂直平分线上,∴x2=(8-x)2+62解得:x=,∴经过秒,点P在线段AB的垂直平分线上②如图,作QD⊥AB于点D,∵点Q在∠BAC的平分线上,∴QD=QC,设经过x秒,则CQ=x,则QD=(6-x),∴x=(6-x),解得:x=,∴点Q经过秒,点Q在∠BAC的平分线上.3、如图,△ABC是直角三角形,∠A=90°,AB=8cm,AC=6cm点P从点A出发,沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则三角形APQ的最大面积是()A.8cm2B.16cm2C.24cm2D.32cm2解:根据题意沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,∴AP=2t,AQ=t,S△APQ=t2,∵0<t≤4,∴三角形APQ的最大面积是16.故选B.4、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)(3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.解:(1)解法一:如图1延长BP交直线AC于点E.∵AC∥BD,∴∠PEA=∠PBD.∵∠APB=∠PAE+∠PEA,∴∠APB=∠PAC+∠PBD;解法二:如图2过点P作FP∥AC,∴∠PAC=∠APF.∵AC∥BD,∴FP∥BD.∴∠FPB=∠PBD.∴∠APB=∠APF+∠FPB=∠PAC+∠PBD;解法三:如图3,∵AC∥BD,∴∠CAB+∠ABD=180°,∠PAC+∠PAB+∠PBA+∠PBD=180°.又∠APB+∠PBA+∠PAB=180°,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)(a)当动点P在射线BA的右侧时,结论是∠PBD=∠PAC+∠APB.(b)当动点P在射线BA上,结论是∠PBD=∠PAC+∠APB.或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD(任写一个即可).(c)当动点P在射线BA的左侧时,结论是∠PAC=∠APB+∠PBD.选择(a)证明:如图4,连接PA,连接PB交AC于M.∵AC∥BD,∴∠PMC=∠PBD.又∵∠PMC=∠PAM+∠APM(三角形的一个外角等于与它不相邻的两个内角的和),∴∠PBD=∠PAC+∠APB.选择(b)证明:如图5∵点P在射线BA上,∴∠APB=0度.∵AC∥BD,∴∠PBD=∠PAC.∴∠PBD=∠PAC+∠APB或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD.选择(c)证明:如图6,连接PA,连接PB交AC于F∵AC∥BD,∴∠PFA=∠PBD.∵∠PAC=∠APF+∠PFA,∴∠PAC=∠APB+∠PBD.解析:(1)如图1,延长BP交直线AC于点E,由AC∥BD,可知∠PEA=∠PBD.由∠APB=∠PAE+∠PEA,可知∠APB=∠PAC+∠PBD;(2)过点P作AC的平行线,根据平行线的性质解答;(3)根据P的不同位置,分三种情况讨论.6、如图1,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF.(1)试说明BF=CE的理由;(2)当E、F相向运动,形成如图2时,BF和CE还相等吗?请说明你的结论和理由.证明:(1)∵AD∥BC,∴∠BAD+∠ABC=180°,∠CDA+∠DCB=180°,∵∠ABC=∠DCB,∴∠BAD=∠CDA,∵AE=DF,∴AE+AD=DF+AD,即AF=DE,在△ABF和△DCE中,,∴△ABt≌△DCE(SAS),∴BF=CE;(2)相等.在△ABC和△DCB中,,∴△ABC≌△DCB(SAS),∴BF=CE.解析:(1)根据两直线平行,同旁内角互明证明∠BAD=∠CDA,根据AE边DF证明AF=DE,再根据边角边定理证明△ABF和△DCE全等,根据全等三角形对应边相等即可证明BF=CE.(2)利用边角边定即证明△ABC和△DCB全等,再根据全等三角形对应边相等即可证明7、如图,已知△ABC中,BC=AC=8厘米,∠C=90°,如果点P在线段AC上以1厘米/秒的速度由A点向C点运动,同时,点Q在线段BC上由C点向B点运动,运动速度与点P的运动速度相等,点M是AB的中点.(1)在点P和点Q运动过程中,△APM与△CQM是否保持全等,请说明理由;(2)在点P和点Q运动过程中,四边形PMQC的面积是否变化?若变化说明理由;若不变,求出这个四边形的面积;(3)线段AP、PQ、BQ之间存在什么数量关系,写出这个关系,并加以证明.解:(1)在点P和点Q运动过程中,△APM与△CQM是否保持全等.理由如下:∵在△ABC中,BC=AC=8厘米,∠C=90°,点M是AB的中点,∴∠A=∠MCQ=45°,AM=CM,∴在△APM与△CQM中,,∴△APM与△CQM(SAS);(2)在点P和点Q运动过程中,四边形PMQC的面积不变化,其面积是32厘米2,理由如下:由(1)知,△APM与△CQM,∴S△APM=S△CQM,∴S四边形PMQC=S△AMC=S△ABC=AC•BC=×8×8=32(厘米2),即在点P和点Q运动过程中,四边形PMQC的面积不变化,其面积是32厘米2;(3)AP2+BQ2=PQ2.证明如下:∵由(1)知,△APM与△CQM,∴AP=CQ,又AC=BC,∴PC=BQ,∴AP2+BQ2=CQ2+CP2=PQ2.即AP2+BQ2=PQ2.解析:(1)通过SAS证得△APM与△CQM;(2)由(1)中的全等三角形的面积相等可以推知:S四边形PMQC=S△AMC=S△ABC;(3)AP2+BQ2=PQ2.利用(1)中的全等三角形的对应边相等推知AP=CQ,则PC=BQ,所以在直角△PCQ中,利用勾股定理推得AP2+BQ2=PQ2.8、如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?解:(1)①∵t=1秒,∴BP=CQ=3×1=3厘米,∵AB=10厘米,点D为AB的中点,∴BD=5厘米.又∵PC=BC-BP,BC=8厘米,∴PC=8-3=5厘米,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP.(SAS)②∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q运动的时间秒,∴厘米/秒;(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,解得.∴点P共运动了×3=80厘米.∵80=56+24=2×28+24,∴点P、点Q在AB边上相遇,∴经过秒点P与点Q第一次在边AB上相遇.解析:(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个腰长.9、如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?分析:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP.(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3tcm,PC=8-3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.解答:解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴∠ABC=∠ACB,且BD=PC,BP=CQ,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8-3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8-3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8-3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.点评:本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.10、在△ABC中,AB=AC,(1)如图①,若∠BAC=45°,AD和CE是高,它们相交于点H.求证:AH=2BD;(2)如图②,若AB=AC=10厘米,BC=8厘米,点M为AB的中点,点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.如果在运动过程中存在某一时刻使得△BPM与△CQP全等,那么点Q的运动速度为多少?点P、Q运动的时间t为多少?解:(1)证明:在△ABC中,∵∠BAC=45°,CE⊥AB,∴AE=CE,∠EAH=∠ECB,在△AEH和△CEB中,,∴△AEH≌△CEB(ASA),∴AH=BC,∵BC=BD+CD,且BD=CD,∴BC=2BD,∴AH=2BD.(2)∵AB=AC,∴∠B=∠C,∴△BPM与△CQP全等有两种情况:△BPM≌△CPQ 或△BPM≌△CQP当△BPM≌△CPQ时,BP=PC=4,CQ=BM=5,∴点P,点Q运动的时间秒,∴厘米/秒.当△BPM≌△CQP时,BP=CQ,∴V Q=V P=3厘米/秒.此时PC=BM=5,t=秒.综上所述,点Q的运动速度为厘米/秒,此时t=秒或点Q的运动速度为3厘米/秒,此时t=1秒.解析:(1)证得△BCE≌△HAE,证得AH=BC,证得AH=2BD;(2)根据全等三角形应满足的的件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度B11、如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图③,请解答下列问题:(1)若AB=AC,请探究下列数量关系:①在图②中,BD与CE的数量关系是______;②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;(2)若AB=k•AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明分析:(1)①根据题意和旋转的性质可知△AEC≌△ADB,所以BD=CE;②根据题意可知∠CAE=BAD,AB=AC,AD=AE,所以得到△BAD≌△CAE,在△ABM和△ACN中,DM=BD,EN=CE,可证△ABM≌△ACN,所以AM=AN,即∠MAN=∠BAC.(2)直接类比(1)中结果可知AM=k•AN,∠MAN=∠BAC.解答:解:(1)①BD=CE;②AM=AN,∠MAN=∠BAC,∵∠DAE=∠BAC,∴∠CAE=∠BAD,在△BAD和△CAE中∵∴△CAE≌△BAD(SAS),∴∠ACE=∠ABD,∵DM=BD,EN=CE,∴BM=CN,在△ABM和△ACN中,∵∴△ABM≌△ACN(SAS),∴AM=AN,∴∠BAM=∠CAN,即∠MAN=∠BAC;(2)AM=k•AN,∠MAN=∠BAC.点评:本题考查三角形全等的判定方法和性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题还要会根据所求的结论运用类比的方法求得同类题目.12、已知:如图,在平面直角坐标系中,点A,B,C分别在坐标轴上,且OA=OB=OC,△ABC的面积为9,点P从C点出发沿y轴负方向以1个单位/秒的速度向下运动,连接PA,PB,D(-m,-m)为AC上的点(m>0)(1)试分别求出A,B,C三点的坐标;(2)设点P运动的时间为t秒,问:当t为何值时,DP与DB垂直相等?请说明理由;(3)若PA=AB,在第四象限内有一动点Q,连QA,QB,QP,且∠PQA=60°,当Q在第四象限内运动时,下列说法:(i)∠APQ+∠PBQ的度数和不变;(ii)∠BAP+∠BQP的度数和不变,其中有且只有一个说法是正确的,请判断正确的说法,并求这个不变的值.解:(1)∵OA=OB=OC,∠AOC=∠BOC=90°,∴∠OAC=∠OCA=∠OBC=∠OCB=45°,∴∠ACB=90°,又△ABC的面积为9,∴OA=OC=OB=3,∴A(-3,0),B(3,0),C(0,-3);(2)当t=3秒时,即CP=OC时,DP与DB垂直且相等.理由如下:连接OD,作DM⊥x轴于点M,作DN⊥y轴于点N,∵D(-m,-m),∴DM=DN=OM=ON=m,∴∠DOM=∠DON=45°,而∠ACO=45°,∴DC=DO,∴∠PCD=∠BOD=135°,又CP=OC=OB,∴△PCD≌△BOD (SAS),∴DP=DB,∠PDC=∠BDO,∴∠BDP=∠ODC=90°,即DP⊥DB.(3)解:(i)正确.在QA上截取QS=QP,连接PS.∵∠PQA=60°,∴△QSP是等边三角形,∴PS=PQ,∠SPQ=60°,∵PO是AB的垂直平分线,∴PA=PB 而PA=AB,∴PA=PB=AB,∴∠APB=60°,∴∠APS=∠BPQ,∴△APS≌△BPQ,∴∠PAS=∠PBQ,∴∠APQ+∠PBQ=∠APQ+∠PAS=120°.解析:(1)利用OA=OB=OC,∠AOC=∠BOC=90°得出∠ACB=90°,再利用△ABC的面积为9,得出OA=OC=OB=3 即可得出各点的坐标;(2)作DM⊥x轴于点M,作DN⊥y轴于点N,假设出D点的坐标,进而得出△PCD≌△BOD,进而得到∠BDP=∠ODC=90°,即DP⊥DB;(3)在QA上截取QS=QP,连接PS,利用∠PQA=60°,得出△QSP是等边三角形,进而得出△APS≌△BPQ,从而得出∠APQ+∠PBQ=∠APQ+∠PAS得出答案.13、如图1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.(1)求证:BP=DP;(2)如图2,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明;(3)试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连接,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论.分析:(1)由正方形的性质可证△ABP≌△ADP,即BP=DP;(2)当四边形PECF的点P旋转到BC边上时,DP>DC>BP,此时BP=DP不成立;(3)由旋转的性质和正方形的性质可证△BEC≌△DFC,即BE=DF.解答:(1)证明:证法一:在△ABP与△ADP中,∵AB=AD∠BAC=∠DAC,AP=AP,∴△ABP≌△ADP,∴BP=DP.(2分)证法二:利用正方形的轴对称性,可得BP=DP.(2分)(2)解:不是总成立.(3分)当四边形PECF的点P旋转到BC边上时,DP>DC>BP,此时BP=DP不成立,(5分)说明:未用举反例的方法说理的不得分.(3)解:连接BE、DF,则BE与DF始终相等,,在图1中,由正方形ABCD可证:AC平分∠BCD,∵PE⊥BC,PF⊥CD,∴PE=PF,∠BCD=90°,∴四边形PECF为正方形.(7分)∴CE=CF,∵∠DCF=∠BCE,BC=CD,∴△BEC≌△DFC,∴BE=DF.(8分)点评:本题考查了旋转的性质和全等三角形的判定,以及正方形的性质.14、如图,在△ABC中,AB=AC=5,∠B=∠C,BC=8,点D从B点出发沿线段BC向C运动(D不与B、C重合),点E从点C出发沿线段CA向A运动(E不与A、C重合),它们以相同的速度同时运动,连结AD、DE.若要使△ABD≌△DCE,①请给出确定D、E两点位置的方法(如指明CD长度等),并说明理由;②此时∠ADE与∠C大小关系怎样?为什么?解:①DC=5,理由是:∵BC=8,CD=AB=5,∴BD=8-5=3,即CE=BD=3,在△ABD和△DCE中,,∴△ABD≌△DCE,即当CD=5时,△ABD≌△DCE.②∠ADE=∠C,理由是:∵△ABD≌△DCE,∴∠BDA=∠DEC,∴∠C=180°-∠DEC-∠EDC=180°-∠ADB-∠EDC,∵∠ADE=180°-∠BDA-∠EDC,∴∠ADE=∠C.解析:①CD=5时,根据SAS推出△ABD≌△DCE即可.②根据全等三角形性质得出∠BDA=∠DEC,根据三角形内角和定理求出∠C=180°-∠ADB-∠EDC,求出∠ADE=180°-∠BDA-∠EDC,即可得出答案.15、如图:△ABC中,AB=AC=5(即有∠B=∠C),BC=8,点D在线段BC上运动(D不与B、C重合),点E在线段AC上运动(E不与A、C重合),连结AD、DE.(1)点D从B向C运动时,∠BDA逐渐变_____(填“大”或“小”);(2)若要使△ABD≌△DCE,①请给出确定D、E两点位置的方法(如指明某些线段的长度等),并说明理由;②此时∠ADE与∠C大小关系怎样?为什么?(1)根据BD边逐渐增长可得∠BAD逐渐增大,又因为∠B的大小固定不变,结合三角形内角和定理∠B+∠BAD+∠ADB=180°可得∠ADB逐渐减小.(2)①根据三角形全等的性质可得DC=AB,DB=CE,进而得到答案;②根据全等三角形的性质可得∠1=∠2,再根据∠1+∠B+∠ADB=180°,∠2+∠ADE+∠BDA=180°,可得∠ADE=∠B,进而得到∠ADE=∠C.解:(1)∵点D从B向C运动时,BD边逐渐变长,∴∠BAD逐渐增大,∵∠B的大小固定不变,∠B+∠BAD+∠ADB=180°,∴∠ADB逐渐减小;(2)①∵△ABD≌△DCE,∴DC=AB=5,CE=DB,∵BC=8,∴CE=DB=8-5=3;②∠ADE=∠C;理由:∵△ABD≌△DCE,∴∠1=∠2,∵∠1+∠B+∠ADB=180°,∠2+∠ADE+∠BDA=180°,∴∠ADE=∠B,∵∠B=∠C,∴∠ADE=∠C.17、如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD 于点F.(1)求证:EF+AC=AB;(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与A1的运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图2,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E1⊥A1C1,垂足为E1,请猜想E1F1,A1C1与AB三者之间的数量关系,并证明你的猜想;(3)在(2)的条件下,当A1E1=3,C1E1=2时,求BD的长.分析:(1)过F作FM⊥AB于点M,首先证明△AMF≌△AEF,求出MF=MB,即可知道EF+AE=AB.(2)连接F1C1,过点F1作F1P⊥A1B于点P,F1Q⊥BC于点Q,证明Rt△A1E1F1≌Rt△A1PF1,Rt△QF1C1≌Rt△E1F1C1后推出A1B+BC1=A1P+PB+QB+C1Q=A1P+C1Q+2E1F1化简为E1F1+A1C1=AB.(3)设PB=x,QB=x,PB=1,E1F1=1,又推出E1F1+A1C1=AB,得出BD=.解答:(1)证明:如图1,过点F作FM⊥AB于点M,在正方形ABCD中,AC⊥BD 于点E.∴AE=AC,∠ABD=∠CBD=45°,∵AF平分∠BAC,∴EF=MF,又∵AF=AF,∴Rt△AMF≌Rt△AEF,∴AE=AM,∵∠MFB=∠ABF=45°,∴MF=MB,MB=EF,∴EF+AC=MB+AE=MB+AM=AB.(2)E1F1,A1C1与AB三者之间的数量关系:E1F1+A1C1=AB证明:如图2,连接F1C1,过点F1作F1P⊥A1B于点P,F1Q⊥BC于点Q,∵A1F1平分∠BA1C1点/sub>,∴E1F1=PF1;同理QF1=PF1,∴E1F1=PF1=QF1,21又∵A1F1=A1F1,∴Rt △A1E1F1≌Rt △A1PF1,∴A1E1=A1P ,同理Rt △QF1C1≌Rt △E1F1C1,∴C1Q=C1E1,由题意:A1A=C1C ,∴A1B+BC1=AB+A1A+BC-C1C=AB+BC=2AB ,∵PB=PF1=QF1=QB ,∴A1B+BC1=A1P+PB+QB+C1Q=A1P+C1Q+2E1F1,即2AB=A1E1+C1E1+2E1F1=A1C1+2E1F1,∴E1F1+A1C1=AB .(3)解:设PB=x ,则QB=xm∵A1E1=3,QC1=C1E1=2,Rt △A1BC1中,A1B 2+BC12g/sup>=A 1C 12, 即(3+x )2+(2+x )2=52,∴x 1=1,x 2=-6(舍去), ∴PB=1,∴E 1F 1=1, 又∵A 1C 1=5, 由(2)的结论:E 1F 1+A 1C 1=AB , ∴AB=,∴BD=.点评:本题考查的是勾股定理的应用,全等三角形的判定以及正方形的性质等有关知识.18、如图,在等腰Rt △ABC 中,∠B=90°,AB=BC=8cm .动点P 从点A 出发沿线段AB 向点B 运动,动点Q 从点C 出发沿射线BC 运动,连接PQ ,交AC 于点D .作PE ⊥AC 于点E ,若在点P ,Q 运动的过程中,始终保持AP=CQ ,则线段DE 的长度为_____.作PF∥BC交AC于点D,就可以得出△APE是等腰直角三角形,由其性质就可以得出AE=EF,由△PFD≌△QCD就可以得出DC=DF,进而就可以得出DF+FE=CD+AE就可以得出结论.解:作PF∥BC交AC于点D,∴∠APF=∠B=90°,∠AFP=∠ACB.∠FPD=∠Q,∠PFD=∠QCD.∵∠B=90°,AB=BC=8cm,∴∠A=∠ACB=45°,∴∠A=∠ACB=45°,∴PA=AF.∵PE⊥AC,∴AE=EF.∵AP=CQ,∴PF=CQ.在Rt△ABC中,由勾股定理就可以得出AC=8.在△PFD和△QCD中,,∴△PFD≌△QCD(ASA)∴DF=DC,∴DF+EF=DC+AE,∴DE=AC,∴DE=4cm.故答案为:4.19、如图,在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,M在AC上且AM=6cm,过点A(与BC在AC同侧)作射线AN⊥AC,若动点P从点A出发,沿射线AN匀速运动,运动速度为1厘米/秒,设点P运动时间为t秒(1)经过几秒时,Rt△AMP是等腰三角形?(2)又经过几秒时,PM⊥AB?(3)连接BM,在(2)的条件下,求四边形AMBP的面积.(1)解:设经过x秒时,Rt△AMP是等腰三角形,∵∠PAM=90°,∴只能AM=AP,∵AM=6cm,∴AP=6cm,即x=6(秒),答:经过6秒时,Rt△AMP是等腰三角形;(2)解:设经过t秒时,PM⊥AB,∵PM⊥AB,AN⊥AC,∠C=90°∴∠PAM=∠4=∠C=90°,∴∠3+∠2=90°,∠1+∠2=90°,∴∠1=∠3,∴△ACB∽△PAM,∴=,∴=,x=8,8-6=2,答:又经过2秒时,PM⊥AB;23(3)解:在Rt△ABC中,∠C=90°,AC=8,BC=6,由勾股定理得:AB=10,同理可求PM=10,∵PM⊥AB,∴四边形AMBP的面积S=AB×PM=×10×10=50,答:四边形AMBP的面积是50.解析:(1)得出腰时AM=AP,即可得出答案;(2)证△PAM∽△ACB,得出比例式,代入求出AP,即可得出答案;(3)由勾股定理求出PM、AB,关键三角形的面积公式求出即可.。
三角形全等之动点问题(分段、表达)(北师版)(专题)一、单选题(共10道,每道10分)1.已知:如图,等边三角形ABC的边长为9.动点P从点A出发沿AB-BC-CA方向以每秒3个单位的速度运动,再次回到点A时停止运动.设点P运动时间为t秒.解答下列问题:(1)运动状态分析图如下空缺处依次所填正确的是( )A.①1/s;②0≤t≤9B.①3/s;②0≤t≤6C.①3/s;②0≤t≤3D.①3/s;②0≤t≤9答案:D解题思路:点P速度已知,可判断此题为动点问题,按照动点问题的解决方法解决:①研究基本图形,标注:②研究动点运动状态,包括起点、终点、状态转折点、速度、时间范围,如图:③表达线段长,建等式.根据运动状态分析,选D.故选D.试题难度:三颗星知识点:动点问题2.(上接第1题)(2)当点P沿AB-BC-CA方向运动时,需要分_____种情况来考虑,时间段的划分为( )A.1;0≤t≤9B.2;0≤t≤3;3<t≤9C.3;0≤t≤3;3<t≤6;6<t≤9D.3;0≤t≤3;0≤t≤3;0≤t≤3答案:C解题思路:由题意,点P在运动过程中有2个状态转折点,需分成3种情况:①点P在AB上,对应的时间范围:0≤t≤3;②点P在BC上,对应的时间范围:3<t≤6;③点P在CA上,对应的时间范围:6<t≤9.故选C.试题难度:三颗星知识点:动点问题3.(上接第1,2题)(3)当P在BC上运动时,线段CP的长可用含t的式子表示为( )A.3tB.18-3tC.3t-9D.3t-18答案:B解题思路:当点P在BC上运动时,3<t≤6,如图:由题意:点P走过的路程为AB+BP=3t,∵AB=BC=9,∴AB+BC=18,∴CP=18-3t.故选B.试题难度:三颗星知识点:动点问题4.(上接第1,2,3题)(4)当点P在CA上运动时,线段PC的长可用含t的式子表示为( )A.18-3tB.3t-18C.27-3tD.3t-9答案:B解题思路:当点P在CA上运动时,6<t≤9,如图:由题意:点P走过的路程为AB+BC+CP=3t,∵AB=BC=9,∴AB+BC=18,∴CP=3t-18.故选B.试题难度:三颗星知识点:动点问题5.已知:如图,在长方形ABCD中,AB=3cm,AD=5cm.动点P从点B出发,以每秒1cm的速度沿BC-CD-DA向终点A运动,设点P运动时间为t秒.请回答下列问题:(1)运动状态分析图如下空缺处依次所填正确的是( )A.①5 s;②0≤t≤15B.①3 s;②5≤t≤8C.①3 s;②0≤t≤13D.①3 s;②0≤t≤3答案:C解题思路:点P速度已知,可判断此题为动点问题,按照动点问题的解决方法解决:①研究基本图形,标注:②研究动点运动状态,包括起点、终点、状态转折点、速度、时间范围,如图:③表达线段长,建等式.根据运动状态分析,选C.试题难度:三颗星知识点:动点问题6.(上接第5题)(2)当点P在线段CD上运动时,线段DP的长可用含t的式子表示为( )cm.A.8-tB.5+tC.t-8D.t答案:A解题思路:由题意,点P在运动过程中有2个状态转折点,需分成3种情况:①点P在BC上,对应的时间范围:0≤t≤5;②点P在CD上,对应的时间范围:5<t≤8;③点P在DA上,对应的时间范围:8<t≤13.当点P在线段CD上运动时,对应的时间范围是5<t≤8,如图:此时,点P走过的路程为:BC+CP=t,∵BC=5,CD=3,∴BC+CD=8,∴DP=(8-t) cm.故选A.试题难度:三颗星知识点:动点问题7.(上接第5,6题)(3)当8<t≤13时,△ABP的面积S可用含t的式子表示为( )cm2.A.3t-24B.C.-3t+39D.答案:B解题思路:当8<t≤13时,点P在线段DA上运动,如图:∴由题意,点P走过的路程为:BC+CD+DP=t,∵BC+CD+AD=13,∴AP=13-t,∴故选B.试题难度:三颗星知识点:动点问题8.已知:如图,在长方形ABCD中,AB=CD=4 cm,AD=BC=16 cm,动点P从点C出发,以每秒2 cm的速度沿CD-DA-AB向点B运动,动点Q从点B出发,以每秒1 cm的速度沿BC方向向点C运动,P,Q同时出发,当点P停止运动时,点Q也随之停止,设点P运动时间为t秒,连接PQ.请回答下列问题:(1)运动状态分析图如下空缺处依次所填正确的是( )A.①8s;②0≤t≤8B.①8s;②0≤t≤12C.①10s;②0≤t≤12D.①8s;②0≤t≤16答案:B解题思路:点P,Q速度已知,可判断此题为动点问题,按照动点问题的解决方法解决:①研究基本图形,标注:②研究动点运动状态,包括起点、终点、状态转折点、速度、时间范围,如图:③表达线段长,建等式.根据点P的运动状态分析,选B.试题难度:三颗星知识点:动点问题9.(上接第8题)(2)在点P,Q的运动过程中,需要分_____种情况来考虑,时间段的划分为_______________.( )A.1;0≦t≦12B.2;0≦t≦12,12≦t≦16C.3;0≦t≦2,2≦t≦10,10≦t≦16D.3;0≦t≦2,2≦t≦10,10≦t≦12答案:D解题思路:由题意,点P在运动过程中有2个状态转折点,点Q在BC上运动,状态没有发生改变,故需分成3种情况:①点P在CD上,对应的时间范围:0≦t≦2;②点P在DA上,对应的时间范围:2③点P在AB上,对应的时间范围:10故选D.试题难度:三颗星知识点:动点问题10.(上接第8,9题)(3)用含t的式子表达△CPQ的面积,并直接写出t的取值范围.下列正确的是( )A.0<t<12时,B.0<t≦2时,;2<t≦10时,;10<t<16时,C.0<t≦2时,;2<t≦10时,;10<t<12时,D.0<t≦2时,;2<t≦10时,;10<t<12时,答案:C解题思路:①当点P在CD上时,0≦t≦2.如图,此时,CP=2t,BQ=t,CQ=16-t,∴②当点P在DA上时,2如图,过点P作PE⊥BC,垂足为点E,由题意,PE=AB=4,CQ=16-t,∴;③当点P在AB上时,10如图,此时,点P已走路程:CD+DA+AP=2t,未走路程:BP=CD+DA+AB-2t=24-2t,CQ=16-t,∴.故选C.试题难度:三颗星知识点:动点问题。
学思堂教育个性化辅导授课案教师: 学生: 时间: 2016 年 月 日 段授课内容:全等三角形中动点问题的处理教学目标:培养学生对运动变化、分类讨论思想等的数学综合运用能力教学重难点:寻找运动规律,分析问题(1)质点的运动形成全等三角形通过全等三角形的性质:对应边相等,(对应角相等,面积相等),来确定质点运动的速度或时间,注意分类讨论思想的运用。
(2)几何问题中三角板旋转形成的全等三角形三角板是学生最常用的学习工具,以三角板为道具,以学生常见、熟悉的几何图形为载体,并辅之以平移、旋转等变换手段的问题,能为学生提供动手实践操作设计的空间,较好地考查了学生观察、实验、比较、联想、类比、归纳的能力以及运动变化、分类讨论思想等的综合运用能力。
这类操作性的题目格调清新,立意新颖,充分体现了课标中提出的“培养学生动手动脑、实践探索的能力”的要求,既注重基础知识,同时又具有很强的综合性,因此受到了各地中考命题专家的青睐。
1.如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?A Q C DB P2.如图,已知长方形ABCD中,AD=6cm,AB=4cm,点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A 向点B运动,同时,点Q在线段BC上由点B向点C运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△AEP与△BPQ是否全等,请说明理由,并判断此时线段PE和线段PQ的位置关系;(2)若点Q的运动速度与点P的运动速度相等,运动时间为t秒,设△PEQ的面积为Scm2,请用t的代数式表示S;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△AEP与△BPQ全等?3. 如图,在△ABC中,AC=BC=2,∠A=∠B=30°,点D在线段AB上运动(D不与A、B重合),连接CD,作∠CDE=30°,DE交BC于点E.(1)AB=;(2)当AD等于多少时,△ADC≌△BED,请说明理由;(3)在点D的运动过程中,△CDE的形状可以是等腰三角形吗?若可以,求出∠ADC的度数;若不可以,说明理由.4. 问题背景:如图1:在四边形ABC中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离5.将一副三角板如图放置,D为BC的中点,将三角板MDN的直角顶点放在点D处,三角板的两边与AB,AC分别交于点E、F,当三角板MDN绕点D旋转时,且旋转过程中使点E不与A、B重合.(1)请你说明△DEF一定为等腰直角三角形;(2)证明点E、F到线段BC的距离之和为定值.6.问题情境:将一副直角三角尺(Rt△ABC和Rt△DEF)按图①所示的方式摆放,其中∠ACB=90°.CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.探究展示:小宇同学展示出如下正确的解法:解:OM=ON,证明:连接CO,则⊙O是AB边上的中线.∵CA=CB,∴CO是∠ACB的平分线(依据1).∵OM⊥AC,ON⊥BC,∴OM=ON(依据2).反思交流:(1)上述证明过程的“依据1”和“依据2”分别是指:依据1:__________________________________________.依据2:__________________________________________.(2)你有与小宇不同的方法吗?请写出你的证明过程.(3)将图①中的Rt△DEF沿着射线BA的方向平移至如图②所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系和位置关系,并写出证明过程.7.△ABC中,∠ACB=90°,AC=BC,AB=2.现将一块三角板的直角顶点放在AB的中点D处,两直角边分别与直线AC、直线BC相交于点E、F.我们把DE⊥AC时的位置定为起始位置(如图1),将三角板绕点D顺时针方向旋转一个角度α(0°<α<90°).(1)在旋转过程中,当点E在线段AC上,点F在线段BC上时(如图2),①试判别△DEF的形状,并说明理由;②判断四边形ECFD的面积是否发生变化,并说明理由.(2)设直线ED交直线BC于点G,在旋转过程中,是否存在点G,使得△EFG为等腰三角形?若存在,求出CG的长,若不存在,说明理由;8.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.课后巩固计划:学生对于本次课的评价:○特别满意○满意○一般○差学生签字:________教师评定:1、学生上次作业评价:○特别满意○满意○一般○差2、学生本次上课情况评价:○特别满意○满意○一般○差教师签字:________ 教师评语:教学主管审核批复:教学主管签字:________学思堂教育教务处。
全等三角形之动点问题(综合测试)(人教版)(含答案)本文介绍了全等三角形之动点问题,主要涉及到动点在三角形内部运动的问题。
第一题考察了一个长方形内两个动点的运动问题,要求求出两点停止运动的时间,以及此时所构成的等腰三角形。
第二题考察了一个三角形内两个动点的运动问题,要求根据点P的运动,确定t的取值范围。
第三题和第四题分别考察了两个等式的求解,求解过程中需要使用到全等三角形的性质。
第五题考察了一个梯形内两个动点的运动问题,要求求出线段PD和QE的长度,以及当t为何值时,两个三角形全等。
已知长方形ABCD,其中AB=6cm,BC=10cm。
动点P从点B出发,以每秒2cm的速度沿BC-CD-DA方向运动到终点A。
设点P运动时间为t秒。
问题1:点P在线段CD上运动的时间范围是?答案:D。
解题思路:由于P从B出发,到A停止运动,因此P在线段CD上的运动时间为t-6秒。
又因为P以每秒2cm的速度运动,所以P在线段CD上的路程为2(t-6)cm。
由于CD=10cm,所以P在线段CD上的时间范围为5≤t≤8,即选项D。
问题2:当P在线段CD上运动时,△ABP的面积S可用含t的式子表示为?答案:-6t+78.解题思路:由于△ABP的面积为底边AB乘以高BP,而BP=2(t-6),AB=6cm,因此S=6(2t-18)=12t-108.化简后得到S=-6t+78,即选项B。
已知正方形ABCD,边长为8.动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA方向运动到终点A。
设点P 运动时间为t秒。
问题1:当P在线段CD上运动时,线段CP的长度可用含t的式子表示为?答案:2t-8.解题思路:由于P从B出发,到A停止运动,因此P在线段CD上的运动时间为t-4秒。
又因为P以每秒2个单位的速度运动,所以P在线段CD上的路程为2(t-4)个单位。
由于CD=8个单位,所以线段CP的长度为8-2(t-4)=2t-8,即选项B。
三角形全等之动点问题由点(速度已知)的运动产生的几何问题称为动点问题.动点问题的解决方法: 1. 研究背景图形,标注; 2. 分析运动过程,分段; 3. 表达线段长,建等式.具体分析动点问题时,往往会先研究背景图形,再分析运动过程、分段,为最后表达线段长,建等式做好准备.因为动点运动方向的改变不仅会改变线段长的表达,还可能改变和动点相关的图形的形状,所以要先分段,然后逐段分析,表达线段长,建等式.1. 已知:如图,在矩形ABCD 中,AB =4,AD =10,点E 为边AD 上一点,且AE =7.动点P 从点B 出发,以每秒2个单位的速度沿BC 向点C 运动,连接AP ,DP .设点P 运动时间为t 秒. (1)当t =1.5时,△ABP 与△CDE 是否全等?请说明理由;(2)当t 为何值时,△DCP ≌△CDE .2. 已知:如图,在梯形ABCD 中,AD ∥BC ,∠ABC =90°,AD =12,BC =24,动点P 从点A 出发以每秒1个单位的速度沿AD 向点D 运动,动点Q 从点C 出发以每秒2个单位的速度沿CB 向点B 运动,P ,Q 同时出发,当点P 停止运动时,点Q 也随之停止,连接PQ ,DQ .设点P 运动时间为x 秒,请求出当x 为何值时,△PDQ ≌△CQD .A E DCPB A E DCB Q P DCB A DA3. 已知:如图,在△ABC 中,AB =AC =10 cm ,BC =8 cm ,点D 为AB 的中点.点P 在线段BC 上以每秒3 cm 的速度由点B 向点C 运动,同时点Q 在线段CA 上由点C 向点A 运动.设点P 运动时间为t 秒,若某一时刻△BPD 与△CQP 全等,求此时t 的值及点Q 的运动速度.4. 已知:如图,正方形ABCD 的边长为10 cm ,点E 在边AB上,且AE =4 cm ,点P 在线段BC 上以每秒2 cm 的速度由点B 向点C 运动,同时点Q 在线段CD 上由点C 向点D 运动.设点P 运动时间为t 秒,若某一时刻△BPE 与△CQP 全等,求此时t 的值及点Q 的运动速度.QP EDCA5. 已知:如图,在长方形ABCD 中,AB =DC =4,AD =BC =5.延长BC 到E ,使CE =2,连接DE .动点P 从点B 出发,以每秒2个单位的速度沿BC -CD -DA 向终点A 运动,设点P 运动时间为t 秒. (1)请用含t 的式子表达△ABP 的面积S .(2)是否存在某个t 值,使得△DCP 和△DCE 全等?若存在,请求出所有满足条件的t 值;若不存在,请说明理由.6. 已知:如图,在长方形ABCD 中,AB =CD =3 cm ,AD =BC =5 cm ,动点P 从点B 出发,以每秒1 cm 的速度沿BC 方向向点C 运动,动点Q 从点C 出发,以每秒2 cm 的速度沿CD -DA -AB 向点B 运动,P ,Q 同时出发,当点P 停止运动时,点Q 也随之停止,设点P 运动时间为t 秒.请回答下列问题: (1)请用含t 的式子表达△CPQ 的面积S ,并直接写出t 的取值范围.(2)是否存在某个t 值,使得△ABP 和△CDQ 全等?若存在,请求出所有满足条件的t 值;若不存在,请说明理由.EDC BA DCB A【参考答案】1. 解:(1)当t =1.5时,△ABP ≌△CDE .理由如下:如图,由题意得BP =2t ∴当t =1.5时,BP =3 ∵AE =7,AD =10 ∴DE =3 ∴BP =DE 在矩形ABCD 中 AB =CD ,∠B =∠CDE 在△ABP 和△CDE 中∴△ABP ≌△CDE (SAS ) (2)如图,由题意得BP =2t ∵BC =10 ∴CP =10-2t若使△DCP ≌△CDE ,则需CP =DE即10-2t =3,t =∴当t =时,△DCP ≌△CDE .2. 解:如图,由题意得AP =x ,CQ =2x∵AD =12 ∴DP =12-x要使△PDQ ≌△CQD ,则需DP =QC 即12-x =2x ,x =4∴当x =4时,△PDQ ≌△CQD .3. 解:如图,由题意得BP =3t∵BC =8 ∴PC =8-3t∵AB =10,D 为AB 中点 ∴BD =AB =5 ①要使△BDP ≌△CPQ ,AB CDB CDE BP DE =⎧⎪∠=∠⎨⎪=⎩727212则需BD =CP ,BP =CQ 即5=8-3t ,t =1 ∴CQ =3t =3则Q 的速度为===3(cm/s )即当t =1,Q 的速度为每秒3cm 时,△BDP ≌△CPQ . ②要使△BDP ≌△CQP ,则需BP =CP ,BD =CQ 即3t =8-3t ,CQ =5∴t =则Q 的速度为==5×=(cm/s )即当t =,Q 的速度为每秒cm 时,△BDP ≌△CQP .综上所述,当t =1,Q 的速度为每秒3cm 或t =,Q 的速度为每秒cm 时,△BPD 与△CQP 全等.4. 解:如图,由题意得BP =2t∵正方形ABCD 的边长为10cm ∴AB =BC =10 ∴PC =10-2t ∵AE =4∴BE =10-4 =6①要使△BEP ≌△CPQ , 则需EB =PC ,BP =CQ 即6=10-2t ,CQ =2t ∴t =2,CQ =4则点Q 的速度为===2(cm/s )即当t =2,Q 的速度为每秒2cm 时,△BEP ≌△CPQ . ②要使△BEP ≌△CQP , 则需BP =CP ,BE =CQ 即2t =10-2t ,CQ =6∴t =则点Q 的速度为==6×=(cm/s )Q v s t 3143Q v st341544315443154Q v s t 4252Q v s t25125即当t =,Q 的速度为每秒cm 时,△BEP ≌△CQP .综上所述,当t =2,Q 的速度为每秒2cm 或t =,Q 的速度为每秒cm 时,△BEP 与△CQP 全等.5. 解:(1)①当P 在BC 上时,如图,由题意得BP =2t (0<t ≤2.5)②当P 在CD 上时,(2.5<t ≤4.5)③当P 在AD 上时,由题意得AP =14-2t (4.5<t <7)(2)①当P 在BC 上时, 如图,由题意得BP =2t要使△DCP ≌△DCE ,则需CP =CE ∵CE =2 ∴5-2t =2,t =1.5即当t =1.5时,△DCP ≌△DCE②当P 在CD 上时,不存在t 使△DCP 和△DCE 全等 ③当P 在AD 上时,由题意得BC +CD +DP =2t ∵BC =5,CD =4, ∴DP =2t -9要使△DCP ≌△CDE ,则需DP =CE 即2t -9=2,t =5.5即当t =5.5时,△DCP ≌△CDE .52125521251214224ABP S AB BPt t ∆=⋅=⨯⨯=∴ 12145210ABP S AB BC∆=⋅=⨯⨯=∴12141422284ABP S AB APt t ∆=⋅=⨯⨯=∴--()综上所述,当t =1.5或t =5.5时,△DCP 和△DCE 全等.6. 解:(1)①当Q 在CD 上时,如图,由题意得CQ =2t ,BP=t ∴CP=5-t (0<t ≤1.5)②当Q 在DA 上时,(1.5<t ≤4)③当Q 在AB 上时,由题意得BQ =11-2t (4<t <5)(2)①当Q 在CD 上时,不存在t 使△ABP 和△CDQ 全等 ②当Q 在AD 上时, 如图,由题意得DQ =2t -3要使△ABP ≌△CDQ ,则需BP =DQ ∵DQ =2t -3,BP =t ∴t =2t -3,t =3即当t =3时,△ABP ≌△CDQ .③当Q 在AB 上时,不存在t 使△ABP 和△CDQ 全等 综上所述,当t =3时,△ABP 和△CDQ 全等.2121(5)22 5CPQ S CP CQt t t t ∆=⋅=-⋅=-∴121(5)327.5 1.5CPQ S CP CDt t∆=⋅=⨯=∴--2121(5)(112)2215522CPQ S CP BQt t t t ∆=⋅=-⨯-=-+∴。
学生做题前请先回答以下问题问题1:由点(____________)的运动产生的几何问题称为动点问题.问题2:动点问题的解决方法:①研究_____________,_______;②分析___________,分段;③表达_______,建等式.三角形全等之动点问题(框架)(人教版)一、单选题(共11道,每道9分)1.已知:如图,AB=16cm,动点P从点A出发,沿AB以2cm/s的速度向点B运动.设点P 运动的时间为t秒,请解答下列问题:(1)运动状态分析图如下:空缺处依次所填正确的是( )A.①1cm/s;②A;③BB.①2cm/s;②B;③AC.①2cm/s;②A;③BD.①2cm/s;②A;③P答案:C解题思路:试题难度:三颗星知识点:动点问题2.(上接第1题)(2)用含t的式子表达线段AP,PB长分别为( )cm.A.t;16-tB.t;16-2tC.2t;16-tD.2t;16-2t答案:D解题思路:试题难度:三颗星知识点:动点问题3.(上接第1,2题)(3)点P出发____秒到达AB的中点.( )A.2B.4C.5D.8答案:B解题思路:试题难度:三颗星知识点:动点问题4.已知:如图,AB=18cm,动点P从点A出发,沿AB以2cm/s的速度向点B运动,动点Q 从点B出发,沿BA以1cm/s的速度向点A运动.P,Q两点同时出发,当点P到达点B时,点P,Q同时停止运动.设点P运动的时间为ts,请解答下列问题:(1)运动状态分析图如下空缺处依次所填正确的是( )A.①9s;②18s;③0≤t≤9B.①9s;②9s;③0≤t≤18C.①9s;②18s;③0≤t≤18D.①18s;②9s;③0≤t≤9答案:A解题思路:试题难度:三颗星知识点:动点问题5.(上接第4题)(2)用含t的式子表达线段AP,QB长分别为( )cm.A.18-2t;2tB.t;18-tC.t;2tD.2t;t答案:D解题思路:试题难度:三颗星知识点:动点问题6.(上接第4,5题)(3)在P,Q相遇之前,若P,Q两点相距6cm,则此时t的值为( )A.4B.6C.8D.9答案:A解题思路:试题难度:三颗星知识点:动点问题7.已知:如图,在直角三角形ABC中,AB=6 cm,BC=4 cm.点P从点A出发,以2 cm/s的速度沿AB-BC向点C运动,设点P运动的时间为ts,请回答下列问题:(1)运动状态分析图如下:空缺处依次所填正确的是( )A.①6s;②4s;③0≦t≦10B.①3s;②2s;③0≦t≦3C.①3s;②2s;③0≦t≦5D.①3s;②5s;③0≦t≦5答案:C解题思路:试题难度:三颗星知识点:动点问题8.(上接第7题)(2)在点P运动的过程中,当△BCP的面积为时,对应的t的值为( )A.2sB.1sC.sD.s答案:A解题思路:试题难度:三颗星知识点:动点问题9.已知:如图,在长方形ABCD中,AB=6厘米,BC=9厘米.点P从点A出发,沿AB边向终点B以1厘米/秒的速度移动,同时点Q从点B出发沿BC边向终点C以2厘米/秒的速度移动,连接PQ.如果P,Q两点同时出发,当其中一点到达终点后,另一点也随之停止运动,设点P的运动时间为t秒,请回答下列问题:(1)运动状态分析图如下:空缺处依次所填正确的是( )A.①6s;②9s;③0≦t≦6B.①6s;②4.5s;③0≦t≦6C.①3s;②4.5s;③0≦t≦4.5D.①6s;②4.5s;③0≦t≦4.5答案:D解题思路:试题难度:三颗星知识点:动点问题10.(上接第9题)(2)用含t的式子表达线段BP,BQ的长分别为( )厘米.A.t;9-2tB.t;2tC.6-t;2tD.6-t;9-2t答案:C解题思路:试题难度:三颗星知识点:动点问题11.(上接第9,10题)(3)当△BPQ为等腰直角三角形时,t=( )A.1秒B.2秒C.3秒D.4秒答案:B解题思路:试题难度:三颗星知识点:动点问题。
难点探究专题:全等三角形中的动态问题◆类型一全等三角形中的动点问题1.如图,在△MAB中,MA=MB,过M点作直线MN交AB于N点.P是直线MN上的一个动点,在点P移动的过程中,若NA=NB,则∠PAM与∠PBM是否相等?说明理由.2.如图①,在△ABC中,∠BAC=90°,AB=AC(∠ABC=∠ACB=45°),点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想:如图①,当点D在线段BC上时,①BC与CF的位置关系为________;②线段BC,CD,CF之间的数量关系为______________ (将结论直接写在横线上);(2)数学思考:如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.◆类型二全等三角形中的动图问题3.已知等边三角形的三条边相等、三个角都等于60°.如图,△ABC与△CDE都是等边三角形,连接AD,BE.(1)如果点B ,C ,D 在同一条直线上,如图①所示,试说明:AD =BE ;(2)如果△ABC 绕C 点转过一个角度,如图②所示,(1)中的结论还能否成立?请说明理由.◆类型三 全等三角形中的翻折问题4.如图,将Rt △ABC 沿斜边翻折得到△ADC ,E ,F 分别为DC ,BC 边上的点,且∠EAF =12∠DAB.试猜想DE ,BF ,EF 之间有何数量关系,并说明理由.参考答案与解析1.解:∠PAM =∠PBM .理由如下:∵NA =NB ,MA =MB ,MN 是公共边,∴△AMN ≌△BMN (SSS),∴∠MAN =∠MBN ,∠MNA =∠MNB .又∵NA =NB ,PN 是公共边,∴△PAN ≌△PBN (SAS),∴∠PAN =∠PBN .∴∠PAM =∠PBM .2.解:(1)①垂直 ②BC =CD +CF(2)CF ⊥BC 成立;BC =CD +CF 不成立,正确结论:CD =CF +BC .证明如下:∵正方形ADEF中,AD =AF ,∠DAF =∠BAC =90°,∴∠BAD =∠CAF .在△DAB 与△FAC 中,⎩⎪⎨⎪⎧AD =AF ,∠BAD =∠CAF ,AB =AC ,∴△DAB ≌△FAC (SAS),∴∠ABD =∠ACF ,DB =CF .∵∠ACB =∠ABC =45°,∴∠ABD =180°-45°=135°,∴∠BCF =∠ACF -∠ACB =∠ABD -∠ACB =90°,∴CF ⊥BC .∵CD =DB +BC ,DB =CF ,∴CD =CF +BC .3.解:(1)∵△ABC ,△CDE 都是等边三角形,∴AC =BC ,CD =DE ,∠ACB =∠DCE =60°.∵点B ,C ,D 在同一条直线上,∴∠ACE =60°,∴∠BCE =∠ACD =120°.在△ACD 与△BCE中,∵⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴AD =BE .(2)成立.理由如下:∵∠ACB =∠DCE =60°,∴∠ACB +∠ACE =∠DCE +∠ACE ,即∠BCE =∠ACD .又∵AC =BC ,CD =CE ,∴△ACD ≌△BCE ,∴AD =BE .4.解:DE +BF =EF .理由如下:延长CB 至G ,作∠5=∠1,如图所示.∵将Rt △ABC沿斜边翻折得到△ADC ,∠EAF =12∠DAB ,∴AB =AD ,∠ABC =∠ADE =90°,∠2+∠3=∠1+∠4,∴∠ABG =90°=ADE .∵∠5=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF =∠EAF .在△AGB 和△AED 中,⎩⎪⎨⎪⎧∠GAB =∠EAD ,AB =AD ,∠ABG =∠ADE ,∴△AGB ≌△AED (ASA),∴AG =AE ,BG =DE .在△AGF和△AEF 中,⎩⎪⎨⎪⎧AG =AE ,∠GAF =∠EAF ,AF =AF ,∴△AGF ≌△AEF (SAS),∴GF =EF ,∴BG +BF =EF ,∴DE +BF=EF .。
全等三角形中的动点问题全等三角形的判断与定义1.定义:能够完全重合的两个三角形叫做全等三角形,“全等”用符号“≌”表示,读作“全等于”。
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
由此,可以得出:全等三角形的对应边相等,对应角相等。
2.判定:(1)三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
(2)有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
(3)有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
(4)有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)(5)直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) 所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
3.性质:(1)全等三角形的对应角相等。
(2)全等三角形的对应边相等。
(3)全等三角形的对应边上的高对应相等。
(4)全等三角形的对应角的角平分线相等。
(5)全等三角形的对应边上的中线相等。
(6)全等三角形面积相等。
(7)全等三角形周长相等。
(8)全等三角形的对应角的三角函数值相等。
1、如图,在△ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AF=10cm,AC=14cm,动点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为.(1)求证:在运动过程中,不管取何值,都有S△AED=2S△DGC;(2)当取何值时,△DFE与△DMG全等;(3)在(2)的前提下,若,,求S△BFD.(1)证明:∵∠BAD=∠DAC,DF⊥AB,DM⊥AC,∴DF=DM,∵S△AED=AE•DF,S△DGC=CG•DM,∴=,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,∴AE=2tcm,CG=tcm,∴=2,即=2,∴在运动过程中,不管取何值,都有S△AED=2S△DGC.(2)解:设时间为t时,△DFE与△DMG全等,则EF=MG,①当M在线段CG的延长线上时,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,∴EF=AF-AE=10-2t,MG=AC-CG-AM=4-t,即10-2t=4-t,解得:t=6,当t=6时,MG=-2,所以舍去;②当M在线段CG上时,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,∴EF=AF-AE=10-2t(cm),MG=AM-(AC-CG)=t-4(cm),即10-2t=t-4,解得:t=,综上所述当t=时,△DFE与△DMG全等.(3)∵t=,∴AE=2t=(cm),∵DF=DM,∴S△ABD:S△ACD=AB:AC=BD:CD=119:126,∵AC=14cm,∴AB=(cm),∴BF=AB-AF=-10=(cm),∵S△ADE:S△BDF=AE:BF=:,S△AED=28cm2,∴S△BDF=(cm2).解析:(1)由角平分线的性质可知DF=DM,所以△AED和△DEG的面积转化为底AE和CG的比值,根据路程=速度×时间求出AE和CG的长度即可证明在运动过程中,不管取何值,都有S△AED=2S△DGC.(2)若△DFE与△DMG全等,则EF=MG,利用已知条件求出EF和MG的长度,建立方程解方程即可求出运动的时间.(3)利用等高三角形的面积比等于对应底的比,即可求得答案.2、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=8cm,点P从A出发向C以1cm/s的速度运动、点Q同时从C出发向B以1cm/s的速度运动,当一个点运动到终点时,该点停止运动,另一个点继续运动,当两个点都到达终点时也停止运动.(1)几秒后,△CPQ的面积为Rt△ABC的面积的?(2)填空:①点经过_____秒,点P在线段AB的垂直平分线上.②点Q经过_____秒,点Q在∠BAC的平分线上.(1)设经过x秒,首先求得线段BC的长,然后分x≤6和6<x≤8两种情况列方程求解即可;(2)①点P在线段AB的垂直平分线上,即可得到PA=PB,从而求得时间;②点Q在∠BAC的平分线上,则Q点到AC和AB的距离相等.解;(1)设经过x秒.在Rt△ABC中,根据题意得;当x≤6时,(8-x)x=××8×6解得:当6<x≤8时,(8-x)×6=37解得:x=7答:经过7秒或秒.(2)当点P在线段AB的垂直平分线上时,PA=PB,∵设经过x秒后点P在线段AB的垂直平分线上,∴x2=(8-x)2+62解得:x=,∴经过秒,点P在线段AB的垂直平分线上②如图,作QD⊥AB于点D,∵点Q在∠BAC的平分线上,∴QD=QC,设经过x秒,则CQ=x,则QD=(6-x),∴x=(6-x),解得:x=,∴点Q经过秒,点Q在∠BAC的平分线上.3、如图,△ABC是直角三角形,∠A=90°,AB=8cm,AC=6cm点P从点A出发,沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则三角形APQ的最大面积是()A.8cm2B.16cm2C.24cm2D.32cm2解:根据题意沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,∴AP=2t,AQ=t,S△APQ=t2,∵0<t≤4,∴三角形APQ的最大面积是16.故选B.4、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)(3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.解:(1)解法一:如图1延长BP交直线AC于点E.∵AC∥BD,∴∠PEA=∠PBD.∵∠APB=∠PAE+∠PEA,∴∠APB=∠PAC+∠PBD;解法二:如图2过点P作FP∥AC,∴∠PAC=∠APF.∵AC∥BD,∴FP∥BD.∴∠FPB=∠PBD.∴∠APB=∠APF+∠FPB=∠PAC+∠PBD;解法三:如图3,∵AC∥BD,∴∠CAB+∠ABD=180°,∠PAC+∠PAB+∠PBA+∠PBD=180°.又∠APB+∠PBA+∠PAB=180°,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)(a)当动点P在射线BA的右侧时,结论是∠PBD=∠PAC+∠APB.(b)当动点P在射线BA上,结论是∠PBD=∠PAC+∠APB.或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD(任写一个即可).(c)当动点P在射线BA的左侧时,结论是∠PAC=∠APB+∠PBD.选择(a)证明:如图4,连接PA,连接PB交AC于M.∵AC∥BD,∴∠PMC=∠PBD.又∵∠PMC=∠PAM+∠APM(三角形的一个外角等于与它不相邻的两个内角的和),∴∠PBD=∠PAC+∠APB.选择(b)证明:如图5∵点P在射线BA上,∴∠APB=0度.∵AC∥BD,∴∠PBD=∠PAC.∴∠PBD=∠PAC+∠APB或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD.选择(c)证明:如图6,连接PA,连接PB交AC于F∵AC∥BD,∴∠PFA=∠PBD.∵∠PAC=∠APF+∠PFA,∴∠PAC=∠APB+∠PBD.解析:(1)如图1,延长BP交直线AC于点E,由AC∥BD,可知∠PEA=∠PBD.由∠APB=∠PAE+∠PEA,可知∠APB=∠PAC+∠PBD;(2)过点P作AC的平行线,根据平行线的性质解答;(3)根据P的不同位置,分三种情况讨论.6、如图1,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF.(1)试说明BF=CE的理由;(2)当E、F相向运动,形成如图2时,BF和CE还相等吗?请说明你的结论和理由.证明:(1)∵AD∥BC,∴∠BAD+∠ABC=180°,∠CDA+∠DCB=180°,∵∠ABC=∠DCB,∴∠BAD=∠CDA,∵AE=DF,∴AE+AD=DF+AD,即AF=DE,在△ABF和△DCE中,,∴△ABt≌△DCE(SAS),∴BF=CE;(2)相等.在△ABC和△DCB中,,∴△ABC≌△DCB(SAS),∴BF=CE.解析:(1)根据两直线平行,同旁内角互明证明∠BAD=∠CDA,根据AE边DF证明AF=DE,再根据边角边定理证明△ABF和△DCE全等,根据全等三角形对应边相等即可证明BF=CE.(2)利用边角边定即证明△ABC和△DCB全等,再根据全等三角形对应边相等即可证明7、如图,已知△ABC中,BC=AC=8厘米,∠C=90°,如果点P在线段AC上以1厘米/秒的速度由A点向C点运动,同时,点Q在线段BC上由C点向B点运动,运动速度与点P的运动速度相等,点M是AB的中点.(1)在点P和点Q运动过程中,△APM与△CQM是否保持全等,请说明理由;(2)在点P和点Q运动过程中,四边形PMQC的面积是否变化?若变化说明理由;若不变,求出这个四边形的面积;(3)线段AP、PQ、BQ之间存在什么数量关系,写出这个关系,并加以证明.解:(1)在点P和点Q运动过程中,△APM与△CQM是否保持全等.理由如下:∵在△ABC中,BC=AC=8厘米,∠C=90°,点M是AB的中点,∴∠A=∠MCQ=45°,AM=CM,∴在△APM与△CQM中,,∴△APM与△CQM(SAS);(2)在点P和点Q运动过程中,四边形PMQC的面积不变化,其面积是32厘米2,理由如下:由(1)知,△APM与△CQM,∴S△APM=S△CQM,∴S四边形PMQC=S△AMC=S△ABC=AC•BC=×8×8=32(厘米2),即在点P和点Q运动过程中,四边形PMQC的面积不变化,其面积是32厘米2;(3)AP2+BQ2=PQ2.证明如下:∵由(1)知,△APM与△CQM,∴AP=CQ,又AC=BC,∴PC=BQ,∴AP2+BQ2=CQ2+CP2=PQ2.即AP2+BQ2=PQ2.解析:(1)通过SAS证得△APM与△CQM;(2)由(1)中的全等三角形的面积相等可以推知:S四边形PMQC=S△AMC=S△ABC;(3)AP2+BQ2=PQ2.利用(1)中的全等三角形的对应边相等推知AP=CQ,则PC=BQ,所以在直角△PCQ中,利用勾股定理推得AP2+BQ2=PQ2.8、如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?解:(1)①∵t=1秒,∴BP=CQ=3×1=3厘米,∵AB=10厘米,点D为AB的中点,∴BD=5厘米.又∵PC=BC-BP,BC=8厘米,∴PC=8-3=5厘米,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP.(SAS)②∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q运动的时间秒,∴厘米/秒;(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,解得.∴点P共运动了×3=80厘米.∵80=56+24=2×28+24,∴点P、点Q在AB边上相遇,∴经过秒点P与点Q第一次在边AB上相遇.解析:(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个腰长.9、如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?分析:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP.(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3tcm,PC=8-3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.解答:解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴∠ABC=∠ACB,且BD=PC,BP=CQ,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8-3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8-3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8-3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.点评:本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.10、在△ABC中,AB=AC,(1)如图①,若∠BAC=45°,AD和CE是高,它们相交于点H.求证:AH=2BD;(2)如图②,若AB=AC=10厘米,BC=8厘米,点M为AB的中点,点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.如果在运动过程中存在某一时刻使得△BPM与△CQP全等,那么点Q的运动速度为多少?点P、Q运动的时间t为多少?解:(1)证明:在△ABC中,∵∠BAC=45°,CE⊥AB,∴AE=CE,∠EAH=∠ECB,在△AEH和△CEB中,,∴△AEH≌△CEB(ASA),∴AH=BC,∵BC=BD+CD,且BD=CD,∴BC=2BD,∴AH=2BD.(2)∵AB=AC,∴∠B=∠C,∴△BPM与△CQP全等有两种情况:△BPM≌△CPQ 或△BPM≌△CQP当△BPM≌△CPQ时,BP=PC=4,CQ=BM=5,∴点P,点Q运动的时间秒,∴厘米/秒.当△BPM≌△CQP时,BP=CQ,∴V Q=V P=3厘米/秒.此时PC=BM=5,t=秒.综上所述,点Q的运动速度为厘米/秒,此时t=秒或点Q的运动速度为3厘米/秒,此时t=1秒.解析:(1)证得△BCE≌△HAE,证得AH=BC,证得AH=2BD;(2)根据全等三角形应满足的的件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度B11、如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图③,请解答下列问题:(1)若AB=AC,请探究下列数量关系:①在图②中,BD与CE的数量关系是______;②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;(2)若AB=k•AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明分析:(1)①根据题意和旋转的性质可知△AEC≌△ADB,所以BD=CE;②根据题意可知∠CAE=BAD,AB=AC,AD=AE,所以得到△BAD≌△CAE,在△ABM和△ACN中,DM=BD,EN=CE,可证△ABM≌△ACN,所以AM=AN,即∠MAN=∠BAC.(2)直接类比(1)中结果可知AM=k•AN,∠MAN=∠BAC.解答:解:(1)①BD=CE;②AM=AN,∠MAN=∠BAC,∵∠DAE=∠BAC,∴∠CAE=∠BAD,在△BAD和△CAE中∵∴△CAE≌△BAD(SAS),∴∠ACE=∠ABD,∵DM=BD,EN=CE,∴BM=CN,在△ABM和△ACN中,∵∴△ABM≌△ACN(SAS),∴AM=AN,∴∠BAM=∠CAN,即∠MAN=∠BAC;(2)AM=k•AN,∠MAN=∠BAC.点评:本题考查三角形全等的判定方法和性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题还要会根据所求的结论运用类比的方法求得同类题目.12、已知:如图,在平面直角坐标系中,点A,B,C分别在坐标轴上,且OA=OB=OC,△ABC的面积为9,点P从C点出发沿y轴负方向以1个单位/秒的速度向下运动,连接PA,PB,D(-m,-m)为AC上的点(m>0)(1)试分别求出A,B,C三点的坐标;(2)设点P运动的时间为t秒,问:当t为何值时,DP与DB垂直相等?请说明理由;(3)若PA=AB,在第四象限内有一动点Q,连QA,QB,QP,且∠PQA=60°,当Q在第四象限内运动时,下列说法:(i)∠APQ+∠PBQ的度数和不变;(ii)∠BAP+∠BQP的度数和不变,其中有且只有一个说法是正确的,请判断正确的说法,并求这个不变的值.解:(1)∵OA=OB=OC,∠AOC=∠BOC=90°,∴∠OAC=∠OCA=∠OBC=∠OCB=45°,∴∠ACB=90°,又△ABC的面积为9,∴OA=OC=OB=3,∴A(-3,0),B(3,0),C(0,-3);(2)当t=3秒时,即CP=OC时,DP与DB垂直且相等.理由如下:连接OD,作DM⊥x轴于点M,作DN⊥y轴于点N,∵D(-m,-m),∴DM=DN=OM=ON=m,∴∠DOM=∠DON=45°,而∠ACO=45°,∴DC=DO,∴∠PCD=∠BOD=135°,又CP=OC=OB,∴△PCD≌△BOD (SAS),∴DP=DB,∠PDC=∠BDO,∴∠BDP=∠ODC=90°,即DP⊥DB.(3)解:(i)正确.在QA上截取QS=QP,连接PS.∵∠PQA=60°,∴△QSP是等边三角形,∴PS=PQ,∠SPQ=60°,∵PO是AB的垂直平分线,∴PA=PB 而PA=AB,∴PA=PB=AB,∴∠APB=60°,∴∠APS=∠BPQ,∴△APS≌△BPQ,∴∠PAS=∠PBQ,∴∠APQ+∠PBQ=∠APQ+∠PAS=120°.解析:(1)利用OA=OB=OC,∠AOC=∠BOC=90°得出∠ACB=90°,再利用△ABC的面积为9,得出OA=OC=OB=3 即可得出各点的坐标;(2)作DM⊥x轴于点M,作DN⊥y轴于点N,假设出D点的坐标,进而得出△PCD≌△BOD,进而得到∠BDP=∠ODC=90°,即DP⊥DB;(3)在QA上截取QS=QP,连接PS,利用∠PQA=60°,得出△QSP是等边三角形,进而得出△APS≌△BPQ,从而得出∠APQ+∠PBQ=∠APQ+∠PAS得出答案.13、如图1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.(1)求证:BP=DP;(2)如图2,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明;(3)试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连接,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论.分析:(1)由正方形的性质可证△ABP≌△ADP,即BP=DP;(2)当四边形PECF的点P旋转到BC边上时,DP>DC>BP,此时BP=DP不成立;(3)由旋转的性质和正方形的性质可证△BEC≌△DFC,即BE=DF.解答:(1)证明:证法一:在△ABP与△ADP中,∵AB=AD∠BAC=∠DAC,AP=AP,∴△ABP≌△ADP,∴BP=DP.(2分)证法二:利用正方形的轴对称性,可得BP=DP.(2分)(2)解:不是总成立.(3分)当四边形PECF的点P旋转到BC边上时,DP>DC>BP,此时BP=DP不成立,(5分)说明:未用举反例的方法说理的不得分.(3)解:连接BE、DF,则BE与DF始终相等,,在图1中,由正方形ABCD可证:AC平分∠BCD,∵PE⊥BC,PF⊥CD,∴PE=PF,∠BCD=90°,∴四边形PECF为正方形.(7分)∴CE=CF,∵∠DCF=∠BCE,BC=CD,∴△BEC≌△DFC,∴BE=DF.(8分)点评:本题考查了旋转的性质和全等三角形的判定,以及正方形的性质.14、如图,在△ABC中,AB=AC=5,∠B=∠C,BC=8,点D从B点出发沿线段BC向C运动(D不与B、C重合),点E从点C出发沿线段CA向A运动(E不与A、C重合),它们以相同的速度同时运动,连结AD、DE.若要使△ABD≌△DCE,①请给出确定D、E两点位置的方法(如指明CD长度等),并说明理由;②此时∠ADE与∠C大小关系怎样?为什么?解:①DC=5,理由是:∵BC=8,CD=AB=5,∴BD=8-5=3,即CE=BD=3,在△ABD和△DCE中,,∴△ABD≌△DCE,即当CD=5时,△ABD≌△DCE.②∠ADE=∠C,理由是:∵△ABD≌△DCE,∴∠BDA=∠DEC,∴∠C=180°-∠DEC-∠EDC=180°-∠ADB-∠EDC,∵∠ADE=180°-∠BDA-∠EDC,∴∠ADE=∠C.解析:①CD=5时,根据SAS推出△ABD≌△DCE即可.②根据全等三角形性质得出∠BDA=∠DEC,根据三角形内角和定理求出∠C=180°-∠ADB-∠EDC,求出∠ADE=180°-∠BDA-∠EDC,即可得出答案.15、如图:△ABC中,AB=AC=5(即有∠B=∠C),BC=8,点D在线段BC上运动(D不与B、C重合),点E在线段AC上运动(E不与A、C重合),连结AD、DE.(1)点D从B向C运动时,∠BDA逐渐变_____(填“大”或“小”);(2)若要使△ABD≌△DCE,①请给出确定D、E两点位置的方法(如指明某些线段的长度等),并说明理由;②此时∠ADE与∠C大小关系怎样?为什么?(1)根据BD边逐渐增长可得∠BAD逐渐增大,又因为∠B的大小固定不变,结合三角形内角和定理∠B+∠BAD+∠ADB=180°可得∠ADB逐渐减小.(2)①根据三角形全等的性质可得DC=AB,DB=CE,进而得到答案;②根据全等三角形的性质可得∠1=∠2,再根据∠1+∠B+∠ADB=180°,∠2+∠ADE+∠BDA=180°,可得∠ADE=∠B,进而得到∠ADE=∠C.解:(1)∵点D从B向C运动时,BD边逐渐变长,∴∠BAD逐渐增大,∵∠B的大小固定不变,∠B+∠BAD+∠ADB=180°,∴∠ADB逐渐减小;(2)①∵△ABD≌△DCE,∴DC=AB=5,CE=DB,∵BC=8,∴CE=DB=8-5=3;②∠ADE=∠C;理由:∵△ABD≌△DCE,∴∠1=∠2,∵∠1+∠B+∠ADB=180°,∠2+∠ADE+∠BDA=180°,∴∠ADE=∠B,∵∠B=∠C,∴∠ADE=∠C.17、如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD 于点F.(1)求证:EF+AC=AB;(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与A1的运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图2,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E1⊥A1C1,垂足为E1,请猜想E1F1,A1C1与AB三者之间的数量关系,并证明你的猜想;(3)在(2)的条件下,当A1E1=3,C1E1=2时,求BD的长.分析:(1)过F作FM⊥AB于点M,首先证明△AMF≌△AEF,求出MF=MB,即可知道EF+AE=AB.(2)连接F1C1,过点F1作F1P⊥A1B于点P,F1Q⊥BC于点Q,证明Rt△A1E1F1≌Rt△A1PF1,Rt△QF1C1≌Rt△E1F1C1后推出A1B+BC1=A1P+PB+QB+C1Q=A1P+C1Q+2E1F1化简为E1F1+A1C1=AB.(3)设PB=x,QB=x,PB=1,E1F1=1,又推出E1F1+A1C1=AB,得出BD=.解答:(1)证明:如图1,过点F作FM⊥AB于点M,在正方形ABCD中,AC⊥BD 于点E.∴AE=AC,∠ABD=∠CBD=45°,∵AF平分∠BAC,∴EF=MF,又∵AF=AF,∴Rt△AMF≌Rt△AEF,∴AE=AM,∵∠MFB=∠ABF=45°,∴MF=MB,MB=EF,∴EF+AC=MB+AE=MB+AM=AB.(2)E1F1,A1C1与AB三者之间的数量关系:E1F1+A1C1=AB证明:如图2,连接F1C1,过点F1作F1P⊥A1B于点P,F1Q⊥BC于点Q,∵A1F1平分∠BA1C1点/sub>,∴E1F1=PF1;同理QF1=PF1,∴E1F1=PF1=QF1,21又∵A1F1=A1F1,∴Rt △A1E1F1≌Rt △A1PF1,∴A1E1=A1P ,同理Rt △QF1C1≌Rt △E1F1C1,∴C1Q=C1E1,由题意:A1A=C1C ,∴A1B+BC1=AB+A1A+BC-C1C=AB+BC=2AB ,∵PB=PF1=QF1=QB ,∴A1B+BC1=A1P+PB+QB+C1Q=A1P+C1Q+2E1F1,即2AB=A1E1+C1E1+2E1F1=A1C1+2E1F1,∴E1F1+A1C1=AB .(3)解:设PB=x ,则QB=xm∵A1E1=3,QC1=C1E1=2,Rt △A1BC1中,A1B 2+BC12g/sup>=A 1C 12, 即(3+x )2+(2+x )2=52,∴x 1=1,x 2=-6(舍去), ∴PB=1,∴E 1F 1=1, 又∵A 1C 1=5, 由(2)的结论:E 1F 1+A 1C 1=AB , ∴AB=,∴BD=.点评:本题考查的是勾股定理的应用,全等三角形的判定以及正方形的性质等有关知识.18、如图,在等腰Rt △ABC 中,∠B=90°,AB=BC=8cm .动点P 从点A 出发沿线段AB 向点B 运动,动点Q 从点C 出发沿射线BC 运动,连接PQ ,交AC 于点D .作PE ⊥AC 于点E ,若在点P ,Q 运动的过程中,始终保持AP=CQ ,则线段DE 的长度为_____.作PF∥BC交AC于点D,就可以得出△APE是等腰直角三角形,由其性质就可以得出AE=EF,由△PFD≌△QCD就可以得出DC=DF,进而就可以得出DF+FE=CD+AE就可以得出结论.解:作PF∥BC交AC于点D,∴∠APF=∠B=90°,∠AFP=∠ACB.∠FPD=∠Q,∠PFD=∠QCD.∵∠B=90°,AB=BC=8cm,∴∠A=∠ACB=45°,∴∠A=∠ACB=45°,∴PA=AF.∵PE⊥AC,∴AE=EF.∵AP=CQ,∴PF=CQ.在Rt△ABC中,由勾股定理就可以得出AC=8.在△PFD和△QCD中,,∴△PFD≌△QCD(ASA)∴DF=DC,∴DF+EF=DC+AE,∴DE=AC,∴DE=4cm.故答案为:4.19、如图,在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,M在AC上且AM=6cm,过点A(与BC在AC同侧)作射线AN⊥AC,若动点P从点A出发,沿射线AN匀速运动,运动速度为1厘米/秒,设点P运动时间为t秒(1)经过几秒时,Rt△AMP是等腰三角形?(2)又经过几秒时,PM⊥AB?(3)连接BM,在(2)的条件下,求四边形AMBP的面积.(1)解:设经过x秒时,Rt△AMP是等腰三角形,∵∠PAM=90°,∴只能AM=AP,∵AM=6cm,∴AP=6cm,即x=6(秒),答:经过6秒时,Rt△AMP是等腰三角形;(2)解:设经过t秒时,PM⊥AB,∵PM⊥AB,AN⊥AC,∠C=90°∴∠PAM=∠4=∠C=90°,∴∠3+∠2=90°,∠1+∠2=90°,∴∠1=∠3,∴△ACB∽△PAM,∴=,∴=,x=8,8-6=2,答:又经过2秒时,PM⊥AB;23(3)解:在Rt△ABC中,∠C=90°,AC=8,BC=6,由勾股定理得:AB=10,同理可求PM=10,∵PM⊥AB,∴四边形AMBP的面积S=AB×PM=×10×10=50,答:四边形AMBP的面积是50.解析:(1)得出腰时AM=AP,即可得出答案;(2)证△PAM∽△ACB,得出比例式,代入求出AP,即可得出答案;(3)由勾股定理求出PM、AB,关键三角形的面积公式求出即可.。