中考数学专题复习教案 全等三角形中动点问题-word文档
- 格式:doc
- 大小:406.00 KB
- 文档页数:9
难点探究专题:全等三角形中的动态问题◆类型一全等三角形中的动点问题1.如图,在△MAB中,MA=MB,过M点作直线MN交AB于N点.P是直线MN 上的一个动点,在点P移动的过程中,假设NA=NB,那么∠PAM与∠PBM是否相等?说明理由.2.如图①,在△ABC中,∠BAC=90°,AB=AC(∠ABC=∠ACB=45°),点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想:如图①,当点D在线段BC上时,①BC与CF的位置关系为________;②线段BC,CD,CF之间的数量关系为______________ (将结论直接写在横线上);(2)数学思考:如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?假设成立,请给予证明;假设不成立,请你写出正确结论再给予证明.◆类型二全等三角形中的动图问题3.等边三角形的三条边相等、三个角都等于60°.如图,△ABC与△CDE都是等边三角形,连接AD,BE.(1)如果点B,C,D在同一条直线上,如图①所示,试说明:AD=BE;(2)如果△ABC绕C点转过一个角度,如图②所示,(1)中的结论还能否成立?请说明理由.◆类型三 全等三角形中的翻折问题4.如图,将Rt △ABC 沿斜边翻折得到△ADC ,E ,F 分别为DC ,BC 边上的点,且∠EAF =12∠DAB.试猜想DE ,BF ,EF 之间有何数量关系,并说明理由.参考答案与解析1.解:∠P AM =∠PBM .理由如下:∵NA =NB ,MA =MB ,MN 是公共边,∴△AMN ≌△BMN (SSS),∴∠MAN =∠MBN ,∠MNA =∠MNB .又∵NA =NB ,PN 是公共边,∴△P AN ≌△PBN (SAS),∴∠P AN =∠PBN .∴∠P AM =∠PBM .2.解:(1)①垂直 ②BC =CD +CF(2)CF ⊥BC 成立;BC =CD +CF 不成立,正确结论:CD =CF +BC .证明如下:∵正方形ADEF 中,AD =AF ,∠DAF =∠BAC =90°,∴∠BAD =∠CAF .在△DAB 与△F AC 中,⎩⎪⎨⎪⎧AD =AF ,∠BAD =∠CAF ,AB =AC ,∴△DAB ≌△F AC (SAS),∴∠ABD =∠ACF ,DB =CF .∵∠ACB =∠ABC =45°,∴∠ABD =180°-45°=135°,∴∠BCF =∠ACF -∠ACB =∠ABD -∠ACB =90°,∴CF ⊥BC .∵CD =DB +BC ,DB =CF ,∴CD =CF +BC .3.解:(1)∵△ABC ,△CDE 都是等边三角形,∴AC =BC ,CD =DE ,∠ACB =∠DCE =60°.∵点B ,C ,D 在同一条直线上,∴∠ACE =60°,∴∠BCE =∠ACD =120°.在△ACD与△BCE 中,∵⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴AD =BE .(2)成立.理由如下:∵∠ACB =∠DCE =60°,∴∠ACB +∠ACE =∠DCE +∠ACE ,即∠BCE =∠ACD .又∵AC =BC ,CD =CE ,∴△ACD ≌△BCE ,∴AD =BE .4.解:DE +BF =EF .理由如下:延长CB 至G ,作∠5=∠1,如以下列图.∵将Rt △ABC沿斜边翻折得到△ADC ,∠EAF =12∠DAB ,∴AB =AD ,∠ABC =∠ADE =90°,∠2+∠3=∠1+∠4,∴∠ABG =90°=ADE .∵∠5=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF =∠EAF .在△AGB 和△AED 中,⎩⎪⎨⎪⎧∠GAB =∠EAD ,AB =AD ,∠ABG =∠ADE ,∴△AGB ≌△AED (ASA),∴AG =AE ,BG =DE .在△AGF 和△AEF 中,⎩⎪⎨⎪⎧AG =AE ,∠GAF =∠EAF ,AF =AF ,∴△AGF ≌△AEF (SAS),∴GF =EF ,∴BG +BF=EF ,∴DE +BF =EF .。
全等三角形中的动点问题全等三角形的判断与定义1.定义:能够完全重合的两个三角形叫做全等三角形,“全等”用符号“≌”表示,读作“全等于”。
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
由此,可以得出:全等三角形的对应边相等,对应角相等。
2.判定:(1)三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
(2)有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
(3)有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
(4)有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)(5)直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) 所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
3.性质:(1)全等三角形的对应角相等。
(2)全等三角形的对应边相等。
(3)全等三角形的对应边上的高对应相等。
(4)全等三角形的对应角的角平分线相等。
(5)全等三角形的对应边上的中线相等。
(6)全等三角形面积相等。
(7)全等三角形周长相等。
(8)全等三角形的对应角的三角函数值相等。
1、如图,在△ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AF=10cm,AC=14cm,动点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为.(1)求证:在运动过程中,不管取何值,都有S△AED=2S△DGC;(2)当取何值时,△DFE与△DMG全等;(3)在(2)的前提下,若,,求S△BFD.(1)证明:∵∠BAD=∠DAC,DF⊥AB,DM⊥AC,∴DF=DM,∵S△AED=AE•DF,S△DGC=CG•DM,∴=,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,∴AE=2tcm,CG=tcm,∴=2,即=2,∴在运动过程中,不管取何值,都有S△AED=2S△DGC.(2)解:设时间为t时,△DFE与△DMG全等,则EF=MG,①当M在线段CG的延长线上时,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,∴EF=AF-AE=10-2t,MG=AC-CG-AM=4-t,即10-2t=4-t,解得:t=6,当t=6时,MG=-2,所以舍去;②当M在线段CG上时,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,∴EF=AF-AE=10-2t(cm),MG=AM-(AC-CG)=t-4(cm),即10-2t=t-4,解得:t=,综上所述当t=时,△DFE与△DMG全等.(3)∵t=,∴AE=2t=(cm),∵DF=DM,∴S△ABD:S△ACD=AB:AC=BD:CD=119:126,∵AC=14cm,∴AB=(cm),∴BF=AB-AF=-10=(cm),∵S△ADE:S△BDF=AE:BF=:,S△AED=28cm2,∴S△BDF=(cm2).解析:(1)由角平分线的性质可知DF=DM,所以△AED和△DEG的面积转化为底AE和CG的比值,根据路程=速度×时间求出AE和CG的长度即可证明在运动过程中,不管取何值,都有S△AED=2S△DGC.(2)若△DFE与△DMG全等,则EF=MG,利用已知条件求出EF和MG的长度,建立方程解方程即可求出运动的时间.(3)利用等高三角形的面积比等于对应底的比,即可求得答案.2、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=8cm,点P从A出发向C以1cm/s的速度运动、点Q同时从C出发向B以1cm/s的速度运动,当一个点运动到终点时,该点停止运动,另一个点继续运动,当两个点都到达终点时也停止运动.(1)几秒后,△CPQ的面积为Rt△ABC的面积的?(2)填空:①点经过_____秒,点P在线段AB的垂直平分线上.②点Q经过_____秒,点Q在∠BAC的平分线上.(1)设经过x秒,首先求得线段BC的长,然后分x≤6和6<x≤8两种情况列方程求解即可;(2)①点P在线段AB的垂直平分线上,即可得到PA=PB,从而求得时间;②点Q在∠BAC的平分线上,则Q点到AC和AB的距离相等.解;(1)设经过x秒.在Rt△ABC中,根据题意得;当x≤6时,(8-x)x=××8×6解得:当6<x≤8时,(8-x)×6=37解得:x=7答:经过7秒或秒.(2)当点P在线段AB的垂直平分线上时,PA=PB,∵设经过x秒后点P在线段AB的垂直平分线上,∴x2=(8-x)2+62解得:x=,∴经过秒,点P在线段AB的垂直平分线上②如图,作QD⊥AB于点D,∵点Q在∠BAC的平分线上,∴QD=QC,设经过x秒,则CQ=x,则QD=(6-x),∴x=(6-x),解得:x=,∴点Q经过秒,点Q在∠BAC的平分线上.3、如图,△ABC是直角三角形,∠A=90°,AB=8cm,AC=6cm点P从点A出发,沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则三角形APQ的最大面积是()A.8cm2B.16cm2C.24cm2D.32cm2解:根据题意沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,∴AP=2t,AQ=t,S△APQ=t2,∵0<t≤4,∴三角形APQ的最大面积是16.故选B.4、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)(3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.解:(1)解法一:如图1延长BP交直线AC于点E.∵AC∥BD,∴∠PEA=∠PBD.∵∠APB=∠PAE+∠PEA,∴∠APB=∠PAC+∠PBD;解法二:如图2过点P作FP∥AC,∴∠PAC=∠APF.∵AC∥BD,∴FP∥BD.∴∠FPB=∠PBD.∴∠APB=∠APF+∠FPB=∠PAC+∠PBD;解法三:如图3,∵AC∥BD,∴∠CAB+∠ABD=180°,∠PAC+∠PAB+∠PBA+∠PBD=180°.又∠APB+∠PBA+∠PAB=180°,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)(a)当动点P在射线BA的右侧时,结论是∠PBD=∠PAC+∠APB.(b)当动点P在射线BA上,结论是∠PBD=∠PAC+∠APB.或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD(任写一个即可).(c)当动点P在射线BA的左侧时,结论是∠PAC=∠APB+∠PBD.选择(a)证明:如图4,连接PA,连接PB交AC于M.∵AC∥BD,∴∠PMC=∠PBD.又∵∠PMC=∠PAM+∠APM(三角形的一个外角等于与它不相邻的两个内角的和),∴∠PBD=∠PAC+∠APB.选择(b)证明:如图5∵点P在射线BA上,∴∠APB=0度.∵AC∥BD,∴∠PBD=∠PAC.∴∠PBD=∠PAC+∠APB或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD.选择(c)证明:如图6,连接PA,连接PB交AC于F∵AC∥BD,∴∠PFA=∠PBD.∵∠PAC=∠APF+∠PFA,∴∠PAC=∠APB+∠PBD.解析:(1)如图1,延长BP交直线AC于点E,由AC∥BD,可知∠PEA=∠PBD.由∠APB=∠PAE+∠PEA,可知∠APB=∠PAC+∠PBD;(2)过点P作AC的平行线,根据平行线的性质解答;(3)根据P的不同位置,分三种情况讨论.6、如图1,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF.(1)试说明BF=CE的理由;(2)当E、F相向运动,形成如图2时,BF和CE还相等吗?请说明你的结论和理由.证明:(1)∵AD∥BC,∴∠BAD+∠ABC=180°,∠CDA+∠DCB=180°,∵∠ABC=∠DCB,∴∠BAD=∠CDA,∵AE=DF,∴AE+AD=DF+AD,即AF=DE,在△ABF和△DCE中,,∴△ABt≌△DCE(SAS),∴BF=CE;(2)相等.在△ABC和△DCB中,,∴△ABC≌△DCB(SAS),∴BF=CE.解析:(1)根据两直线平行,同旁内角互明证明∠BAD=∠CDA,根据AE边DF证明AF=DE,再根据边角边定理证明△ABF和△DCE全等,根据全等三角形对应边相等即可证明BF=CE.(2)利用边角边定即证明△ABC和△DCB全等,再根据全等三角形对应边相等即可证明7、如图,已知△ABC中,BC=AC=8厘米,∠C=90°,如果点P在线段AC上以1厘米/秒的速度由A点向C点运动,同时,点Q在线段BC上由C点向B点运动,运动速度与点P的运动速度相等,点M是AB的中点.(1)在点P和点Q运动过程中,△APM与△CQM是否保持全等,请说明理由;(2)在点P和点Q运动过程中,四边形PMQC的面积是否变化?若变化说明理由;若不变,求出这个四边形的面积;(3)线段AP、PQ、BQ之间存在什么数量关系,写出这个关系,并加以证明.解:(1)在点P和点Q运动过程中,△APM与△CQM是否保持全等.理由如下:∵在△ABC中,BC=AC=8厘米,∠C=90°,点M是AB的中点,∴∠A=∠MCQ=45°,AM=CM,∴在△APM与△CQM中,,∴△APM与△CQM(SAS);(2)在点P和点Q运动过程中,四边形PMQC的面积不变化,其面积是32厘米2,理由如下:由(1)知,△APM与△CQM,∴S△APM=S△CQM,∴S四边形PMQC=S△AMC=S△ABC=AC•BC=×8×8=32(厘米2),即在点P和点Q运动过程中,四边形PMQC的面积不变化,其面积是32厘米2;(3)AP2+BQ2=PQ2.证明如下:∵由(1)知,△APM与△CQM,∴AP=CQ,又AC=BC,∴PC=BQ,∴AP2+BQ2=CQ2+CP2=PQ2.即AP2+BQ2=PQ2.解析:(1)通过SAS证得△APM与△CQM;(2)由(1)中的全等三角形的面积相等可以推知:S四边形PMQC=S△AMC=S△ABC;(3)AP2+BQ2=PQ2.利用(1)中的全等三角形的对应边相等推知AP=CQ,则PC=BQ,所以在直角△PCQ中,利用勾股定理推得AP2+BQ2=PQ2.8、如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?解:(1)①∵t=1秒,∴BP=CQ=3×1=3厘米,∵AB=10厘米,点D为AB的中点,∴BD=5厘米.又∵PC=BC-BP,BC=8厘米,∴PC=8-3=5厘米,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP.(SAS)②∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q运动的时间秒,∴厘米/秒;(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,解得.∴点P共运动了×3=80厘米.∵80=56+24=2×28+24,∴点P、点Q在AB边上相遇,∴经过秒点P与点Q第一次在边AB上相遇.解析:(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个腰长.9、如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?分析:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP.(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3tcm,PC=8-3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.解答:解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴∠ABC=∠ACB,且BD=PC,BP=CQ,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8-3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8-3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8-3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.点评:本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.10、在△ABC中,AB=AC,(1)如图①,若∠BAC=45°,AD和CE是高,它们相交于点H.求证:AH=2BD;(2)如图②,若AB=AC=10厘米,BC=8厘米,点M为AB的中点,点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.如果在运动过程中存在某一时刻使得△BPM与△CQP全等,那么点Q的运动速度为多少?点P、Q运动的时间t为多少?解:(1)证明:在△ABC中,∵∠BAC=45°,CE⊥AB,∴AE=CE,∠EAH=∠ECB,在△AEH和△CEB中,,∴△AEH≌△CEB(ASA),∴AH=BC,∵BC=BD+CD,且BD=CD,∴BC=2BD,∴AH=2BD.(2)∵AB=AC,∴∠B=∠C,∴△BPM与△CQP全等有两种情况:△BPM≌△CPQ 或△BPM≌△CQP当△BPM≌△CPQ时,BP=PC=4,CQ=BM=5,∴点P,点Q运动的时间秒,∴厘米/秒.当△BPM≌△CQP时,BP=CQ,∴V Q=V P=3厘米/秒.此时PC=BM=5,t=秒.综上所述,点Q的运动速度为厘米/秒,此时t=秒或点Q的运动速度为3厘米/秒,此时t=1秒.解析:(1)证得△BCE≌△HAE,证得AH=BC,证得AH=2BD;(2)根据全等三角形应满足的的件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度B11、如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图③,请解答下列问题:(1)若AB=AC,请探究下列数量关系:①在图②中,BD与CE的数量关系是______;②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;(2)若AB=k•AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明分析:(1)①根据题意和旋转的性质可知△AEC≌△ADB,所以BD=CE;②根据题意可知∠CAE=BAD,AB=AC,AD=AE,所以得到△BAD≌△CAE,在△ABM和△ACN中,DM=BD,EN=CE,可证△ABM≌△ACN,所以AM=AN,即∠MAN=∠BAC.(2)直接类比(1)中结果可知AM=k•AN,∠MAN=∠BAC.解答:解:(1)①BD=CE;②AM=AN,∠MAN=∠BAC,∵∠DAE=∠BAC,∴∠CAE=∠BAD,在△BAD和△CAE中∵∴△CAE≌△BAD(SAS),∴∠ACE=∠ABD,∵DM=BD,EN=CE,∴BM=CN,在△ABM和△ACN中,∵∴△ABM≌△ACN(SAS),∴AM=AN,∴∠BAM=∠CAN,即∠MAN=∠BAC;(2)AM=k•AN,∠MAN=∠BAC.点评:本题考查三角形全等的判定方法和性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题还要会根据所求的结论运用类比的方法求得同类题目.12、已知:如图,在平面直角坐标系中,点A,B,C分别在坐标轴上,且OA=OB=OC,△ABC的面积为9,点P从C点出发沿y轴负方向以1个单位/秒的速度向下运动,连接PA,PB,D(-m,-m)为AC上的点(m>0)(1)试分别求出A,B,C三点的坐标;(2)设点P运动的时间为t秒,问:当t为何值时,DP与DB垂直相等?请说明理由;(3)若PA=AB,在第四象限内有一动点Q,连QA,QB,QP,且∠PQA=60°,当Q在第四象限内运动时,下列说法:(i)∠APQ+∠PBQ的度数和不变;(ii)∠BAP+∠BQP的度数和不变,其中有且只有一个说法是正确的,请判断正确的说法,并求这个不变的值.解:(1)∵OA=OB=OC,∠AOC=∠BOC=90°,∴∠OAC=∠OCA=∠OBC=∠OCB=45°,∴∠ACB=90°,又△ABC的面积为9,∴OA=OC=OB=3,∴A(-3,0),B(3,0),C(0,-3);(2)当t=3秒时,即CP=OC时,DP与DB垂直且相等.理由如下:连接OD,作DM⊥x轴于点M,作DN⊥y轴于点N,∵D(-m,-m),∴DM=DN=OM=ON=m,∴∠DOM=∠DON=45°,而∠ACO=45°,∴DC=DO,∴∠PCD=∠BOD=135°,又CP=OC=OB,∴△PCD≌△BOD (SAS),∴DP=DB,∠PDC=∠BDO,∴∠BDP=∠ODC=90°,即DP⊥DB.(3)解:(i)正确.在QA上截取QS=QP,连接PS.∵∠PQA=60°,∴△QSP是等边三角形,∴PS=PQ,∠SPQ=60°,∵PO是AB的垂直平分线,∴PA=PB 而PA=AB,∴PA=PB=AB,∴∠APB=60°,∴∠APS=∠BPQ,∴△APS≌△BPQ,∴∠PAS=∠PBQ,∴∠APQ+∠PBQ=∠APQ+∠PAS=120°.解析:(1)利用OA=OB=OC,∠AOC=∠BOC=90°得出∠ACB=90°,再利用△ABC的面积为9,得出OA=OC=OB=3 即可得出各点的坐标;(2)作DM⊥x轴于点M,作DN⊥y轴于点N,假设出D点的坐标,进而得出△PCD≌△BOD,进而得到∠BDP=∠ODC=90°,即DP⊥DB;(3)在QA上截取QS=QP,连接PS,利用∠PQA=60°,得出△QSP是等边三角形,进而得出△APS≌△BPQ,从而得出∠APQ+∠PBQ=∠APQ+∠PAS得出答案.13、如图1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.(1)求证:BP=DP;(2)如图2,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明;(3)试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连接,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论.分析:(1)由正方形的性质可证△ABP≌△ADP,即BP=DP;(2)当四边形PECF的点P旋转到BC边上时,DP>DC>BP,此时BP=DP不成立;(3)由旋转的性质和正方形的性质可证△BEC≌△DFC,即BE=DF.解答:(1)证明:证法一:在△ABP与△ADP中,∵AB=AD∠BAC=∠DAC,AP=AP,∴△ABP≌△ADP,∴BP=DP.(2分)证法二:利用正方形的轴对称性,可得BP=DP.(2分)(2)解:不是总成立.(3分)当四边形PECF的点P旋转到BC边上时,DP>DC>BP,此时BP=DP不成立,(5分)说明:未用举反例的方法说理的不得分.(3)解:连接BE、DF,则BE与DF始终相等,,在图1中,由正方形ABCD可证:AC平分∠BCD,∵PE⊥BC,PF⊥CD,∴PE=PF,∠BCD=90°,∴四边形PECF为正方形.(7分)∴CE=CF,∵∠DCF=∠BCE,BC=CD,∴△BEC≌△DFC,∴BE=DF.(8分)点评:本题考查了旋转的性质和全等三角形的判定,以及正方形的性质.14、如图,在△ABC中,AB=AC=5,∠B=∠C,BC=8,点D从B点出发沿线段BC向C运动(D不与B、C重合),点E从点C出发沿线段CA向A运动(E不与A、C重合),它们以相同的速度同时运动,连结AD、DE.若要使△ABD≌△DCE,①请给出确定D、E两点位置的方法(如指明CD长度等),并说明理由;②此时∠ADE与∠C大小关系怎样?为什么?解:①DC=5,理由是:∵BC=8,CD=AB=5,∴BD=8-5=3,即CE=BD=3,在△ABD和△DCE中,,∴△ABD≌△DCE,即当CD=5时,△ABD≌△DCE.②∠ADE=∠C,理由是:∵△ABD≌△DCE,∴∠BDA=∠DEC,∴∠C=180°-∠DEC-∠EDC=180°-∠ADB-∠EDC,∵∠ADE=180°-∠BDA-∠EDC,∴∠ADE=∠C.解析:①CD=5时,根据SAS推出△ABD≌△DCE即可.②根据全等三角形性质得出∠BDA=∠DEC,根据三角形内角和定理求出∠C=180°-∠ADB-∠EDC,求出∠ADE=180°-∠BDA-∠EDC,即可得出答案.15、如图:△ABC中,AB=AC=5(即有∠B=∠C),BC=8,点D在线段BC上运动(D不与B、C重合),点E在线段AC上运动(E不与A、C重合),连结AD、DE.(1)点D从B向C运动时,∠BDA逐渐变_____(填“大”或“小”);(2)若要使△ABD≌△DCE,①请给出确定D、E两点位置的方法(如指明某些线段的长度等),并说明理由;②此时∠ADE与∠C大小关系怎样?为什么?(1)根据BD边逐渐增长可得∠BAD逐渐增大,又因为∠B的大小固定不变,结合三角形内角和定理∠B+∠BAD+∠ADB=180°可得∠ADB逐渐减小.(2)①根据三角形全等的性质可得DC=AB,DB=CE,进而得到答案;②根据全等三角形的性质可得∠1=∠2,再根据∠1+∠B+∠ADB=180°,∠2+∠ADE+∠BDA=180°,可得∠ADE=∠B,进而得到∠ADE=∠C.解:(1)∵点D从B向C运动时,BD边逐渐变长,∴∠BAD逐渐增大,∵∠B的大小固定不变,∠B+∠BAD+∠ADB=180°,∴∠ADB逐渐减小;(2)①∵△ABD≌△DCE,∴DC=AB=5,CE=DB,∵BC=8,∴CE=DB=8-5=3;②∠ADE=∠C;理由:∵△ABD≌△DCE,∴∠1=∠2,∵∠1+∠B+∠ADB=180°,∠2+∠ADE+∠BDA=180°,∴∠ADE=∠B,∵∠B=∠C,∴∠ADE=∠C.17、如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD 于点F.(1)求证:EF+AC=AB;(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与A1的运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图2,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E1⊥A1C1,垂足为E1,请猜想E1F1,A1C1与AB三者之间的数量关系,并证明你的猜想;(3)在(2)的条件下,当A1E1=3,C1E1=2时,求BD的长.分析:(1)过F作FM⊥AB于点M,首先证明△AMF≌△AEF,求出MF=MB,即可知道EF+AE=AB.(2)连接F1C1,过点F1作F1P⊥A1B于点P,F1Q⊥BC于点Q,证明Rt△A1E1F1≌Rt△A1PF1,Rt△QF1C1≌Rt△E1F1C1后推出A1B+BC1=A1P+PB+QB+C1Q=A1P+C1Q+2E1F1化简为E1F1+A1C1=AB.(3)设PB=x,QB=x,PB=1,E1F1=1,又推出E1F1+A1C1=AB,得出BD=.解答:(1)证明:如图1,过点F作FM⊥AB于点M,在正方形ABCD中,AC⊥BD 于点E.∴AE=AC,∠ABD=∠CBD=45°,∵AF平分∠BAC,∴EF=MF,又∵AF=AF,∴Rt△AMF≌Rt△AEF,∴AE=AM,∵∠MFB=∠ABF=45°,∴MF=MB,MB=EF,∴EF+AC=MB+AE=MB+AM=AB.(2)E1F1,A1C1与AB三者之间的数量关系:E1F1+A1C1=AB证明:如图2,连接F1C1,过点F1作F1P⊥A1B于点P,F1Q⊥BC于点Q,∵A1F1平分∠BA1C1点/sub>,∴E1F1=PF1;同理QF1=PF1,∴E1F1=PF1=QF1,21又∵A1F1=A1F1,∴Rt △A1E1F1≌Rt △A1PF1,∴A1E1=A1P ,同理Rt △QF1C1≌Rt △E1F1C1,∴C1Q=C1E1,由题意:A1A=C1C ,∴A1B+BC1=AB+A1A+BC-C1C=AB+BC=2AB ,∵PB=PF1=QF1=QB ,∴A1B+BC1=A1P+PB+QB+C1Q=A1P+C1Q+2E1F1,即2AB=A1E1+C1E1+2E1F1=A1C1+2E1F1,∴E1F1+A1C1=AB .(3)解:设PB=x ,则QB=xm∵A1E1=3,QC1=C1E1=2,Rt △A1BC1中,A1B 2+BC12g/sup>=A 1C 12, 即(3+x )2+(2+x )2=52,∴x 1=1,x 2=-6(舍去), ∴PB=1,∴E 1F 1=1, 又∵A 1C 1=5, 由(2)的结论:E 1F 1+A 1C 1=AB , ∴AB=,∴BD=.点评:本题考查的是勾股定理的应用,全等三角形的判定以及正方形的性质等有关知识.18、如图,在等腰Rt △ABC 中,∠B=90°,AB=BC=8cm .动点P 从点A 出发沿线段AB 向点B 运动,动点Q 从点C 出发沿射线BC 运动,连接PQ ,交AC 于点D .作PE ⊥AC 于点E ,若在点P ,Q 运动的过程中,始终保持AP=CQ ,则线段DE 的长度为_____.作PF∥BC交AC于点D,就可以得出△APE是等腰直角三角形,由其性质就可以得出AE=EF,由△PFD≌△QCD就可以得出DC=DF,进而就可以得出DF+FE=CD+AE就可以得出结论.解:作PF∥BC交AC于点D,∴∠APF=∠B=90°,∠AFP=∠ACB.∠FPD=∠Q,∠PFD=∠QCD.∵∠B=90°,AB=BC=8cm,∴∠A=∠ACB=45°,∴∠A=∠ACB=45°,∴PA=AF.∵PE⊥AC,∴AE=EF.∵AP=CQ,∴PF=CQ.在Rt△ABC中,由勾股定理就可以得出AC=8.在△PFD和△QCD中,,∴△PFD≌△QCD(ASA)∴DF=DC,∴DF+EF=DC+AE,∴DE=AC,∴DE=4cm.故答案为:4.19、如图,在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,M在AC上且AM=6cm,过点A(与BC在AC同侧)作射线AN⊥AC,若动点P从点A出发,沿射线AN匀速运动,运动速度为1厘米/秒,设点P运动时间为t秒(1)经过几秒时,Rt△AMP是等腰三角形?(2)又经过几秒时,PM⊥AB?(3)连接BM,在(2)的条件下,求四边形AMBP的面积.(1)解:设经过x秒时,Rt△AMP是等腰三角形,∵∠PAM=90°,∴只能AM=AP,∵AM=6cm,∴AP=6cm,即x=6(秒),答:经过6秒时,Rt△AMP是等腰三角形;(2)解:设经过t秒时,PM⊥AB,∵PM⊥AB,AN⊥AC,∠C=90°∴∠PAM=∠4=∠C=90°,∴∠3+∠2=90°,∠1+∠2=90°,∴∠1=∠3,∴△ACB∽△PAM,∴=,∴=,x=8,8-6=2,答:又经过2秒时,PM⊥AB;23(3)解:在Rt△ABC中,∠C=90°,AC=8,BC=6,由勾股定理得:AB=10,同理可求PM=10,∵PM⊥AB,∴四边形AMBP的面积S=AB×PM=×10×10=50,答:四边形AMBP的面积是50.解析:(1)得出腰时AM=AP,即可得出答案;(2)证△PAM∽△ACB,得出比例式,代入求出AP,即可得出答案;(3)由勾股定理求出PM、AB,关键三角形的面积公式求出即可.。
全等三角形中的动点问题全等三角形的判断与定义1.定义:能够完全重合的两个三角形叫做全等三角形,“全等”用符号“≌”表示,读作“全等于”。
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
由此,可以得出:全等三角形的对应边相等,对应角相等。
2.判定:(1)三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
(2)有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
(3)有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
(4)有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)(5)直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) 所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
3.性质:(1)全等三角形的对应角相等。
(2)全等三角形的对应边相等。
(3)全等三角形的对应边上的高对应相等。
(4)全等三角形的对应角的角平分线相等。
(5)全等三角形的对应边上的中线相等。
(6)全等三角形面积相等。
(7)全等三角形周长相等。
(8)全等三角形的对应角的三角函数值相等。
1、如图,在△ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AF=10cm,AC=14cm,动点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为.(1)求证:在运动过程中,不管取何值,都有S△AED=2S△DGC;(2)当取何值时,△DFE与△DMG全等;(3)在(2)的前提下,若,,求S△BFD.(1)证明:∵∠BAD=∠DAC,DF⊥AB,DM⊥AC,∴DF=DM,∵S△AED=AE•DF,S△DGC=CG•DM,∴=,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,∴AE=2tcm,CG=tcm,∴=2,即=2,∴在运动过程中,不管取何值,都有S△AED=2S△DGC.(2)解:设时间为t时,△DFE与△DMG全等,则EF=MG,①当M在线段CG的延长线上时,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,∴EF=AF-AE=10-2t,MG=AC-CG-AM=4-t,即10-2t=4-t,解得:t=6,当t=6时,MG=-2,所以舍去;②当M在线段CG上时,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,∴EF=AF-AE=10-2t(cm),MG=AM-(AC-CG)=t-4(cm),即10-2t=t-4,解得:t=,综上所述当t=时,△DFE与△DMG全等.(3)∵t=,∴AE=2t=(cm),∵DF=DM,∴S△ABD:S△ACD=AB:AC=BD:CD=119:126,∵AC=14cm,∴AB=(cm),∴BF=AB-AF=-10=(cm),∵S△ADE:S△BDF=AE:BF=:,S△AED=28cm2,∴S△BDF=(cm2).解析:(1)由角平分线的性质可知DF=DM,所以△AED和△DEG的面积转化为底AE和CG的比值,根据路程=速度×时间求出AE和CG的长度即可证明在运动过程中,不管取何值,都有S△AED=2S△DGC.(2)若△DFE与△DMG全等,则EF=MG,利用已知条件求出EF和MG的长度,建立方程解方程即可求出运动的时间.(3)利用等高三角形的面积比等于对应底的比,即可求得答案.2、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=8cm,点P从A出发向C以1cm/s的速度运动、点Q同时从C出发向B以1cm/s的速度运动,当一个点运动到终点时,该点停止运动,另一个点继续运动,当两个点都到达终点时也停止运动.(1)几秒后,△CPQ的面积为Rt△ABC的面积的?(2)填空:①点经过_____秒,点P在线段AB的垂直平分线上.②点Q经过_____秒,点Q在∠BAC的平分线上.(1)设经过x秒,首先求得线段BC的长,然后分x≤6和6<x≤8两种情况列方程求解即可;(2)①点P在线段AB的垂直平分线上,即可得到PA=PB,从而求得时间;②点Q在∠BAC的平分线上,则Q点到AC和AB的距离相等.解;(1)设经过x秒.在Rt△ABC中,根据题意得;当x≤6时,(8-x)x=××8×6解得:当6<x≤8时,(8-x)×6=37解得:x=7答:经过7秒或秒.(2)当点P在线段AB的垂直平分线上时,PA=PB,∵设经过x秒后点P在线段AB的垂直平分线上,∴x2=(8-x)2+62解得:x=,∴经过秒,点P在线段AB的垂直平分线上②如图,作QD⊥AB于点D,∵点Q在∠BAC的平分线上,∴QD=QC,设经过x秒,则CQ=x,则QD=(6-x),∴x=(6-x),解得:x=,∴点Q经过秒,点Q在∠BAC的平分线上.3、如图,△ABC是直角三角形,∠A=90°,AB=8cm,AC=6cm点P从点A出发,沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则三角形APQ的最大面积是()A.8cm2B.16cm2C.24cm2D.32cm2解:根据题意沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,∴AP=2t,AQ=t,S△APQ=t2,∵0<t≤4,∴三角形APQ的最大面积是16.故选B.4、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)(3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.解:(1)解法一:如图1延长BP交直线AC于点E.∵AC∥BD,∴∠PEA=∠PBD.∵∠APB=∠PAE+∠PEA,∴∠APB=∠PAC+∠PBD;解法二:如图2过点P作FP∥AC,∴∠PAC=∠APF.∵AC∥BD,∴FP∥BD.∴∠FPB=∠PBD.∴∠APB=∠APF+∠FPB=∠PAC+∠PBD;解法三:如图3,∵AC∥BD,∴∠CAB+∠ABD=180°,∠PAC+∠PAB+∠PBA+∠PBD=180°.又∠APB+∠PBA+∠PAB=180°,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)(a)当动点P在射线BA的右侧时,结论是∠PBD=∠PAC+∠APB.(b)当动点P在射线BA上,结论是∠PBD=∠PAC+∠APB.或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD(任写一个即可).(c)当动点P在射线BA的左侧时,结论是∠PAC=∠APB+∠PBD.选择(a)证明:如图4,连接PA,连接PB交AC于M.∵AC∥BD,∴∠PMC=∠PBD.又∵∠PMC=∠PAM+∠APM(三角形的一个外角等于与它不相邻的两个内角的和),∴∠PBD=∠PAC+∠APB.选择(b)证明:如图5∵点P在射线BA上,∴∠APB=0度.∵AC∥BD,∴∠PBD=∠PAC.∴∠PBD=∠PAC+∠APB或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD.选择(c)证明:如图6,连接PA,连接PB交AC于F∵AC∥BD,∴∠PFA=∠PBD.∵∠PAC=∠APF+∠PFA,∴∠PAC=∠APB+∠PBD.解析:(1)如图1,延长BP交直线AC于点E,由AC∥BD,可知∠PEA=∠PBD.由∠APB=∠PAE+∠PEA,可知∠APB=∠PAC+∠PBD;(2)过点P作AC的平行线,根据平行线的性质解答;(3)根据P的不同位置,分三种情况讨论.6、如图1,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF.(1)试说明BF=CE的理由;(2)当E、F相向运动,形成如图2时,BF和CE还相等吗?请说明你的结论和理由.证明:(1)∵AD∥BC,∴∠BAD+∠ABC=180°,∠CDA+∠DCB=180°,∵∠ABC=∠DCB,∴∠BAD=∠CDA,∵AE=DF,∴AE+AD=DF+AD,即AF=DE,在△ABF和△DCE中,,∴△ABt≌△DCE(SAS),∴BF=CE;(2)相等.在△ABC和△DCB中,,∴△ABC≌△DCB(SAS),∴BF=CE.解析:(1)根据两直线平行,同旁内角互明证明∠BAD=∠CDA,根据AE边DF证明AF=DE,再根据边角边定理证明△ABF和△DCE全等,根据全等三角形对应边相等即可证明BF=CE.(2)利用边角边定即证明△ABC和△DCB全等,再根据全等三角形对应边相等即可证明7、如图,已知△ABC中,BC=AC=8厘米,∠C=90°,如果点P在线段AC上以1厘米/秒的速度由A点向C点运动,同时,点Q在线段BC上由C点向B点运动,运动速度与点P的运动速度相等,点M是AB的中点.(1)在点P和点Q运动过程中,△APM与△CQM是否保持全等,请说明理由;(2)在点P和点Q运动过程中,四边形PMQC的面积是否变化?若变化说明理由;若不变,求出这个四边形的面积;(3)线段AP、PQ、BQ之间存在什么数量关系,写出这个关系,并加以证明.解:(1)在点P和点Q运动过程中,△APM与△CQM是否保持全等.理由如下:∵在△ABC中,BC=AC=8厘米,∠C=90°,点M是AB的中点,∴∠A=∠MCQ=45°,AM=CM,∴在△APM与△CQM中,,∴△APM与△CQM(SAS);(2)在点P和点Q运动过程中,四边形PMQC的面积不变化,其面积是32厘米2,理由如下:由(1)知,△APM与△CQM,∴S△APM=S△CQM,∴S四边形PMQC=S△AMC=S△ABC=AC•BC=×8×8=32(厘米2),即在点P和点Q运动过程中,四边形PMQC的面积不变化,其面积是32厘米2;(3)AP2+BQ2=PQ2.证明如下:∵由(1)知,△APM与△CQM,∴AP=CQ,又AC=BC,∴PC=BQ,∴AP2+BQ2=CQ2+CP2=PQ2.即AP2+BQ2=PQ2.解析:(1)通过SAS证得△APM与△CQM;(2)由(1)中的全等三角形的面积相等可以推知:S四边形PMQC=S△AMC=S△ABC;(3)AP2+BQ2=PQ2.利用(1)中的全等三角形的对应边相等推知AP=CQ,则PC=BQ,所以在直角△PCQ中,利用勾股定理推得AP2+BQ2=PQ2.8、如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?解:(1)①∵t=1秒,∴BP=CQ=3×1=3厘米,∵AB=10厘米,点D为AB的中点,∴BD=5厘米.又∵PC=BC-BP,BC=8厘米,∴PC=8-3=5厘米,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP.(SAS)②∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q运动的时间秒,∴厘米/秒;(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,解得.∴点P共运动了×3=80厘米.∵80=56+24=2×28+24,∴点P、点Q在AB边上相遇,∴经过秒点P与点Q第一次在边AB上相遇.解析:(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个腰长.9、如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?分析:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP.(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3tcm,PC=8-3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.解答:解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴∠ABC=∠ACB,且BD=PC,BP=CQ,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8-3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8-3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8-3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.点评:本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.10、在△ABC中,AB=AC,(1)如图①,若∠BAC=45°,AD和CE是高,它们相交于点H.求证:AH=2BD;(2)如图②,若AB=AC=10厘米,BC=8厘米,点M为AB的中点,点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.如果在运动过程中存在某一时刻使得△BPM与△CQP全等,那么点Q的运动速度为多少?点P、Q运动的时间t为多少?解:(1)证明:在△ABC中,∵∠BAC=45°,CE⊥AB,∴AE=CE,∠EAH=∠ECB,在△AEH和△CEB中,,∴△AEH≌△CEB(ASA),∴AH=BC,∵BC=BD+CD,且BD=CD,∴BC=2BD,∴AH=2BD.(2)∵AB=AC,∴∠B=∠C,∴△BPM与△CQP全等有两种情况:△BPM≌△CPQ 或△BPM≌△CQP当△BPM≌△CPQ时,BP=PC=4,CQ=BM=5,∴点P,点Q运动的时间秒,∴厘米/秒.当△BPM≌△CQP时,BP=CQ,∴V Q=V P=3厘米/秒.此时PC=BM=5,t=秒.综上所述,点Q的运动速度为厘米/秒,此时t=秒或点Q的运动速度为3厘米/秒,此时t=1秒.解析:(1)证得△BCE≌△HAE,证得AH=BC,证得AH=2BD;(2)根据全等三角形应满足的的件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度B11、如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图③,请解答下列问题:(1)若AB=AC,请探究下列数量关系:①在图②中,BD与CE的数量关系是______;②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;(2)若AB=k•AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明分析:(1)①根据题意和旋转的性质可知△AEC≌△ADB,所以BD=CE;②根据题意可知∠CAE=BAD,AB=AC,AD=AE,所以得到△BAD≌△CAE,在△ABM和△ACN中,DM=BD,EN=CE,可证△ABM≌△ACN,所以AM=AN,即∠MAN=∠BAC.(2)直接类比(1)中结果可知AM=k•AN,∠MAN=∠BAC.解答:解:(1)①BD=CE;②AM=AN,∠MAN=∠BAC,∵∠DAE=∠BAC,∴∠CAE=∠BAD,在△BAD和△CAE中∵∴△CAE≌△BAD(SAS),∴∠ACE=∠ABD,∵DM=BD,EN=CE,∴BM=CN,在△ABM和△ACN中,∵∴△ABM≌△ACN(SAS),∴AM=AN,∴∠BAM=∠CAN,即∠MAN=∠BAC;(2)AM=k•AN,∠MAN=∠BAC.点评:本题考查三角形全等的判定方法和性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题还要会根据所求的结论运用类比的方法求得同类题目.12、已知:如图,在平面直角坐标系中,点A,B,C分别在坐标轴上,且OA=OB=OC,△ABC的面积为9,点P从C点出发沿y轴负方向以1个单位/秒的速度向下运动,连接PA,PB,D(-m,-m)为AC上的点(m>0)(1)试分别求出A,B,C三点的坐标;(2)设点P运动的时间为t秒,问:当t为何值时,DP与DB垂直相等?请说明理由;(3)若PA=AB,在第四象限内有一动点Q,连QA,QB,QP,且∠PQA=60°,当Q在第四象限内运动时,下列说法:(i)∠APQ+∠PBQ的度数和不变;(ii)∠BAP+∠BQP的度数和不变,其中有且只有一个说法是正确的,请判断正确的说法,并求这个不变的值.解:(1)∵OA=OB=OC,∠AOC=∠BOC=90°,∴∠OAC=∠OCA=∠OBC=∠OCB=45°,∴∠ACB=90°,又△ABC的面积为9,∴OA=OC=OB=3,∴A(-3,0),B(3,0),C(0,-3);(2)当t=3秒时,即CP=OC时,DP与DB垂直且相等.理由如下:连接OD,作DM⊥x轴于点M,作DN⊥y轴于点N,∵D(-m,-m),∴DM=DN=OM=ON=m,∴∠DOM=∠DON=45°,而∠ACO=45°,∴DC=DO,∴∠PCD=∠BOD=135°,又CP=OC=OB,∴△PCD≌△BOD (SAS),∴DP=DB,∠PDC=∠BDO,∴∠BDP=∠ODC=90°,即DP⊥DB.(3)解:(i)正确.在QA上截取QS=QP,连接PS.∵∠PQA=60°,∴△QSP是等边三角形,∴PS=PQ,∠SPQ=60°,∵PO是AB的垂直平分线,∴PA=PB 而PA=AB,∴PA=PB=AB,∴∠APB=60°,∴∠APS=∠BPQ,∴△APS≌△BPQ,∴∠PAS=∠PBQ,∴∠APQ+∠PBQ=∠APQ+∠PAS=120°.解析:(1)利用OA=OB=OC,∠AOC=∠BOC=90°得出∠ACB=90°,再利用△ABC的面积为9,得出OA=OC=OB=3 即可得出各点的坐标;(2)作DM⊥x轴于点M,作DN⊥y轴于点N,假设出D点的坐标,进而得出△PCD≌△BOD,进而得到∠BDP=∠ODC=90°,即DP⊥DB;(3)在QA上截取QS=QP,连接PS,利用∠PQA=60°,得出△QSP是等边三角形,进而得出△APS≌△BPQ,从而得出∠APQ+∠PBQ=∠APQ+∠PAS得出答案.13、如图1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.(1)求证:BP=DP;(2)如图2,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明;(3)试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连接,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论.分析:(1)由正方形的性质可证△ABP≌△ADP,即BP=DP;(2)当四边形PECF的点P旋转到BC边上时,DP>DC>BP,此时BP=DP不成立;(3)由旋转的性质和正方形的性质可证△BEC≌△DFC,即BE=DF.解答:(1)证明:证法一:在△ABP与△ADP中,∵AB=AD∠BAC=∠DAC,AP=AP,∴△ABP≌△ADP,∴BP=DP.(2分)证法二:利用正方形的轴对称性,可得BP=DP.(2分)(2)解:不是总成立.(3分)当四边形PECF的点P旋转到BC边上时,DP>DC>BP,此时BP=DP不成立,(5分)说明:未用举反例的方法说理的不得分.(3)解:连接BE、DF,则BE与DF始终相等,,在图1中,由正方形ABCD可证:AC平分∠BCD,∵PE⊥BC,PF⊥CD,∴PE=PF,∠BCD=90°,∴四边形PECF为正方形.(7分)∴CE=CF,∵∠DCF=∠BCE,BC=CD,∴△BEC≌△DFC,∴BE=DF.(8分)点评:本题考查了旋转的性质和全等三角形的判定,以及正方形的性质.14、如图,在△ABC中,AB=AC=5,∠B=∠C,BC=8,点D从B点出发沿线段BC向C运动(D不与B、C重合),点E从点C出发沿线段CA向A运动(E不与A、C重合),它们以相同的速度同时运动,连结AD、DE.若要使△ABD≌△DCE,①请给出确定D、E两点位置的方法(如指明CD长度等),并说明理由;②此时∠ADE与∠C大小关系怎样?为什么?解:①DC=5,理由是:∵BC=8,CD=AB=5,∴BD=8-5=3,即CE=BD=3,在△ABD和△DCE中,,∴△ABD≌△DCE,即当CD=5时,△ABD≌△DCE.②∠ADE=∠C,理由是:∵△ABD≌△DCE,∴∠BDA=∠DEC,∴∠C=180°-∠DEC-∠EDC=180°-∠ADB-∠EDC,∵∠ADE=180°-∠BDA-∠EDC,∴∠ADE=∠C.解析:①CD=5时,根据SAS推出△ABD≌△DCE即可.②根据全等三角形性质得出∠BDA=∠DEC,根据三角形内角和定理求出∠C=180°-∠ADB-∠EDC,求出∠ADE=180°-∠BDA-∠EDC,即可得出答案.15、如图:△ABC中,AB=AC=5(即有∠B=∠C),BC=8,点D在线段BC上运动(D不与B、C重合),点E在线段AC上运动(E不与A、C重合),连结AD、DE.(1)点D从B向C运动时,∠BDA逐渐变_____(填“大”或“小”);(2)若要使△ABD≌△DCE,①请给出确定D、E两点位置的方法(如指明某些线段的长度等),并说明理由;②此时∠ADE与∠C大小关系怎样?为什么?(1)根据BD边逐渐增长可得∠BAD逐渐增大,又因为∠B的大小固定不变,结合三角形内角和定理∠B+∠BAD+∠ADB=180°可得∠ADB逐渐减小.(2)①根据三角形全等的性质可得DC=AB,DB=CE,进而得到答案;②根据全等三角形的性质可得∠1=∠2,再根据∠1+∠B+∠ADB=180°,∠2+∠ADE+∠BDA=180°,可得∠ADE=∠B,进而得到∠ADE=∠C.解:(1)∵点D从B向C运动时,BD边逐渐变长,∴∠BAD逐渐增大,∵∠B的大小固定不变,∠B+∠BAD+∠ADB=180°,∴∠ADB逐渐减小;(2)①∵△ABD≌△DCE,∴DC=AB=5,CE=DB,∵BC=8,∴CE=DB=8-5=3;②∠ADE=∠C;理由:∵△ABD≌△DCE,∴∠1=∠2,∵∠1+∠B+∠ADB=180°,∠2+∠ADE+∠BDA=180°,∴∠ADE=∠B,∵∠B=∠C,∴∠ADE=∠C.17、如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD 于点F.(1)求证:EF+AC=AB;(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与A1的运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图2,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E1⊥A1C1,垂足为E1,请猜想E1F1,A1C1与AB三者之间的数量关系,并证明你的猜想;(3)在(2)的条件下,当A1E1=3,C1E1=2时,求BD的长.分析:(1)过F作FM⊥AB于点M,首先证明△AMF≌△AEF,求出MF=MB,即可知道EF+AE=AB.(2)连接F1C1,过点F1作F1P⊥A1B于点P,F1Q⊥BC于点Q,证明Rt△A1E1F1≌Rt△A1PF1,Rt△QF1C1≌Rt△E1F1C1后推出A1B+BC1=A1P+PB+QB+C1Q=A1P+C1Q+2E1F1化简为E1F1+A1C1=AB.(3)设PB=x,QB=x,PB=1,E1F1=1,又推出E1F1+A1C1=AB,得出BD=.解答:(1)证明:如图1,过点F作FM⊥AB于点M,在正方形ABCD中,AC⊥BD 于点E.∴AE=AC,∠ABD=∠CBD=45°,∵AF平分∠BAC,∴EF=MF,又∵AF=AF,∴Rt△AMF≌Rt△AEF,∴AE=AM,∵∠MFB=∠ABF=45°,∴MF=MB,MB=EF,∴EF+AC=MB+AE=MB+AM=AB.(2)E1F1,A1C1与AB三者之间的数量关系:E1F1+A1C1=AB证明:如图2,连接F1C1,过点F1作F1P⊥A1B于点P,F1Q⊥BC于点Q,∵A1F1平分∠BA1C1点/sub>,∴E1F1=PF1;同理QF1=PF1,∴E1F1=PF1=QF1,21又∵A1F1=A1F1,∴Rt △A1E1F1≌Rt △A1PF1,∴A1E1=A1P ,同理Rt △QF1C1≌Rt △E1F1C1,∴C1Q=C1E1,由题意:A1A=C1C ,∴A1B+BC1=AB+A1A+BC-C1C=AB+BC=2AB ,∵PB=PF1=QF1=QB ,∴A1B+BC1=A1P+PB+QB+C1Q=A1P+C1Q+2E1F1,即2AB=A1E1+C1E1+2E1F1=A1C1+2E1F1,∴E1F1+A1C1=AB .(3)解:设PB=x ,则QB=xm∵A1E1=3,QC1=C1E1=2,Rt △A1BC1中,A1B 2+BC12g/sup>=A 1C 12, 即(3+x )2+(2+x )2=52,∴x 1=1,x 2=-6(舍去), ∴PB=1,∴E 1F 1=1, 又∵A 1C 1=5, 由(2)的结论:E 1F 1+A 1C 1=AB , ∴AB=,∴BD=.点评:本题考查的是勾股定理的应用,全等三角形的判定以及正方形的性质等有关知识.18、如图,在等腰Rt △ABC 中,∠B=90°,AB=BC=8cm .动点P 从点A 出发沿线段AB 向点B 运动,动点Q 从点C 出发沿射线BC 运动,连接PQ ,交AC 于点D .作PE ⊥AC 于点E ,若在点P ,Q 运动的过程中,始终保持AP=CQ ,则线段DE 的长度为_____.作PF∥BC交AC于点D,就可以得出△APE是等腰直角三角形,由其性质就可以得出AE=EF,由△PFD≌△QCD就可以得出DC=DF,进而就可以得出DF+FE=CD+AE就可以得出结论.解:作PF∥BC交AC于点D,∴∠APF=∠B=90°,∠AFP=∠ACB.∠FPD=∠Q,∠PFD=∠QCD.∵∠B=90°,AB=BC=8cm,∴∠A=∠ACB=45°,∴∠A=∠ACB=45°,∴PA=AF.∵PE⊥AC,∴AE=EF.∵AP=CQ,∴PF=CQ.在Rt△ABC中,由勾股定理就可以得出AC=8.在△PFD和△QCD中,,∴△PFD≌△QCD(ASA)∴DF=DC,∴DF+EF=DC+AE,∴DE=AC,∴DE=4cm.故答案为:4.19、如图,在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,M在AC上且AM=6cm,过点A(与BC在AC同侧)作射线AN⊥AC,若动点P从点A出发,沿射线AN匀速运动,运动速度为1厘米/秒,设点P运动时间为t秒(1)经过几秒时,Rt△AMP是等腰三角形?(2)又经过几秒时,PM⊥AB?(3)连接BM,在(2)的条件下,求四边形AMBP的面积.(1)解:设经过x秒时,Rt△AMP是等腰三角形,∵∠PAM=90°,∴只能AM=AP,∵AM=6cm,∴AP=6cm,即x=6(秒),答:经过6秒时,Rt△AMP是等腰三角形;(2)解:设经过t秒时,PM⊥AB,∵PM⊥AB,AN⊥AC,∠C=90°∴∠PAM=∠4=∠C=90°,∴∠3+∠2=90°,∠1+∠2=90°,∴∠1=∠3,∴△ACB∽△PAM,∴=,∴=,x=8,8-6=2,答:又经过2秒时,PM⊥AB;23(3)解:在Rt△ABC中,∠C=90°,AC=8,BC=6,由勾股定理得:AB=10,同理可求PM=10,∵PM⊥AB,∴四边形AMBP的面积S=AB×PM=×10×10=50,答:四边形AMBP的面积是50.解析:(1)得出腰时AM=AP,即可得出答案;(2)证△PAM∽△ACB,得出比例式,代入求出AP,即可得出答案;(3)由勾股定理求出PM、AB,关键三角形的面积公式求出即可.。
教学设计教学准备学案、课件板书设计2.4拓展综合类—动点问题(1)学生展示1.2.3 1.表示线段的方法:书写必要的步骤勾股定理、相似、三角函数。
2.解决问题的方法:数形结合定相似,比例线段构方程3.数学思想:分类讨论,数形结合、建模思想。
教学过程教学环节及内容教师活动学生活动一、【课前热身】1.如图,已知在Rt△ACB中,∠C=90°,AC=8cm,BC=6cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t≤4),解答下列问题:(1)当t= 何值时,PQ∥CB?(2)当t= 为何值时,PQ⊥CB?(3)当t= 何值时,△APQ为直角三角形?思考:当t为何值时,△APQ为等腰三角形?方法小结:1. .2. .设计意图:将24题的考点进行分层,这3个题目很简单,通过课后合学,都能解决。
这样既可以增强学生的信心,消除恐惧感,也可以让学生体会到参与的快乐。
教学策略:学生课前已经完成,教师上课时引导学生展示解决这3个题目的方法.【基础探究】例1. 接上题.(4)当t为何值时,△APQ为等腰三角形.方法小结: .变式:连接PC将△PQC沿着AC翻折得到△P’QC,问当t= 何值时,若四边形PQP’C是菱形.设计意图:1.落实步骤的规范性,注意方法多样化和最优化,关注不同的思维方式.2.从图形的角度引导学生要时刻关注动态过程中的静态图形,从而降低题目难度,突出重点,突破难点,真正的理解数形结合的含义。
出示动点问题的考题分析,让学生了解此题的分值,内容等,然后结合课后的合学成果,选择学生进行讲述。
并给予学生恰当的评价。
引导学生归纳解题步骤及方法。
引导学生分析题意:并提出三个问题:1.当△APQ为等腰三角形时,有几种情况?2.画出这一时刻的静态图形?3.结合图形,找出等量关系解决学生结合课后的合学,小组推荐人员讲解,并板书必要的解题过程。
专题03全等三角形中的动态问题
初中数学中,动点问题是学习的重、难点,在三角形、矩形等一些几何图形上,设计一个或多个动点,探究全等三角形存在性问题,该类题目具有较强的综合性。
解决动点问题常见的答题思路是:
1. 注意分类讨论;
2. 仔细探究全等三角形对应边与对应角的变化;
3. 利用时间表示出相应线段或边的长度,列出方程求解.
【典例解析】
【例1-1】(2020·周口市月考)如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E离开点A后,运动______ 秒时,△DEB与△BCA全等.
【答案】0,2,6,8.
【解析】解:①当E在线段AB上,AC=BE时,△ACB≌△BED,
∵AC=4,
∴BE=4,
∴AE=8−4=4,
∴点E的运动时间为4÷2=2(秒);
1/ 35。
全等三角形中的动点问题
在全等三角形中,如果动点M在三角形内部移动,那么全等三角形的另外两个顶点A和B,以及动点M之间的关系会如何变化呢?
全等三角形的定义是具有完全相同的三边和三角,并且对应的角度也完全相等。
在全等三角形ABC中,如果动点M在三角形内部移动,那么它与点A、B以及点C之间的距离关系会保持不变。
具体来说,假设动点M在全等三角形ABC内部的位置不变,比如点M 在三角形内部的中心位置,或者在三角形内部的任意位置。
那么,点M与点A、B以及C之间的距离关系如下:
1. 点M与点A之间的距离保持不变;
2. 点M与点B之间的距离保持不变;
3. 点M与点C之间的距离保持不变。
即使动点M在全等三角形内部移动,这些距离关系也不会改变。
这是因为全等三角形的边长和角度是固定的,无论动点M在三角形内部的位置如何变化,都不会影响到这些距离关系。
总结起来,全等三角形中的动点问题可以简单地归结为,动点M与三角形的顶点之间的距离关系保持不变。
这个性质可以用来解决一些问题,比如证明三角形的垂心、重心等特殊点的存在性,以及构造线段的平分线、垂线等。
全等三角形的动点问题教学重点难点利用熟悉的知识点解决陌生的问题思路:1.利用图形想到三角形全等2.分析题目,了解有几个动点,动点的路程,速度3.结合图形和题目,得出已知或能间接求出的数据4.分情况讨论,把每种可能情况列出来,不要漏5.动点一般都是压轴题,步骤不重要,重要的是思路6.动点类问题一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论.【典型例题】例1. 如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD 的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°,点D在射线BC上运动时(与点B不重合),如图,线段CF,BD之间的位置关系为_____________,数量关系为______________.请利用图2或图3予以证明(选择一个即可).例2. 如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE,连接DE、DF、EF.(1)求证:△ADF≌△CEF.(2)试证明△DFE是等腰直角三角形.(3)在此运动变化的过程中,四边形CDFE的面积是否保持不变?试说明理由.(4)求△CDE面积的最大值.变式如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②DE长度的最小值为4;③四边形CDFE的面积保持不变;④△CDE面积的最大值为8.其中正确的结论是()A.①②③B.①③C.①③④D.②③④例3. 正方形ABCD和正方形AEFG有一公共点A,点G.E分别在线段AD、AB上(如图(1)所示),连接DF、BF.(1)求证:DF=BF(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG、BE(如图(2)所示),在旋转过程中,请猜想线段DG、BE始终有什么数量关系和位置关系并证明你的猜想.例4.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?变式如图,在等边△ABC中,AB=9cm,点P从点C出发沿CB边向点B点以2cm/s的速度移动,点Q 点从B点出发沿BA边向A点以5cm/s速度移动.P、Q两点同时出发,它们移动的时间为t秒钟.(1)你能用t表示BP和BQ的长度吗?请你表示出来.(2)请问几秒钟后,△PBQ为等边三角形?(3)若P、Q两点分别从C、B两点同时出发,并且都按顺时针方向沿△ABC三边运动,请问经过几秒钟后点P与点Q第一次在△ABC的哪条边上相遇?【拓展提高】1..两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE2.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.3. 已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证12DEF CEF ABCS S S+=△△△.当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.4. 如图,AC为正方形ABCD的一条对角线,点E为DA边延长线上的一点,连接BE,在BE上取一点F,使BF=BC,过点B做BK⊥BE与B,交AC于点K,连接CF,交AB于点H,交BK于点G.(1)求证:BH=BG;(2)求证:BE=BG+AE.5.正方形四条边都相等,四个角都是90°.如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,点E是直线MN上一点,以AE为边在直线MN的上方作正方形AEFG.(1)如图1,当点E在线段BC上(不与点B、C重合)时:①判断△ADG与△ABE是否全等,并说明理由;②过点F作FH⊥MN,垂足为点H,观察并猜测线段BE与线段CH的数量关系,并说明理由;(2)如图2,当点E在射线CN上(不与点C重合)时:①判断△ADG与△ABE是否全等,不需说明理由;②过点F作FH⊥MN,垂足为点H,已知GD=4,求△CFH的面积.6.如图1,若△ABC和△ADE为等边三角形,M、N分别为EB、CD的中点,易证:CD=BE,△AMN是等边三角形.(1)当把△ADE绕点A旋转到图2的位置时,CD=BE是否依然成立?若成立请证明,若不成立请说明理由;(2)当△ADE绕点A旋转到图3位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.7.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧做△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=_________度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.8.思考与推理如图,在四边形ABCD中,AB=AD=6cm,CB=CD,AB⊥BC,CD⊥AD,∠BCD=120°. ∠PCQ=60°,两边分别交线段AB、AD于点P、Q,把△PBC绕点C顺时针旋转120°得到△MDC.请在图中找出一对全等的三角形并加以证明(△PBC与△MDC除外).探究与应用在上边的条件下,若∠PCQ绕顶点C在∠BCD内转动,两边始终与线段AB、AD相较于点P、Q,试探究在转动过程中△APQ的周长是否变化,若不变,求它的周长;若变化,请说明理由.9.问题情境:如图1,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);特例探究:如图2,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;归纳证明:如图3,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;拓展应用:如图4,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为______________.10.如图①,已知△ABC是等腰直角三角形,∠BAC=90°,BC=2,AD是BC边上的高.作正方形DEFG,使点A、C分别在DG和DE上,且DE=BC,且连接AE、BG.(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论;(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,或小于90°),DG、DE分别交AB、AC于点M和N(如图②),则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.11.如下图,已知正方形ABCD中,边长为10厘米,点E在AB边上,BE=6厘米.(1)如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D 点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPE与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动,求经过多长时间点P与点Q第一次在正方形ABCD边上的何处相遇?12.(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(3)深入探究:Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC 上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?并证明你探究的结论.Ⅱ.如图④,当动点D在等边三角形边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.。
A B CDE F 个性化辅导授课案教师: 学生: 日期: 星期: 时段:课题全等三角形的动点问题分析讲解学情分析 .动点一般在中考都是压轴题,步骤不重要,重要的是思路。
动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论 教学目标 考点分析思路:1.利用图形想到三角形全等,相似及三角函数2.分析题目,了解有几个动点,动点的路程,速度(动点怎么动)3.结合图形和题目,得出已知或能间接求出的数据4.分情况讨论,把每种可能情况列出来,不要漏5.动点一般在中考都是压轴题,步骤不重要,重要的是思路6.动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论教学 重点 难点 利用熟悉的知识点解决陌生的问题 教学方法教师引导,自主思考教学过程 三角形与动点问题1、如图,在等腰△ACB 中,AC =BC =5,AB =8,D 为底边AB 上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E ,F ,则DE +DF = .2、在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值).3、如图,将边长为1的等边△OAP按图示方式,沿x轴正方向连续翻转2019次,点P依次落在点P1,P2,P3,P4,…,P2019的位置.试写出P1,P3,P50,P2019的坐标.4、如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF(2)试证明△DFE是等腰直角三角形5、如图,在等边ABC∆的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1各单位的速度油A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D,E处,请问(1)在爬行过程中,CD和BE始终相等吗?(2)若蜗牛沿着AB和CA的延长线爬行,EB与CD交于点Q,其他条件不变,如图(2)所示,,求证:︒CQE=∠60(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,则爬行过程中,DF始终等于EF是否正确6、如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN 是等边三角形.(1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;(2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.图1 图2 图37、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?8、如图,在平面直角坐标系中,矩形AOBC 在第一象限内,E 是边OB 上的动点(不包括端点),作∠AEF = 90︒,使EF 交矩形的外角平分线BF 于点F ,设C (m ,n ).(1)若m = n 时,如图,求证:EF = AE ;(2)若m ≠n 时,如图,试问边OB 上是否还存在点E ,使得EF = AE ?若存在,请求出点E 的坐标;若不存在,请说明理由.xOE BAyCFxOE BAyCFx O EBAyCFAQCDBP9.在ABC △中,AB AC =,点D 是直线BC 上一点(不与B C 、重合),以AD 为一边在AD 的右.侧.作ADE △,使AD AE DAE BAC =∠=∠,,连接CE . (1)如图1,当点D 在线段BC 上,如果90BAC ∠=°,则BCE ∠= 度; (2)设BAC α∠=,BCE β∠=.①如图2,当点D 在线段BC 上移动,则αβ,之间有怎样的数量关系?请说明理由; ②当点D 在直线BC 上移动,则αβ,之间有怎样的数量关系?请直接写出你的结论.10.如图, 直线l 与x 轴、y 轴分别交于点) 0,8 ( M ,点) 6,0 ( N .点P 从点N 出发,以每秒1个单位长度的速度沿N →O 方向运动,点Q从点O 出发,以每秒2个单位长度的速度沿O →M 的方向运动.已知点QP 、同时出发,当点Q到达点M 时,QP 、两点同时停止运动, 设运动时间为t 秒.(1)设四边形...MNPQ 的面积为S ,求S 关于t 的函数关系式,并写出t 的取值范围.(2)当t 为何值时,QP 与l 平行?AEEAC CD D BB图1 图2 AA备用图B CB C 备用图l QOM N xy PA BC DEF G H KMN12345678A CQBP教学反思:三、本次课后作业:1、如图,AC 为正方形ABCD 的一条对角线,点E 为DA 边延长线上的一点,连接BE ,在BE 上取一点F ,使BF BC =,过点B 作BK BE ⊥于B ,交AC 于点K ,连接CF ,交AB 于点H ,交BK 于点G . (1)求证:BG BH =;(2)求证:AE BG BE +=2、已知:如图,△ABC 是边长3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的速度都是1cm/s ,当点P 到达点B 时,P 、Q 两点停止运动.设点P 的运动时间为t (s ),解答下列问题: (1)当t 为何值时,△PBQ 是直角三角形? (2)设四边形APQC 的面积为y (cm 2),求y 与t 的关系式;是否存在某一时刻t ,使四边形APQC 的面积是△ABC 面积的三分之二?如果存在,求出相应的t 值;不存在,说明理由;3、已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.(1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积; (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.4、如图,在Rt △ABC 中,∠C =90°,AC =12,BC =16,动点P 从点A 出发沿AC 边向点C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ 关于直线PQ 对称的图形是△PDQ .设运动时间为t (秒). (1)设四边形PCQD 的面积为y ,求y 与t 的函数关系式; (2)t 为何值时,四边形PQBA 是梯形?C PQB AMN CPQBA M N CPQBA M NEDBCAQP (3)是否存在时刻t ,使得PD ∥AB ?若存在,求出t 的值;若不存在,请说明理由;(4)通过观察、画图或折纸等方法,猜想是否存在时刻t ,使得PD ⊥AB ?若存在,请估计t 的值在括号中的哪个时间段内(0≤t ≤1;1<t ≤2;2<t ≤3;3<t ≤4);若不存在,请简要说明理由.5、在ABC ∆中,,4,5,D BC CD 3cm,C Rt AC cm BC cm ∠=∠==点在上,且以=现有两个动点P 、Q 分别从点A 和点B 同时出发,其中点P 以1cm/s 的速度,沿AC 向终点C 移动;点Q 以1.25cm/s 的速度沿BC 向终点C 移动。
过点P 作PE ∥BC 交AD 于点E ,连结EQ 。
设动点运动时间为x 秒。
(1)用含x 的代数式表示AE 、DE 的长度;(2)当点Q 在BD (不包括点B 、D )上移动时,设EDQ ∆的面积为2()y cm ,求y 与月份x 的函数关系式,并写出自变量x 的取值范围; (3)当x 为何值时,EDQ ∆为直角三角形。
6. 如图,在等腰梯形ABCD 中,AB ∥DC ,cm BC AD 5==,AB =12 cm,CD =6cm , 点P 从A 开始沿AB 边向B 以每秒3cm 的速度移动,点Q 从C 开始沿CD 边向D 以每秒1cm 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达终点时运动停止。
设运动时间为t 秒。
(1)求证:当t =23时,四边形APQD 是平行四边形;(2)PQ 是否可能平分对角线BD ?若能,求出当t 为何值时PQ 平分BD ;若不能,请说明理由;AP C Q B D(3)若△DPQ 是以PQ 为腰的等腰三角形,求t 的值。
ABCDQP。