高中数学竞赛训练题及答案
- 格式:doc
- 大小:167.00 KB
- 文档页数:4
高中数学竞赛赛题精选(带答案)高中数学竞赛是中学生竞赛中最重要的一部分,它不仅需要智力,还需要充分发挥数学能力和思维能力。
以下是一些高中数学竞赛赛题的精选和解答。
1. 设$a_n=x^n$+5的前n项和为S(n),求S(n+1)-S(n)的值。
解:S(n+1)-S(n)=(x^n+1+5)-(x^n+5)=(x^n+1)-(x^n)=x^n(x-1)。
由于$a_n=x^n+5$,所以S(n)=a_0+a_1+...+a_n=(x^0+5)+(x^1+5)+...+(x^n+5)=(x^0+x^1+...+x^n)+5(n+1),因此S(n+1)-S(n)=x^n(x-1)=(S(n+1)-S(n)-5(n+2))/(x^0+x^1+...+x^n)。
2. 已知函数f(x)=sin(x)+cos(x),0≤x≤π/2,求f(x)在[0,π/4]上的最小值。
解:f(x)=sin(x)+cos(x)=√2sin(x+π/4),当0≤x≤π/4时,x+π/4≤π/2,sin(x+π/4)不小于0,因此f(x)的最小值由sin(x+π/4)的最小值决定。
sin(x+π/4)的最小值为-√2/2,因此f(x)的最小值为-1。
3. 已知正整数n,设P(n)是n的质因数分解中所有质因数加起来的和,Q(n)是n的数字分解中所有数位加起来的和。
给定P(n)+Q(n)=n,求最小的n。
解:P(n)的范围是2到9×log_10n之间,因此可以枚举P(n)和Q(n),判断它们之和是否等于n。
当P(n)取到最小值2时,Q(n)的最大值为9log_10n,因此n的最小值为11。
4. 已知函数f(x)=2cos^2x-3cosx+1,x∈[0,2π],求f(x)的最小值。
解:由于f(x)=2cos^2x-3cosx+1=2(cosx-1/2)^2-1/2,因此f(x)的最小值为-1/2,且取到最小值的x为0或2π。
5. 已知正整数n,求使得3^n的末2位是9的最小正整数n。
数学竞赛高一试题及答案一、选择题(每题5分,共10分)1. 已知函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(-1) \)的值。
A. 4B. 6C. 8D. 102. 一个圆的半径为5,求其面积。
A. 25πB. 50πC. 75πD. 100π二、填空题(每题5分,共10分)3. 已知\( a \)、\( b \)、\( c \)为三角形的三边长,且\( a^2 + b^2 = c^2 \),这个三角形是________。
4. 将\( 1 \)、\( 2 \)、\( 3 \)三个数字排列成三位数,所有可能的组合数是________。
三、解答题(每题15分,共30分)5. 已知数列\( \{a_n\} \)满足\( a_1 = 1 \),\( a_{n+1} = a_n + 2n \),求\( a_5 \)。
6. 一个直角三角形的斜边长为\( 5 \),一条直角边长为\( 3 \),求另一条直角边长。
四、证明题(每题15分,共30分)7. 证明:对于任意正整数\( n \),\( 1^3 + 2^3 + ... + n^3 = (1 + 2 + ... + n)^2 \)。
8. 证明:若\( a \)、\( b \)、\( c \)是三角形的三边长,且\( a^2 + b^2 = c^2 \),则这个三角形是直角三角形。
五、综合题(每题15分,共20分)9. 一个工厂计划在一年内生产\( x \)个产品,已知生产每个产品的成本是\( 10 \)元,销售每个产品的价格是\( 20 \)元。
如果工厂希望获得的利润不少于\( 10000 \)元,求\( x \)的最小值。
10. 已知函数\( g(x) = x^3 - 6x^2 + 11x - 6 \),求\( g(x) \)的极值点。
答案:一、选择题1. 答案:B. 6(计算方法:\( f(-1) = 2(-1)^2 - 3(-1) + 1 = 2 + 3 + 1 = 6 \))2. 答案:B. 50π(计算方法:圆面积公式为\( πr^2 \),代入\( r = 5 \))二、填空题3. 答案:直角三角形4. 答案:6(排列组合方法:\( 3 \times 2 \times 1 = 6 \))三、解答题5. 答案:\( a_5 = 1 + 2(1) + 2(2) + 2(3) + 2(4) = 1 + 2 + 4 +6 + 8 = 21 \)6. 答案:根据勾股定理,另一条直角边长为\( 4 \)(计算方法:\( 5^2 - 3^2 = 4^2 \))四、证明题7. 证明:根据等差数列求和公式,\( 1 + 2 + ... + n =\frac{n(n+1)}{2} \),立方后得到\( \left(\frac{n(n+1)}{2}\right)^2 \),展开后即为\( 1^3 + 2^3 + ... + n^3 \)。
高中数学竞赛试题及答案1. 已知函数 \( f(x) = x^3 - 3x^2 + 2x \),求 \( f(x) \) 在区间 \([0, 3]\) 上的最大值和最小值。
答案:首先求导数 \( f'(x) = 3x^2 - 6x + 2 \),令 \( f'(x) = 0 \) 得 \( x = 1 \) 或 \( x = \frac{2}{3} \)。
计算 \( f(0) = 0 \),\( f(1) = 0 \),\( f(\frac{2}{3}) = \frac{2}{27} \),\( f(3) = 6 \)。
因此,最大值为 6,最小值为 0。
2. 计算极限 \( \lim_{x \to 0} \frac{e^x - \cos x}{x^2} \)。
答案:使用洛必达法则,首先求导得到 \( \frac{e^x + \sinx}{2x} \),再次求导得到 \( \frac{e^x + \cos x}{2} \)。
当 \( x \to 0 \) 时,极限为 \( \frac{1}{2} \)。
3. 证明不等式 \( \frac{1}{n+1} + \frac{1}{n+2} + \cdots +\frac{1}{2n} \geq \frac{1}{2} \ln 2 \) 对所有正整数 \( n \) 成立。
答案:利用调和级数的性质,将不等式左边的和表示为\( \sum_{k=1}^{n} \frac{1}{n+k} \)。
通过放缩和积分估计,可以证明该不等式成立。
4. 已知三角形 \( ABC \) 的内角 \( A, B, C \) 满足 \( A + B +C = \pi \),且 \( \sin A + \sin B + \sin C =\frac{3\sqrt{3}}{2} \),求 \( \cos A + \cos B + \cos C \) 的值。
答案:利用三角恒等式 \( \sin^2 x + \cos^2 x = 1 \) 和\( \sin x \) 的和为 \( \frac{3\sqrt{3}}{2} \),通过平方和展开,可以求得 \( \cos A + \cos B + \cos C = -\frac{3}{2} \)。
1、设a,b,c为正实数,且满足a+b+c=1,则1/(3a+2)+1/(3b+2)+1/(3c+2)的最小值为多少?A. 1B. 3/2C. 2D. 5/2解析:本题主要考察不等式的应用及求解最值问题。
通过运用柯西不等式,我们可以推导出1/(3a+2)+1/(3b+2)+1/(3c+2)的最小值。
经过计算,当且仅当a=b=c=1/3时,取得最小值1。
(答案)A2、在三角形ABC中,角A,B,C所对的边分别为a,b,c,若a=√3,b=3,且三角形ABC的面积为(3√3)/4,则c的值为多少?A. 1B. 2C. √7D. √13解析:本题主要考察三角形的面积公式及余弦定理。
根据三角形面积公式S=(1/2)absinC,我们可以求出sinC的值,再利用余弦定理c²=a²+b²-2abcosC,结合sin²C+cos²C=1,可以求出c的值。
经过计算,c=√7。
(答案)C3、设正整数n满足:对于任意的正整数k(1≤k≤n),n都能整除k⁵-k,则n的最大值为多少?A. 60B. 120C. 240D. 360解析:本题主要考察整除的性质及数论知识。
我们需要找到一个正整数n,使得对于任意的正整数k(1≤k≤n),n都能整除k⁵-k。
通过分解k⁵-k,我们可以发现其包含因子2, 3, 4,5等,结合这些因子的性质,我们可以求出n的最大值。
经过推导,n的最大值为120。
(答案)B4、已知数列{an}满足a₁=1,且对于任意的n∈N*,都有aₙ₊₁=aₙ+n+1,则a₁₀的值为多少?A. 46B. 50C. 55D. 66解析:本题主要考察数列的递推关系及求和公式。
根据题目给出的递推关系aₙ₊₁=aₙ+n+1,我们可以逐步求出数列的项,或者通过求和的方式直接求出a₁₀。
经过计算,a₁₀=55。
(答案)C5、在平面直角坐标系xOy中,设点A(1,0),B(0,1),C(2,3),则三角形ABC外接圆的圆心到原点O的距离为多少?A. √2/2B. √5/2C. √10/2D. √13/2解析:本题主要考察三角形外接圆的性质及距离公式。
高中数学竞赛赛题精选一、选择题(共12题)1.定义在R 上的函数()y f x =的值域为[m,n ],则)1(-=x f y 的值域为( ) A .[m,n ]B .[m-1,n-1]C .[)1(),1(--n f m f ]D .无法确定解:当函数的图像左右平移时,不改变函数的值域.故应选A.2.设等差数列{n a }满足13853a a =,且n S a ,01>为其前n 项之和,则)(*∈N n S n 中最大的是( ) A. 10S B. 11S C. 20S D. 21S 解:设等差数列的公差为d,由题意知3(1a +7d)=5(1a +12d),即d=-3921a , ∴n a = 1a +( n-1)d= 1a -3921a (n-1)= 1a (3941-392n),欲使)(*∈N n S n 最大,只须n a ≥0,即n ≤20.故应选C.3.方程log 2x=3cosx 共有( )组解.A .1B .2C .3D .4解:画出函数y=log 2x 和y=3cosx 的图像,研究其交点情况可知共有3组解.应选C .4.已知关于x 的一元二次方程()02122=-+-+a x a x 的一个根比1大,另一个根比1小,则()A.11<<-a B.1-<a 或1>aC.12<<-aD.2-<a 或1>a解:令f(x)= ()2122-+-+a x a x ,其图像开口向上,由题意知f(1)<0,即 ()211122-+⨯-+a a <0,整理得022<-+a a ,解之得12<<-a ,应选C .5.已知βα,为锐角,,cos ,sin y x ==βα53)cos(-=β+α,则y 与x 的函数关系为( ) A .1)x 53( x 54x 153y 2<<+--= B .1)x (0 x 54x 153y 2<<+--=C .)53x (0 x 54x 153y 2<<---= D .1)x (0 x 54x 153y 2<<---= []xx y 54153sin )sin(cos )cos()(cos cos 2+-⋅-=⋅+++=-+==αβααβααβαβ解: 而)1,0(∈y 15415302<+-⋅-<∴x x , 得)1,53(∈x .故应选A. 6.函数sin y x =的定义域为[],a b ,值域为11,2⎡⎤-⎢⎥⎣⎦,则b a-的最大值是( )A. πB. π2C.34πD. 35π解:如右图,要使函数sin y x =在定义域[],a b 上,值域为11,2⎡⎤-⎢⎥⎣⎦,则b a -的最大值是74()663πππ--=.故应选C. 7.设锐角使关于x 的方程x 2+4x cos+cot =0有重根,则的弧度数为 ( )A .6B .12或512C .6或512D .12解:由方程有重根,故14=4cos 2-cot =0,∵ 0<<2,2sin2=1,=12或512.选B . 8.已知M={(x ,y )|x 2+2y 2=3},N={(x ,y )|y=mx+b }.若对于所有的m ∈R ,均有M ∩N ,则b 的取值范围是 ( )A .[-62,62] B .(-62,62) C .(-233,233] D .[-233,233] 解:点(0,b )在椭圆内或椭圆上,2b 2≤3,b ∈[-62,62].选A .9.不等式log 2x -1+12log 12x 3+2>0的解集为A .[2,3)B .(2,3]C .[2,4)D .(2,4] 解:令log 2x=t ≥1时,t -1>32t -2.t ∈[1,2),x ∈[2,4),选C .10.设点O 在ABC 的内部,且有+2+3=,则ABC 的面积与AOC 的面积的比为( )A .2B .32C .3D .53解:如图,设AOC=S ,则OC 1D=3S ,OB 1D=OB 1C 1=3S ,AOB=OBD=1.5S .OBC=0.5S ,ABC=3S .选C .11.设三位数n=,若以a ,b ,c 为三条边长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( )A .45个B .81个C .165个D .216个 解:⑴等边三角形共9个;⑵ 等腰但不等边三角形:取两个不同数码(设为a ,b ),有36种取法,以小数为底时总能构成等腰三角形,而以大数为底时,b <a <2b .a=9或8时,b=4,3,2,1,(8种);a=7,6时,b=3,2,1(6种);a=5,4时,b=2,1(4种);a=3,2时,b=1(2种),共有20种不能取的值.共有236-20=52种方法,而每取一组数,可有3种方法构成三位数,故共有523=156个三位数即可取156+9=165种数.选C .12.顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且PA=4,C 为PA 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长为 ( )A .53 B .253 C .63 D .263解:AB ⊥OB ,PB ⊥AB ,AB ⊥面POB ,面PAB ⊥面POB .OH ⊥PB ,OH ⊥面PAB ,OH ⊥HC ,OH ⊥PC ,又,PC ⊥OC ,PC ⊥面OCH .PC 是三棱锥P -OCH 的高.PC=OC=2.而OCH 的面积在OH=HC=2时取得最大值(斜边=2的直角三角形).当OH=2时,由PO=22,知∠OPB=30,OB=PO tan30=263.又解:连线如图,由C 为PA 中点,故V O -PBC =12V B -AOP ,S B 11OABCABPO H C而V O -PHC ∶V O -PBC =PH PB =PO 2PB2(PO 2=PH ·PB ).记PO=OA=22=R ,∠AOB=,则V P —AOB =16R 3sin cos =112R 3sin2,V B -PCO =124R 3sin2. PO 2PB 2=R 2R 2+R 2cos 2=11+cos 2=23+cos2.V O -PHC =sin23+cos2112R 3. ∴ 令y=sin23+cos2,y=2cos2(3+cos2)-(-2sin2)sin2(3+cos2)2=0,得cos2=-13,cos =33, ∴ OB=263,选D .二、填空题(共10题)13. 设n S 为等差数列{}n a 的前n 项和,若510S =,105S =-,则公差为 解:设等差数列{}n a 的首项为1a ,公差为d .由题设得⎩⎨⎧-=+=+,,545101010511d a d a 即 ⎩⎨⎧-=+=+,,1922211d a d a 解之得1-=d .14. 设()log ()a f x x b =+(0a >且1)a ≠的图象经过点(21),,它的反函数的图象经过点(28),,则b a +等于 4 .解:由题设知 log (2)1log (8)2a a b b +=⎧⎨+=⎩,, 化简得 2(2)(8).b a b a +=⎧⎨+=⎩,解之得 1131a b =⎧⎨=⎩,; 2224.a b =-⎧⎨=-⎩,(舍去). 故a b +等于4.15.已知函数()y f x =的图象如图,则满足22221()(lg(620))021x x f f x x x x --⋅-+≤-+的 x 的取值范围为 [21)x ∈-, .解: 因为 ()()22lg 620lg (3)11lg111x x x -+=-+≥>,所以()2lg 6200x x -+<. 于是,由图象可知,2111x x +≤-,即 201x x +≤-,解得 21x -≤<. 故x 的取值范围为 [21)x ∈-,.16.圆锥曲线0|3|102622=+--+-++y x y x y x 的离心率是 2 .解:原式变形为|3|)1()3(22+-=-++y x y x ,即=2|3|2+-y x .所以动点),(y x 到定点(31)-,的距离与它到直线03=+-y x 的距离之比为2.故此动点轨迹为双曲线,离心率为2.17.在ABC ∆中,已知3tan =B ,322sin =C ,63=AC ,则ABC ∆的面积为ABC S ∆=解:在ABC ∆中,由3tan =B 得︒=60B .由正弦定理得sin 8sin AC CAB B⋅==.因为︒>60322arcsin,所以角C 可取锐角或钝角,从而31cos ±=C .sin sin()sin cos cos sin A B C B C B C =+=+=sin 2ABC AC ABS A ∆⋅== 18. 设命题P :2a a <,命题Q : 对任何x ∈R ,都有2410x ax ++>. 命题P 与Q 中有 且仅有一个成立,则实数a 的取值范围是 021≤<-a 或 121<≤a . 解:由a a <2得10<<a .由0142>++ax x 对于任何x ∈R 成立,得04162<-=∆a ,即2121<<-a .因为命题P 、Q 有且仅有一个成立,故实数 a 的取值范围是 021≤<-a 或 121<≤a .19.22cos 75cos 15cos75cos15++⋅的值是 . 解:22cos 75cos 15cos75cos15++⋅ =cos²75°+sin²75°+sin15°·cos15° =1+°30sin 21=5420.定义在R 上的函数()f x 满足(1)2f =,且对任意的x R ∈,都有1()2f x '<,则不等式22log 3(log )2x f x +>的解集为 . 解:令g ﹙x ﹚=2f ﹙x ﹚-x ,由f '(x ) <1/2得,2f '(x ) -1<0,即'g ﹙x ﹚<0,g(x)在R 上为减函数,且g(1)=2f(1)-1=3,不等式f(log2X)>2log 2X化为2f(log2X)—log2X≥3,即g(log2X)>g(1),由g(x)的单调性得:log2X<1,解得,0<x<2. 21.圆O 的方程为221x y +=,(1,0)A ,在圆O 上取一个动点B ,设点P 满足()AP OB R λλ=∈且1AP AB ⋅=.则P 点的轨迹方程为 .解:设P(x,y), AB =λOB (λϵR)得B(k(x —1),ky),(λ=k1)。
数学竞赛试题及答案高中生试题一:代数问题题目:已知\( a, b \) 是方程 \( x^2 + 5x + 6 = 0 \) 的两个实根,求 \( a^2 + 5a + 6 \) 的值。
解答:根据韦达定理,对于方程 \( x^2 + bx + c = 0 \),其根\( a \) 和 \( b \) 满足 \( a + b = -b \) 和 \( ab = c \)。
因此,对于给定的方程 \( x^2 + 5x + 6 = 0 \),我们有 \( a + b =-5 \) 和 \( ab = 6 \)。
由于 \( a \) 是方程的一个根,我们可以将 \( a \) 代入方程得到 \( a^2 + 5a + 6 = 0 \)。
所以 \( a^2 + 5a + 6 = 0 \)。
试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为 3 厘米和 4 厘米,求斜边的长度。
解答:根据勾股定理,直角三角形的斜边长度 \( c \) 可以通过直角边 \( a \) 和 \( b \) 计算得出,公式为 \( c = \sqrt{a^2 + b^2} \)。
将给定的边长代入公式,我们得到 \( c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \) 厘米。
试题三:数列问题题目:一个等差数列的首项 \( a_1 = 3 \),公差 \( d = 2 \),求第 10 项 \( a_{10} \) 的值。
解答:等差数列的通项公式为 \( a_n = a_1 + (n - 1)d \),其中\( n \) 是项数。
将给定的值代入公式,我们得到 \( a_{10} = 3 + (10 - 1) \times 2 = 3 + 9 \times 2 = 3 + 18 = 21 \)。
试题四:组合问题题目:从 10 个不同的球中选取 5 个球,求不同的选取方式有多少种。
竞赛数学高中试题及答案试题一:多项式问题题目:已知多项式 \( P(x) = x^3 - 3x^2 + 2x - 5 \),求 \( P(2) \) 的值。
解答:将 \( x = 2 \) 代入多项式 \( P(x) \) 中,得到:\[ P(2) = 2^3 - 3 \times 2^2 + 2 \times 2 - 5 = 8 - 12 + 4 -5 = -5 \]试题二:几何问题题目:在直角三角形 ABC 中,角 C 是直角,若 \( AB = 10 \) 且\( AC = 6 \),求斜边 BC 的长度。
解答:根据勾股定理,直角三角形的斜边 \( BC \) 可以通过以下公式计算:\[ BC = \sqrt{AB^2 - AC^2} = \sqrt{10^2 - 6^2} = \sqrt{100 - 36} = \sqrt{64} = 8 \]试题三:数列问题题目:给定数列 \( a_n = 2n - 3 \),求数列的前 5 项。
解答:根据数列公式 \( a_n = 2n - 3 \),我们可以计算出前 5 项:\[ a_1 = 2 \times 1 - 3 = -1 \]\[ a_2 = 2 \times 2 - 3 = 1 \]\[ a_3 = 2 \times 3 - 3 = 3 \]\[ a_4 = 2 \times 4 - 3 = 5 \]\[ a_5 = 2 \times 5 - 3 = 7 \]数列的前 5 项为:-1, 1, 3, 5, 7。
试题四:概率问题题目:一个袋子里有 5 个红球和 3 个蓝球,随机抽取 2 个球,求抽到一个红球和一个蓝球的概率。
解答:首先计算总的可能组合数,即从 8 个球中抽取 2 个球的组合数:\[ \text{总组合数} = \binom{8}{2} = \frac{8 \times 7}{2} = 28 \]然后计算抽到一个红球和一个蓝球的组合数:\[ \text{有利组合数} = \binom{5}{1} \times \binom{3}{1} = 5 \times 3 = 15 \]所以,抽到一个红球和一个蓝球的概率为:\[ P = \frac{\text{有利组合数}}{\text{总组合数}} =\frac{15}{28} \]试题五:函数问题题目:若函数 \( f(x) = x^2 - 4x + 4 \),求 \( f(x) \) 的最小值。
2024年全国中学生奥林匹克数学竞赛浙江赛区初赛试题本卷共15道题目,12道填空题,3道解答题,所有答案填写在答题纸上,满分150分一、填空题(每小题8分,共计96分)1.设集合10,21x A xx ⎧−⎫=≤⎨⎬−⎩⎭集合2{20}B x x x m =++≤。
若A B ⊆,则实数m 的取值范围为 。
2.设函数{}{}:1,2,32,3,4f → 满足 ()()1()ff x f x −=,则这样的函数有_______个。
3.函数22sin sin 1sin 1x x y x ++=+的最大值与最小值之积为 。
4.已知数列{}n x满足:11,12n x x x n +==≥,则通项n x =__________。
5 .已知四面体A BCD −的外接球半径为1,1,60BC BDC =∠=,则球心到平面BDC 的距离为______________。
6.已知复数z 满足24510(1)1zz =−=,则z =__________________。
7.已知平面上单位向量,a b 垂直,c 为任意单位向量,且存在(0,1)t ∈,使得向量(1)a t b +−与向量c a −垂直,则a b c +−的最小值为__________________________。
8. 若对所有大于2024的正整数n ,成立202420240, ii n i i na C a ==∈∑,则12024a a +=_________。
9.设实数,,(0,2]a b c ∈,且3b a ≥或43a b +≤,则max{,,42}b a c b c −−−的最小值为 ___ __ __。
10.在平面直角坐标系xOy 上,椭圆E 的方程为221124x y +=,1F 为E 的左焦点;圆C 的方程为222())x a y b r −+−=( ,A 为C 的圆心。
直线l 与椭圆E 和圆C 相切于同一点(3,1)P 。
则当1OAF ∠最大时,实数r =_____________________。
高中数学竞赛试题附详细答案一选择题(每题5分,满分60分)1. 如果a,b,c 都是实数,那么P ∶ac<0,是q ∶关于x 的方程ax 2+bx+c=0有一个正根和一个负根的( )(A )必要而不充分条件 (B )充要条件(C )充分而不必要条件 (D )既不充分也不必要条件2. 某种放射性元素,100年后只剩原来质量的一半,现有这种元素1克,3年后剩下( )。
(A )1005.03⨯克 (B )(1-0.5%)3克 (C )0.925克 (D )100125.0克 3. 由甲城市到乙城市t 分钟的电话费由函数g (t )=1.06×(0.75[t ]+1)给出,其中t >0,[t ]表示大于或等于t 的最小整数,则从甲城市到乙城市5.5分钟的电话费为( )。
(A )5.83元 (B )5.25元 (C )5.56元 (D )5.04元4. 已知函数>0,则的值A 、一定大于零B 、一定小于零C 、等于零D 、正负都有可能 5. 已知数列3,7,11,15,…则113是它的( ) (A )第23项 (B )第24项 (C )第19项 (D )第25项6. 已知等差数列}{n a 的公差不为零,}{n a 中的部分项 ,,,,,321n k k k k a a a a 构成等比数列,其中,17,5,1321===k k k 则n k k k k ++++ 321等于( ) (A) 13--n n(B) 13-+n n(C) 13+-n n(D)都不对 7. 已知函数x b x a x f cos sin )(-=(a 、b 为常数,0≠a ,R x ∈)在4π=x 处取得最小值,则函数)43(x f y -=π是( ) A .偶函数且它的图象关于点)0,(π对称 B .偶函数且它的图象关于点)0,23(π对称 C .奇函数且它的图象关于点)0,23(π对称 D .奇函数且它的图象关于点)0,(π对称 8. 如果A A tan 1tan 1+-= 4+5,那么cot (A +4π)的值等于 ( )A -4-5B 4+5C -541+ D541+9. 已知︱︱=1,︱︱=3,∙=0,点C 在∠AOB 内,且∠AOC =30°,设=m +n (m 、n ∈R ),则nm等于A.31 B.3 C.33 D.3 10. 等边△ABC 的边长为,AD 是BC 边上的高,将△ABD 沿AD 折起,使之与△ACD 所在平面成1200的二面角,这时A 点到BC 的距离是A 、B 、C 、3D 、211. 抛两个各面上分别标有1,2,3,4,5,6的均匀的正方体玩具,“向上的两个数之和为3”的概率是( )A .31 B .61 C .361 D .181 12. 对于直角坐标平面内的任意两点A (x 1,y 1)、B (x 2,y 2),定义它们之间的一种“距离”:‖AB ‖=︱x 1-x 2︱+︱y 1-y 2︱.给出下列三个命题: ①若点C 在线段AB 上,则‖AC ‖+‖CB ‖=‖AB ‖;②在△ABC 中,若∠C =90°,则‖AC ‖2+‖CB ‖2=‖AB ‖2; ③在△ABC 中,‖AC ‖+‖CB ‖>‖AB ‖. 其中真命题的个数为A.0B.1C.2D.3 二填空题:(每题5分,满分30分)13棱锥的底面面积为150cm 2,平行于底面的截面面积为54cm 2底面和截面距离为14cm,则这个棱锥高为_________14函数y=x -2+的最小值是________;最大值是________.15. 若数列{a n }由a 1=2,a n+1=a n +2n(n ≥1)确定,求通项公式a n ==________.16. 有一公用电话亭,在观察使用这个电话的人的流量时,设在某一个时刻,有n 个人正在使用电话或等待使用的概率为)(n P ,且)(n P 与时刻t 无关,统计得到⎪⎩⎪⎨⎧≥≤≤⋅=6,051,)0()21()(n n P n P n,那么在某一时刻这个公用电话亭里一个人也没有的概率P (0)的值是 .17. 定义在N +上的函数f(x),满足f (1 )=1,且f(n+1)=⎪⎩⎪⎨⎧.),(,),(21为奇数 为偶数n n f n n f 则f (22) = .18. 定义在R 上的函数)(x f y =,它同时满足具有下述性质: ①对任何);()(33x f x f R x =∈均有②对任何).()(,,212121x f x f x x R x x ≠≠∈均有则=-++)1()1()0(f f f .三解答题(每题15分,满分60分)19. 三角形ABC 中,三个内角A 、B 、C 的对边分别为,若,求角C 的大小。
2024年上海市高三数学竞赛试题2024年3月24日上午9:30〜11:30一、填空题(第1〜4题每小题7分,第5〜8题每小题8分,共60分)1.若正实数Q,b满足Ql=2a+b,贝I]q+2。
的最小值是.192.现有甲、乙两人进行羽毛球比赛,已知每局比赛甲胜的概率为乙胜的概率为注规定谁先胜3局谁赢得胜利,则甲赢得胜利的概率为.(用最简分数表示答案)3.计算「2|「4「6I I「2024、2,厂1厂3«「5「7<(厂2023、2_(口2024一口2024十口2024—^2024^2024)十(口2024—>2024十^2024—口2024^2024;—4.已知~a.T,~c是同一平面上的3个向量,满足|切=3,\~b\=2\/2,~a^~b=-6,且向量~c-~a与~c-~b的夹角为p则\~c\的最大值为.5.若关于z的方程2”+1-防邪-1=0存在一个模为1的虚根,则正整数n的最小值为6.一个顶点为P、底面中心为O的圆锥体积为1,若正四棱锥。
— ABCD内接于该圆锥,平面ABCD与该圆锥底面平行,A,B,C,D这4个点都在圆锥的侧面上,则正四棱锥O一AOCD的体积的最大值是•7.已知函数f(x)=arr2+Inc有两个零点,贝0实数Q的取值范围是.8.若3个整数Q,b,c满足a?+户+c?+3V Qb+3b+3c,则这样的有序整数组(fl,6,c)共有组.二、解答题(每小题15分,共60分)9.在平面直角坐标系明中,已知椭圆「:乎+/=1,4、B是椭圆的左、右顶点.点C是椭圆「内(包括边界)的一个动点,若动点P使得PB PC=0.求|OP|的最大值.10.求所有正整数n(n>3),满足正71边形能内接于平面直角坐标系xOy中椭圆片+%=1(q>b>0).11.数列{。
曷满足:Q i=Q2=1,a n+2=a n+1+a n(打=1,2,•.•),M是大于1的正整数,试证明:在数列Q3,Q4,Q5,…中存在相邻的两项,它们除以M余数相同.12.将正整数1,2,.・・,100填入10X10方格表中,每个小方格恰好填1个数,要求每行从左到右10个数依次递减,记第2行的10个数之和为&(1=1,2,...,10).设nc{l,2,...,10}满足:存在一种填法,使得$,,,•••,Sio均大于第n列上的10个数之和,求n的最小值.2024年上海市高三数学竞赛试题解析一、填空题1.【解析】解:整理得上注=1,因此"2方=(〃+2方)(上+2)=5+2(&0)29,等号成立当且仅当a b a b b a〃=8=3时取得,则最小值是9.2.【解析】解:甲以3:0获胜的税率是P q=(—)3=sy;以3:I获ft的概•率是P]=C;•(—)?=3*以3:2枝胜的概率是p2=Cj・(:)3・(;)2=§■.株上所述,甲获It的概.率•是p=P q+P i+p?=共X I3.【解析】解:由二项式定理可加("6)皿=㈡抽皿+Um湖"%…CicW板皿“,...+C魏〃皿2024令"=展=|可得(1“皿=£。
高中数学竞赛初赛试题(含答案)高中数学竞赛初赛试题(含答案)一、选择题1. 设函数 f(x) = 2x^3 - 3x^2 + 2ax + b,如果 f(1) = 3 且 f'(1) = 4,那么常数 a 和 b 的值分别是多少?A) a = 2, b = 4 B) a = 2, b = 3 C) a = 3, b = 4 D) a = 3, b = 32. 在平面直角坐标系中,点 P(-3,4) 和点 Q(1,-2) 的连线所在直线的斜率是多少?A) -1/4 B) 2/3 C) 2 D) -3/23. 若 a, b, c 是等差数列的前三项,且 a + b + c = 9,那么 a 的值是多少?A) 1 B) 3/2 C) 2 D) 34. 若函数 f(x) = 2x^3 + ax^2 + bx + 2 的图像经过点 (2, 8),那么常数a 和b 的值之和为多少?A) 6 B) 8 C) 10 D) 125. 已知等比数列的首项为 4,公比为 2,前 n 项和为 S_n。
下列哪个等式是正确的?A) S_n = 4(2^n - 1) B) S_n = 2(2^n - 1) C) S_n = 2^n + 2 D) S_n = 2^n二、填空题1. 若 3/4 张纸能折成 2^7 层,那么一张纸最多能折成多少层?答案:2^10 层2. 若 1/3 张纸能折成 2^8 层,那么一张纸最多能折成多少层?答案:3 × 2^8 层3. 一条长杆分成三段,第一段比第二段长 2cm,第二段比第三段长4cm,三段的长度之和是 50cm。
请分别求出第一段、第二段和第三段的长度。
答案:第一段:12cm,第二段:14cm,第三段:24cm4. 若 a 和 b 是互质的整数,并且 a × b = 147,那么 a 和 b 的值分别是多少?答案:a = 1,b = 147 或 a = 147,b = 15. 在平面直角坐标系中,顶点为 (0,0),椭圆的长轴在 x 轴上,短轴在 y 轴上,且长轴长为 8,短轴长为 6。
2023年全国高中数学联合竞赛加试卷习题及参考答案一.(本题满分40分)如图,ABC 的外心为O ,在边AB 上取一点D ,延长OD 至点E ,使得,,,A O B E 四点共圆.若2,3,4,5OD AD BD CD ,证明:ABE 与CDE 的周长相等.证明:由,,,A O B E 共圆得AD BD OD DE ,又2,3,4OD AD BD ,所以6DE . ……………10分由OA OB 得OAD OEA ,故OAD OEA ∽,故OA OE AEOD OA AD. 所以22(26)16OA OD OE ,得4OA .进而26OEAE AD AD OA.同理可得OBD OEB ∽ ,28BE BD . ……………20分 由于22OC OA OD OE ,故OCD OEC ∽. ……………30分因此EC OC CD OD. 由2,8OD OE OD DE 知4OC ,又5CD ,故210EC CD . 计算得76821AB AE BE ,561021CD DE EC ,即ABE 与CDE 的周长相等. ……………40分二.(本题满分40分)设,m n 是给定的整数,3m n ≥≥.求具有下述性质的最小正整数k :若将1,2,,k 中的每个数任意染为红色或者蓝色,则或者存在m 个红色的数12,,,m x x x (允许相同),满足121m m x x x x -+++< ,或者存在n 个蓝色的数12,,,n y y y (允许相同),满足121n n y y y y -+++< .C E O A BD C EO A B D解:答案是1mn n -+.若k mn n =-,将1,2,,1n - 染为蓝色,,1,,n n mn n +- 染为红色.则对任意m 个红色的数12,,,m x x x ,有121(1)m m x x x n m x -+++≥-≥ ,对任意n 个蓝色的数12,,,n y y y ,有1211n n y y y n y -+++≥-≥ ,上述例子不满足要求.对k mn n <-,可在上述例子中删去大于k 的数,则得到不符合要求的例子.因此所求1k mn n ≥-+. ………………10分下面证明1k mn n =-+具有题述性质.假设可将1,2,,1mn n -+ 中的每个数染为红色或蓝色,使得结论不成立. 情形一:若1是红色的数,则红色的数均不超过1m -,否则可取一个红色的数m x m ≥,再取1211m x x x -==== ,则11m m x x x -++< ,与假设矛盾. ………………20分故,1,,1m m mn n +-+ 均为蓝色的数,此时取121,1n n y y y m y mn n -=====-+ ,有121(1)11n n y y y m n mn m mn n y -+++=-<-+≤-+= ,(*) 与假设矛盾. ………………30分情形二:若1是蓝色的数,则同情形一可知蓝色的数均不超过1n -,故,1,,1n n mn n +-+ 均是红色的数.此时取121,1m m x x x n x mn n -=====-+ ,与(*)类似,可得矛盾.故1k mn n =-+时结论成立.综上,所求最小的正整数1k mn n =-+. ………………40分三.(本题满分50分)是否存在2023个实数122023,,,(0,1]a a a ,使得20236120231110i j i j k ka a a证明你的结论.解:记20231202311i j i j k kS a a a. 假设存在122023,,,(0,1]a a a ,使得610S . 不妨设12202301a a a ,则将12023i j i j a a去掉绝对值后,k a 的系数为22024k ,从而202311(22024)k k kS k a a. ……………10分 当11011k 时,由基本不等式知 11(22024)(20242)220242k k kkk a k a k a a. ……………20分当10122023k 时,由于1()(22024)k f x k x x在(0,1]上单调增,故1(22024)(1)22025k k kk a f k a. 从而1011202311012220242(22025)k k S k k1011110101012202422k k k. ……………30分注意到202422(20242)2202444k k k k ,故61010101210114410S ,这意味者不存在122023,,,a a a 满足条件. ……………50分四.(本题满分50分)设正整数,,,a b c d 同时满足: (1) 2023a b c d +++= ; (2) ab ac ad bc bd cd +++++ 是2023的倍数; (3) abc bcd cda dab +++是2023的倍数. 证明:abcd 是2023的倍数. 证明:易知22023717=⨯. 首先,由(1),(3)知2()()()()() a b a c a d a a b c d abc bcd cda dab +++=+++++++是2023的倍数,故,,a b a c a d +++中至少有一个是 7的倍数. ……………10分由对称性,不妨设a b +是7的倍数,则) 2023( c d a b +=-+也是7的倍数,()()ac ad bc bd a b c d +++=++也是7的倍数,故结合(2)知ab cd +是7的倍数,因此22) (()()a c a a b c c d ab cd +=+++-+也是 7的倍数.又平方数除以 7的余数只能是0,1,2,4,因此22,a c 只能同时是 7的倍数, 这表明,,,a b c d 都是 7的倍数. ………………20分同上面分析可知:) ()()( a b a c a d +++是217的倍数,故或者其中有一个因子是217的倍数,或者其中有两个因子是 17的倍数.如果有一个因子是217的倍数,不妨设a b +是217的倍数,结合 ,a b 都是7的倍数知,a b +是 22023717=⨯的倍数,但这与2023a b c d +++=及,,,a b c d 是正整数相矛盾! ………………30分因此,,a b a c a d +++中至少有两个是17的倍数.不妨设,a b a c ++都是17的倍数,那么b d +也是17的倍数,由2()()(2)()ab ac ad bc bd cd a b d b d c a a b a a c a +++++=+++++++-知,22a 是17的倍数,故a 是17的倍数.因此,,,a b c d 都是17的倍数,这就说明了abcd 是44717⨯的倍数,也就是2023的倍数.………………50分。
全国高中数学竞赛试题及答案试题一:函数与方程1. 已知函数\( f(x) = 2x^3 - 3x^2 + x - 5 \),求\( f(x) \)的极值点。
2. 求解方程\( x^2 - 4x + 3 = 0 \)的所有实根。
3. 判断函数\( g(x) = \frac{1}{x} \)在区间\( (0, +\infty) \)上的单调性。
试题二:解析几何1. 已知椭圆\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \),其中\( a > b > 0 \),求椭圆的焦点坐标。
2. 求圆\( (x - h)^2 + (y - k)^2 = r^2 \)的切线方程,已知切点坐标为\( (m, n) \)。
3. 证明点\( P(x_1, y_1) \)和点\( Q(x_2, y_2) \)的连线\( PQ \)的中点坐标为\( \left(\frac{x_1 + x_2}{2}, \frac{y_1 +y_2}{2}\right) \)。
试题三:数列与级数1. 已知等差数列的首项\( a_1 = 3 \),公差\( d = 2 \),求第10项\( a_{10} \)。
2. 求等比数列\( b_1, b_2, b_3, \ldots \)的前\( n \)项和,其中\( b_1 = 1 \),公比\( r = 3 \)。
3. 判断数列\( c_n = \frac{1}{n(n + 1)} \)的收敛性。
试题四:概率与统计1. 从5个红球和3个蓝球中随机抽取3个球,求至少有2个红球的概率。
2. 抛掷一枚均匀硬币4次,求正面朝上的次数为2的概率。
3. 某工厂生产的产品中有2%是次品,求从一批产品中随机抽取10个产品,至少有1个是次品的概率。
试题五:组合与逻辑1. 有5个不同的球和3个不同的盒子,将球分配到盒子中,每个盒子至少有一个球,求不同的分配方法总数。
2. 证明:对于任意的正整数\( n \),\( 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \)。
数学竞赛试题及答案高中一、选择题(每题4分,共40分)1. 若函数f(x) = 3x^2 - 6x + 5,下列哪个选项是f(x)的对称轴?A. x = 1B. x = -1C. x = 2D. x = -2答案:A2. 已知数列{an}的通项公式为an = 2^n,求数列{an}的前n项和Sn。
A. Sn = 2^(n+1) - 2B. Sn = 2^(n+1) - 1C. Sn = 2^(n+1) - 2^nD. Sn = 2^(n+1) - 2^(n-1)答案:B3. 已知向量a = (3, -2),向量b = (1, 2),求向量a与向量b的数量积。
A. 2B. -2C. 4D. -4答案:B4. 已知函数f(x) = x^3 - 3x^2 + 2x,求f'(x)。
A. 3x^2 - 6x + 2B. x^2 - 3x + 2C. 3x^2 - 6xD. x^2 - 3x答案:A5. 已知双曲线的方程为x^2/a^2 - y^2/b^2 = 1,其中a > 0,b > 0,求双曲线的离心率e。
A. e = √(1 + b^2/a^2)B. e = √(1 - b^2/a^2)C. e = √(a^2 + b^2)D. e = √(a^2 - b^2)答案:A6. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。
A. √2B. 1C. 0D. -1答案:A7. 已知等差数列{an}的首项a1 = 1,公差d = 2,求数列{an}的第10项a10。
B. 20C. 21D. 22答案:A8. 已知函数f(x) = x^2 - 4x + 4,求f(x)的最小值。
A. 0B. 1C. 2D. 3答案:A9. 已知向量a = (2, 3),向量b = (-1, 1),求向量a与向量b的夹角θ。
A. π/3B. π/4D. 2π/3答案:D10. 已知函数f(x) = e^x - e^(-x),求f'(x)。
竞赛数学高中试题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + 3的零点为x1和x2,则x1 + x2的值为:A. 2B. 3C. 4D. 52. 已知数列{an}是等差数列,且a1 = 2,a3 = 8,则该数列的公差d为:A. 2B. 3C. 4D. 63. 若复数z满足|z - 1| = 2,则z的模|z|的取值范围为:A. [1, 3]B. [0, 3]C. [1, 5]D. [0, 5]4. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)的值为:A. 3x^2 - 6xB. 3x^2 - 6x + 2C. x^2 - 6x + 2D. x^3 - 3x^2 + 25. 若a,b,c是等比数列,且a + b + c = 14,b^2 = ac,则a + c 的值为:A. 4B. 8C. 10D. 126. 已知三角形ABC的三边长分别为a,b,c,且满足a^2 + b^2 = c^2,求角C的大小为:A. 30°B. 45°C. 60°D. 90°7. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的图像与x轴有两个交点,则判别式Δ的取值范围为:A. Δ > 0B. Δ = 0C. Δ < 0D. Δ ≥ 08. 已知向量a = (1, 2),b = (3, 4),则向量a + b的坐标为:A. (4, 6)B. (-2, -2)C. (2, 6)D. (4, -2)9. 若函数f(x) = sin(x) + cos(x),则f(π/4)的值为:A. √2B. 1C. 2D. 010. 已知双曲线C的方程为x^2/a^2 - y^2/b^2 = 1(a > 0,b > 0),且双曲线C的一条渐近线方程为y = 2x,则a/b的值为:A. 1/2B. 1/3C. 1/4D. 1/5二、填空题(每题6分,共30分)11. 已知数列{an}的前n项和为Sn,且Sn = 3^n - 1,求a5的值为________。
数学竞赛高中试题入门及答案一、选择题(每题5分,共20分)1. 下列哪个数不是整数?A. -3B. 0C. 5D. 2.52. 如果函数\( f(x) = 3x^2 - 5x + 2 \),那么\( f(-1) \)的值是多少?A. 10B. 8C. 6D. 43. 圆的半径为3,圆心在原点,那么圆上任意一点到圆心的距离是多少?A. 1B. 2C. 3D. 44. 已知三角形ABC的三个内角A、B、C,且A + B + C = 180°,如果角A = 60°,角B = 50°,那么角C是多少度?A. 70°B. 80°C. 90°D. 100°二、填空题(每题5分,共20分)5. 若\( a \),\( b \),\( c \)为三角形的三边,且\( a^2 + b^2 = c^2 \),则该三角形是________。
6. 一个数的平方根是4,那么这个数是________。
7. 一个圆的面积为28.26平方厘米,那么它的半径是________厘米。
8. 已知等差数列\( 3, 7, 11, ... \),第5项的值是________。
三、解答题(每题15分,共30分)9. 证明:如果\( a \),\( b \),\( c \)是正实数,且\( a + b +c = 1 \),那么\( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq9 \)。
10. 一个直角三角形的两条直角边长分别为6厘米和8厘米,求斜边的长度。
(使用勾股定理)四、证明题(每题15分,共15分)11. 证明:对于任意正整数\( n \),\( 1^3 + 2^3 + ... + n^3 = (1 + 2 + ... + n)^2 \)。
五、结束语本试题旨在为高中数学竞赛入门者提供一个基础的练习平台,通过这些题目,学生可以检验自己的数学基础知识和解题技巧。
高中数学竞赛试题及答案一、选择题1.若直线l1:y = -2x + 3,直线l2过点(1,5)且与l1垂直,则l2的方程是:A. y = x + 4B. y = -x + 6C. y = x - 4D. y = -x + 4答案:C2.已知集合A = {x | |x - 3|< 2},则A的值是: A. (-∞, 1) U (5, ∞) B. (-∞,1) U (3, ∞) C. (1, 5) D. (1, 5] U (5, ∞)答案:D二、填空题1.若a、b满足a+b=5,且ab=6,则a和b的值分别是____。
答案:2和32.若某几何体的体积V和表面积S满足S=3V,且V>0,则该几何体的体积V的值为____。
答案:1/3三、解答题1.设数列{an}满足a1=1,a2=2,an+2 = an + 2n,求数列的通项公式。
解答:首先给出数列的前几项: a1 = 1 a2 = 2 a3 = 1 + 2 × 1 = 3 a4 = 2 + 2 × 2 =6 a5 = 3 + 2 × 3 = 9 … 从数列的前几项可以观察到,第n项的值为n^2 - 1。
所以数列的通项公式为an = n^2 - 1。
2.已知函数f(x) = x^3 - 3x^2 + 4x - 2,求f(x)的最小值及取得最小值时的x值。
解答:对于任意x,有f’(x) = 3x^2 - 6x + 4。
令f’(x) = 0,可以解得x = 1。
再求f’‘(x) = 6x - 6,当x = 1时,f’’(x) = 0。
所以x = 1是f(x)的极小值点。
代入f(x) = x^3 - 3x^2 + 4x - 2计算得最小值为-2。
所以f(x)的最小值是-2,取得最小值时的x值为1。
四、简答题1.数列的极限是什么?如何判断一个数列的极限存在?答:数列的极限是指当项数趋向无穷大时,数列的项的值趋向的一个确定的数。
高中数学竞赛试题及答案一、选择题(每题4分,共40分)1. 如果函数f(x)=x^2-4x+3,那么f(2)的值为:A. -1B. 1C. 3D. 5答案:B2. 已知等差数列{an}的首项a1=1,公差d=2,那么a5的值为:A. 9B. 10C. 11D. 12答案:A3. 函数y=sin(x)的周期为:A. 2πB. πC. 4πD. 1答案:A4. 已知三角形ABC的三个内角A、B、C满足A+B=2C,那么角C的度数为:A. 30°B. 45°C. 60°D. 90°答案:C5. 已知复数z=1+i,那么|z|的值为:B. 2C. √3D. 3答案:A6. 函数f(x)=x^3-3x^2+2在区间[1,2]上是:A. 增函数B. 减函数C. 先减后增D. 先增后减答案:C7. 已知双曲线x^2/a^2-y^2/b^2=1的焦点在x轴上,且a=2,那么b的值为:A. √3C. √5D. 2答案:A8. 已知椭圆C:x^2/4+y^2/3=1,那么椭圆C的离心率为:A. √3/2B. 1/2C. √2/2D. 2/3答案:C9. 已知向量a=(2,1),b=(1,-1),则向量a+2b的坐标为:A. (4, -1)B. (4, 1)C. (2, -1)D. (2, 1)答案:A10. 已知集合A={x|x^2-5x+6=0},B={x|x^2-3x+2=0},则A∩B 的元素个数为:A. 0B. 1C. 2D. 3答案:C二、填空题(每题4分,共20分)11. 已知函数f(x)=x^3+3x^2-9x+5,求f'(x)的值为:______。
答案:3x^2+6x-912. 已知等比数列{bn}的首项b1=2,公比q=3,那么b4的值为:______。
答案:5413. 已知直线l的方程为y=2x+1,求直线l与x轴的交点坐标为:(______,______)。
2023年全国中学生数学奥林匹克竞赛(预赛)暨2023年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)如图, 是以AB 为直径的固定的半圆弧, 是经过点A 及 上另一个定点T 的定圆,且 的圆心位于ABT 内.设P 是 的弧 TB(不含端点)上的动点,,C D 是 上的两个动点,满足:C 在线段AP 上,,C D 位于直线AB 的异侧,且CD AB .记CDP 的外心为K .证明:(1) 点K 在TDP 的外接圆上;(2) K 为定点. ΩωPD ABT C证明:(1) 易知PCD 为钝角,由K 为CDP 的外心知2(180)2PKD PCD ACD .由于90APB ,CD AB ,故PBA ACD ATD .……………10分 所以2180PTD PKD PTA ATD ACD PTA PBA . 又,K T 位于PD 异侧,因此点K 在TDP 的外接圆上. ……………20分(2) 取 的圆心O ,过点O 作AB 的平行线l ,则l 为CD 的中垂线,点K 在直线l 上. ……………30分由,,,T D P K 共圆及KD KP ,可知K 在DTP 的平分线上,而9090DTB ATD PBA PAB PTB ,故TB 为DTP 的平分线.所以点K 在直线TB 上.显然l 与TB 相交,且l 与TB 均为定直线,故K 为定点. ……………40分 ωΩl D P OK B ATC二.(本题满分40分)正整数n 称为“好数”,如果对任意不同于n 的正整数m ,均有2222n m n m ⎧⎫⎧⎫⎪⎪⎪⎪≠⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭,这里,{}x 表示实数x 的小数部分. 证明:存在无穷多个两两互素的合数均为好数.证明:引理:设n 是正奇数,且2模n 的阶为偶数,则n 是好数.引理的证明:反证法.假设n 不是好数,则存在异于n 的正整数m ,使得2222n m n m .因此22n n 与22m m 写成既约分数后的分母相同.由n 为奇数知22n n 是既约分数,故2m 的最大奇因子为2n ,从而m 的最大奇因子为n .设2t m n ,其中t 为正整数(从而m 是偶数).于是22222m m t m n. 由22222m t n n n可得2222(mod )m t n n ,故 222(mod )m t n n . (*)设2模n 的阶为偶数d .由(*)及阶的基本性质得2(mod )m t n d ,故2m t n 是偶数.但2m t 是偶数,n 是奇数,矛盾.引理得证.……………20分回到原问题.设221(1,2,)k k F k .由于1221k k F ,而k F 221k,因此2模k F 的阶为12k ,是一个偶数.对正整数l ,由221(mod )l k F 可知21(mod )l k F ,故由阶的性质推出,2模2k F 的阶被2模k F 的阶整除,从而也是偶数.因2k F 是奇数,由引理知2k F 是好数.……………30分对任意正整数,()i j i j ,211(,)(,(21)2)(,2)1i i j i i i j i F F F F F F F ,故123,,,F F F 两两互素.所以222123,,,F F F 是两两互素的合数,且均为好数. ……………40分三.(本题满分50分) 求具有下述性质的最小正整数k :若将1,2,,k 中的每个数任意染为红色或者蓝色,则或者存在9个互不相同的红色的数129,,,x x x 满足1289x x x x +++< ,或者存在10个互不相同的蓝色的数1210,,,y y y 满足12910y y y y +++< .解:所求的最小正整数为408.一方面,若407k =时,将1,55,56,,407 染为红色,2,3,,54 染为蓝色,此时最小的8个红数之和为1555661407++++= ,最小的9个蓝数之和为231054+++= ,故不存在满足要求的9个红数或者10个蓝数.对407k <,可在上述例子中删去大于k 的数,则得到不符合要求的例子. 因此407k ≤不满足要求. ……………10分 另一方面,我们证明408k =具有题述性质.反证法.假设存在一种1,2,,408 的染色方法不满足要求,设R 是所有红数的集合,B 是所有蓝数的集合.将R 中的元素从小到大依次记为12,,,m r r r ,B 中的元素从小到大依次记为12,,,n b b b ,408m n +=.对于R ,或者8R ≤,或者128m r r r r +++≥ ;对于B ,或者9B ≤,或者129n b b b b +++≥ .在1,2,,16 中至少有9个蓝色的数或至少有8个红色的数.情形1:1,2,,16 中至少有9个蓝色的数.此时916b ≤.设区间9[1,]b 中共有t 个R 中的元素12,,,(08)t r r r t ≤< .记12t x r r r =+++ ,则112(1)2x t t t ≥+++=+ . 因为12912,,,,,,,t b b b r r r 是9[1,]b 中的所有正整数,故{}{}12912,,,,,,,1,2,,9t b b b r r r t =+ .于是 12912(9)n b b b b t x ≤+++=++++- 1(9)(10)2t t x =++-. (*) ……………20分 特别地,116171362n b ≤⨯⨯=.从而9R ≥. 对任意(1)i i m t ≤≤-,由(*)知1(9)(10)2t i n r b i t t x i +≤+≤++-+.从而 811811(9)(10)2t m t t i r r r r r x t t x i -+=⎛⎫ ⎪≤+++++≤+++-+ ⎪⎝⎭∑ 11(9)(10)(8)(8)(9)(7)22t t t t t t x =++-+---- 111(9)(10)(8)(8)(9)(7)(1)222t t t t t t t t ≤++-+----⋅+ 2819396407t t =-++≤(考虑二次函数对称轴,即知1t =时取得最大). 又136n b ≤,这与,n m b r 中有一个为408矛盾. ……………40分情形2:1,2,,16 中至少有8个红色的数.论证类似于情形1.此时816r ≤.设区间8[1,]r 中共有s 个B 中的元素12,,,(09)s b b b s ≤< .记1s y b b =++ ,则1(1)2y s s ≥+. 因为12128,,,,,,,s b b b r r r 是8[1,]r 中的所有正整数,故 {}{}12128,,,,,,,1,2,,8s b b b r r r s =+ . 于是1(8)(9)2m r s s y ≤++-. 特别地,116171362m r ≤⨯⨯=.从而10B ≥. 对任意(1)i i n s ≤≤-,有1(8)(9)2s i m b r i s s y i +≤+≤++-+.从而 911911(8)(9)2s n s s i b b b b b y s s y i -+=⎛⎫ ⎪≤+++++≤+++-+ ⎪⎝⎭∑ 11(9)(8)(9)(8)(9)(10)22s s s s y s s =-++--+--111(9)(8)(9)(8)(1)(9)(10)222s s s s s s s s ≤-++--⋅++-- 2727369395s s =-++≤(在2s =时取得最大), 又136m r ≤,这与,n m b r 中有一个为408矛盾.由情形1、2知408k =具有题述性质.综上,所求最小正整数k 为408. ……………50分四.(本题满分50分)设4110a -=+.在20232023⨯的方格表的每个小方格中填入区间[1,]a 中的一个实数.设第i 行的总和为i x ,第i 列的总和为i y ,12023i ≤≤.求122023122023y y y x x x 的最大值(答案用含a 的式子表示). 解:记2023n =,设方格表为(),1,ij a i j n ≤≤,122023122023y y y x x x λ= . 第一步:改变某个ij a 的值仅改变i x 和j y ,设第i 行中除ij a 外其余1n -个数的和为A ,第j 列中除ij a 外其余1n -个数的和为B ,则jij i ij y B a x A a +=+.当A B ≥时,关于ij a 递增,此时可将ij a 调整到,a λ值不减.当A B ≤时,关于ij a 递减,此时可将ij a 调整到1,λ值不减.因此,为求λ的最大值,只需考虑每个小方格中的数均为1或a 的情况. ……………10分第二步:设{}1,,1,ij a a i j n ∈≤≤,只有有限多种可能,我们选取一组ij a 使得λ达到最大值,并且11n nij i j a ==∑∑最小.此时我们有,,1,.i j ij i j a x y a x y ⎧>⎪=⎨≤⎪⎩(*) 事实上,若i j x y >,而1ij a =,则将ij a 改为a 后,行和及列和变为,i j x y '',则11j j j i i iy y a y x x a x '+-=>'+-, 与λ达到最大矛盾,故ij a a =.若i j x y ≤,而ij a a =,则将ij a 改为1后,λ不减,且11n nij i j a ==∑∑变小,与ij a 的选取矛盾.从而(*)成立.通过交换列,可不妨设12n y y y ≤≤≤ ,这样由(∗)可知每一行中a 排在1的左边,每一行中的数从左至右单调不增.由此可知12n y y y ≥≥≥ .因而只能12n y y y === ,故每一行中的数全都相等(全为1或全为a ).……………20分 第三步:由第二步可知求λ的最大值,可以假定每一行中的数全相等.设有k 行全为a ,有n k -行全为1,0k n ≤≤.此时()()()n nk k n k n k ka n k ka n k na nn a λ-+-+-==. 我们只需求01,,,n λλλ 中的最大值. ()11(1)1111()(1)nn n k k n k n kk a n k a n a ka n k a k a n n a λλ++++--⎛⎫- ⎪==+ ⎪+--+⎝⎭. 因此1111(1)n k k a a k a n λλ+⎛⎫- ⎪≥⇔+≥ ⎪-+⎝⎭ 11(1)n n x x k x n-⇔+≥-+(记n x a =) 2111(1)n n x x x k x n-++++⇔≥-+ 2111n n x x x n k x -++++-⇔≤- 211(1)(1)1n n x x x x x--+++++++=+++ . 记上式右边为y ,则211(2)1n n n n x x y x x ---+-++=+++ . 下面证明(1010,1011)y ∈. ……………30分 首先证明1011y <.1011y < 2021202220222021101110111011x x x x ⇔+++<+++1010101210132021202210111010210101011x x x x x x ⇔+++<++++ .由于220221x x x <<<< ,故101010101012011(1011)101110121011101222k k k x x x =-<⋅⋅<⋅⋅∑101110110k k kx +=<∑. ……………40分 再证明1010y >,等价于证明2021202200(2022)1010kk k k k x x ==->∑∑. 由于2021202100(2022)(2022)10112023k k k k x k ==->-=⨯∑∑, 20222022010101010202310102023k k x x a =<⨯<⨯∑,只需证明1011202310102023a ⨯>⨯,而410111101010a -=+<,故结论成立. 由上面的推导可知1k k λλ+≥当且仅当1010k ≤时成立,从而1011λ最大.故 2023max 101120231011(10111012)2023a aλλ+==. ……………50分。
高中数学竞赛训练题
一、选择题(仅有一个选择支正确)
1.已知全集}{}{N n n x x B N n n x x A N U ∈==∈===,4,,2,,则( )
(A ) B A U = (B) )(B A C U U = (C) B C A U U = (D) B C A C U U U =
2.已知b a ,是正实数,则不等式组⎩⎨⎧>+>+ab xy b a y x 是不等式组⎩
⎨⎧>>b y a x 成立的( ) (A )充分不必要条件 (B) 必要不充分条件
(C) 充分且必要条件 (D)既不充分又不必要条件
3.等差数列{}n a 中,,336),9(30,1849=>==-n n S n a S 则n 的值是( )
(A )8 (B) 9 (C) 16 (D) 21
4.已知复数2
121
-+
=z z w 为纯虚数,则z 的值为( ) (A ) 1 (B) 21 (C) 31 (D) 不能确定 5.边长为5的菱形,若它的一条对角线的长不大于6,则这个菱形对角线长度之和的最大值是( )
(A ) 16 (B) 210 (C) 14 (D) 65
6.平面上的整点(横、纵坐标都是整数)到直线5
435+=x y 的距离中的最小值是( )(A ) 17034 (B) 8534 (C) 170
343 (D) 301 7.若232,2,2++x y x x 成等比数列,则点),(y x 在平面直角坐标系内的轨迹是( )
(A ) 一段圆弧 (B) 一段椭圆弧 (C) 双曲线的一部分 (D) 抛物线的一部分
8.若ABC ∆的三边c b a ,,满足:,0322,0222
=+-+=---c b a c b a a 则它的最大内角的度数是( )
(A ) 0150 (B) 0120 (C) 090 (D) 060
9.已知点)2
3,1(),21,(+++
a a B a a A ,动点P 到点)0,1(M 比到y 轴距离大1,其轨迹为曲线C ,且线段AB 与曲线C 存在公共点,则a 得取值范围是( ) (A ) ()+∞∞-, (B) ⎥⎦⎤⎢⎣⎡+-223,22
3 (C)⎥⎦
⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡--223,221223,221
(D) ⎥⎦
⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡--223,221223,23 10.空间有9个点,其中任四点不共面,在这9个点间连接若干条线段,构成三角形m 个。
若图中不存在四面体,则m 的最大值是( )
(A ) 7 (B) 9 (C) 20 (D) 不少于27
二、填空题
11.若函数)(x f 与x x g -=2)(互为反函数,则)3(2x x f -的单调递增区间是_________。
12.设),4,3,2( =n a n 是n x )3(-的展开式中含x 项的系数,则1818
3322333a a a +++ 的值是_________。
13.已知c b a ,,是实数且满足1,13
33222=++=++c b a c b a ,则c b a ,,三数的和等于_________。
14.由红、黄、蓝三套卡片,每套五张,分别标有一个字母A 、B 、C 、D 、E ,若从这15张卡片中,抽取5张,要求字母各不相同且三色齐全,则不同的取法有_________种。
15.某地的汽车牌照全都是由七位数字所组成,每面车牌的最左边的数字不可以是0,且任两面车牌上的数都不相同。
现只能用0、1、2、3、5、7、9等七个不同的钢模来轧制车牌,制造一个车牌时同一个钢模只能使用一次,可以把数字9的钢模旋转后当成数字6来用,但6和9不能同时出现。
现将符合上述要求的全部车牌依照其数值由小至大排序,因此他们依序是:1023567、1023576、1023579、…、9753210。
那么第7000面车牌的号码是_________。
16.正方体1111D C B A ABCD -的棱长为1,在正方体的表面上与点A 相距
332的点集为一条曲线,该曲线的长度是_________。
17.若z y x ,,都是正实数,且1222=++z y x ,则
z
xy y xz x yz ++的最小值是_________。
18.设正数列{}n a 的前n 项之和是n b ,数列{}n b 的前n 项之积是n c ,若n b +n c =1,则数列⎭
⎬⎫⎩⎨⎧n a 1中最接近2004的数是_________。
19.若3233s i n 34s i n ),(,23a r c s i n ,6,s i n 30a a a f a -+=⎥⎦⎤⎢⎣
⎡∈<<θθθπθθ,则)
,(θa f 的最小值是_________。
20.一个m 项的正整数数列(m x x x ,,,21 ),如果满足以下两个条件:
(i )对于任意的正整数1,11+≤-≤≤i i x x m i ;
(ii )数列中的所有奇数项 ,,31x x 全是奇数,并且数列中的所有偶数项 ,,42x x 全是偶数,则称此数列为一个OE 数列。
假如:最大项不大于4的OE 数列只有(1),(3), (1,2),(1,4),(3,4),(1,2,3),(1,2,3,4)等七个,那么最大项不超过20的OE 数列共有_________个。
答案:
一、选择题:
1,C 2, B 3, D 4, B 5, C 6, B 7, C 8, B 9, D 10, D
二、填空题: (11) ⎪⎭
⎫
⎢⎣⎡31,61 (12), 17 (13) 1 (14) 150 (15) 7206351 (16) π63
5
(17) 3 (18) 1980 (19) 24137 (20) 17710。