椭圆中定点定值问题 一般结论
- 格式:pdf
- 大小:393.19 KB
- 文档页数:3
椭圆中的定点、定值1(2023春·河北石家庄·高二校考开学考试)已知椭圆C :x 28+y 24=1,直线l :y =kx +n (k >0)与椭圆C 交于M ,N 两点,且点M 位于第一象限.(1)若点A 是椭圆C 的右顶点,当n =0时,证明:直线AM 和AN 的斜率之积为定值;(2)当直线l 过椭圆C 的右焦点F 时,x 轴上是否存在定点P ,使点F 到直线NP 的距离与点F 到直线MP 的距离相等?若存在,求出点P 的坐标;若不存在,说明理由.2(2023·全国·模拟预测)在平面直角坐标系xOy 中,A -2,0 ,B 2,0 ,M -1,0 ,N 1,0 ,点P 是平面内的动点,且以AB 为直径的圆O 与以PM 为直径的圆O 1内切.(1)证明PM +PN 为定值,并求点P 的轨迹Ω的方程.(2)过点A 的直线与轨迹Ω交于另一点Q (异于点B ),与直线x =2交于一点G ,∠QNB 的角平分线与直线x =2交于点H ,是否存在常数λ,使得BH =λBG恒成立?若存在,求出λ的值;若不存在,请说明理由.3(2023·全国·高三专题练习)仿射变换是处理圆锥曲线综合问题中求点轨迹的一类特殊而又及其巧妙的方法,它充分利用了圆锥曲线与圆之间的关系,具体解题方法为将C:x2a2+y2b2=1(a>b>0)由仿射变换得:x =xa,y=yb,则椭圆x2a2+y2b2=1变为x 2+y 2=1,直线的斜率与原斜率的关系为k =abk,然后联立圆的方程与直线方程通过计算韦达定理算出圆与直线的关系,最后转换回椭圆即可.已知椭圆C:x2 a2+y2b2=1(a>b>0)的离心率为55,过右焦点F2且垂直于x轴的直线与C相交于A,B两点且AB=855,过椭圆外一点P作椭圆C的两条切线l1,l2且l1⊥l2,切点分别为M,N.(1)求证:点P的轨迹方程为x2+y2=9;(2)若原点O到l1,l2的距离分别为d1,d2,延长表示距离d1,d2的两条直线,与椭圆C交于Y,W两点,过O作OZ⊥YW交YW于Z,试求:点Z所形成的轨迹与P所形成的轨迹的面积之差是否为定值,若是,求出此定值;若不是,请求出变化函数.4(2023·湖南·湖南师大附中校联考模拟预测)在平面直角坐标系xOy中,已知椭圆W:x2a2+y2b2=1(a>b>0)的离心率为22,椭圆W上的点与点P0,2的距离的最大值为4.(1)求椭圆W的标准方程;(2)点B在直线x=4上,点B关于x轴的对称点为B1,直线PB,PB1分别交椭圆W于C,D两点(不同于P点).求证:直线CD过定点.5(2023春·四川眉山·高二校考阶段练习)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为32,短轴长为2.(1)求椭圆C的标准方程;(2)点D(4,0),斜率为k的直线l不过点D,且与椭圆C交于A,B两点,∠ADO=∠BDO(O为坐标原点).直线l是否过定点?若过定点,求出定点坐标;若不过定点,说明理由.6(2023·内蒙古赤峰·校联考模拟预测)已知椭圆C :y 2a 2+x 2b2=1a >b >0 的离心率为12,且经过点6,2 ,椭圆C 的右顶点到抛物线E :y 2=2px p >0 的准线的距离为4.(1)求椭圆C 和抛物线E 的方程;(2)设与两坐标轴都不垂直的直线l 与抛物线E 相交于A ,B 两点,与椭圆C 相交于M ,N 两点,O 为坐标原点,若OA ⋅OB=-4,则在x 轴上是否存在点H ,使得x 轴平分∠MHN ?若存在,求出点H 的坐标;若不存在,请说明理由.7(2023·宁夏·六盘山高级中学校考一模)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为B 1,若△F 1B 1F 2为等边三角形,且点P 1,32在椭圆E 上.(1)求椭圆E 的方程;(2)设椭圆E 的左、右顶点分别为A 1,A 2,不过坐标原点的直线l 与椭圆E 相交于A 、B 两点(异于椭圆E 的顶点),直线AA 1、BA 2与y 轴的交点分别为M 、N ,若|ON |=3|OM |,证明:直线过定点,并求该定点的坐标.8(2023·江苏扬州·仪征中学校考模拟预测)已知F1(-2,0),F2(2,0)为椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点,且A2,5 3为椭圆上的一点.(1)求椭圆E的方程;(2)设直线y=-2x+t与抛物线y2=2px(p>0)相交于P,Q两点,射线F1P,F1Q与椭圆E分别相交于M 、N.试探究:是否存在数集D,对于任意p∈D时,总存在实数t,使得点F1在以线段MN为直径的圆内?若存在,求出数集D并证明你的结论;若不存在,请说明理由.9(2023·四川绵阳·四川省绵阳南山中学校考模拟预测)已知椭圆C:x2a2+y2b2=1a>b>0的左、右顶点分别为M1、M2,短轴长为23,点C上的点P满足直线PM1、PM2的斜率之积为-3 4.(1)求C的方程;(2)若过点1,0且不与y轴垂直的直线l与C交于A、B两点,记直线M1A、M2B交于点Q.探究:点Q 是否在定直线上,若是,求出该定直线的方程;若不是,请说明理由.10(2023·全国·高三专题练习)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)内切于矩形ABCD ,其中AB ,CD 与x 轴平行,直线AC ,BD 的斜率之积为-12,椭圆的焦距为2.(1)求椭圆E 的标准方程;(2)椭圆上的点P ,Q 满足直线OP ,OQ 的斜率之积为-12,其中O 为坐标原点.若M 为线段PQ 的中点,则MO 2+MQ 2是否为定值?如果是,求出该定值;如果不是,说明理由.11(2023春·湖北襄阳·高三襄阳五中校考阶段练习)已知离心率为22的椭圆C:x2a2+y2b2=1a>b>0的左焦点为F,左、右顶点分别为A1、A2,上顶点为B,且△A1BF的外接圆半径大小为3.(1)求椭圆C方程;(2)设斜率存在的直线l交椭圆C于P,Q两点(P,Q位于x轴的两侧),记直线A1P、A2P、A2Q、A1Q的斜率分别为k1、k2、k3、k4,若k1+k4=53k2+k3,求△A2PQ面积的取值范围.12(2023·江西南昌·统考模拟预测)已知A2,0,B0,1是椭圆E:x2a2+y2b2=1a>b>0的两个顶点.(1)求椭圆E的标准方程;(2)过点P2,1的直线l与椭圆E交于C,D,与直线AB交于点M,求PMPC+PMPD的值.13(2023·江苏盐城·校考三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点A 在C 上,当AF 1⊥x 轴时,AF 1 =12;当AF 1 =2时,∠F 1AF 2=2π3.(1)求C 的方程;(2)已知斜率为-1的直线l 与椭圆C 交于M ,N 两点,与直线x =1交于点Q ,且点M ,N 在直线x =1的两侧,点P (1,t )(t >0).若|MP |⋅|NQ |=|MQ |⋅|NP |,是否存在到直线l 的距离d =2的P 点?若存在,求t 的值;若不存在,请说明理由.14(2023·全国·高三专题练习)已知椭圆C :x 2b 2+y 2a2=1a >b >0 与椭圆x 28+y 24=1的离心率相同,P 22,1为椭圆C 上一点.(1)求椭圆C 的方程.(2)若过点Q 13,0 的直线l 与椭圆C 相交于A ,B 两点,试问以AB 为直径的圆是否经过定点T ?若存在,求出T 的坐标;若不存在,请说明理由.15(2023·广东广州·广州市从化区从化中学校考模拟预测)已知双曲线C:x2a2-y23a2=1(a>0)的左、右焦点分别为F1,F2,且F2到C的一条渐近线的距离为3.(1)求C的方程;(2)过C的左顶点且不与x轴重合的直线交C的右支于点B,交直线x=12于点P,过F1作PF2的平行线,交直线BF2于点Q,证明:Q在定圆上.16(2023春·湖南常德·高二临澧县第一中学校考开学考试)如图,椭圆M:y2a2+x2b2=1a>b>0的两顶点A-2,0,B2,0,离心率e=32,过y轴上的点F0,tt <4,t≠0的直线l与椭圆交于C,D两点,并与x轴交于点P,直线AC与直线BD交于点Q.(1)当t=23且CD=4时,求直线l的方程;(2)当点P异于A,B两点时,设点P与点Q横坐标分别为x P,x Q,是否存在常数λ使x P⋅x Q=λ成立,若存在,求出λ的值;若不存在,请说明理由.17(2023春·四川遂宁·高三射洪中学校考阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点1,62 ,且离心率为22.(1)求椭圆C 的方程;(2)已知直线l :y =mx +2与椭圆交于不同的两点P ,Q ,那么在x 轴上是否存在点M ,使MP =MQ 且MP ⊥MQ ,若存在,求出该直线的方程;若不存在,请说明理由.18(2023春·陕西西安·高二陕西师大附中校考期末)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左顶点为A ,P 为C 上一点,O 为原点,PA =PO ,∠APO =90°,△APO 的面积为1.(1)求椭圆C 的方程;(2)设B 为C 的右顶点,过点(1,0)且斜率不为0的直线l 与C 交于M ,N 两点,证明:3tan ∠MAB =tan ∠NBA .19(2023·四川内江·校考模拟预测)在平面直角坐标系xOy中,动圆P与圆C1:x+12+y2=494内切,且与圆C2:x-12+y2=14外切,记动圆圆心P的轨迹为曲线C.(1)求曲线C的方程;(2)设曲线C的左、右两个顶点分别为A1、A2,T为直线l:x=4上的动点,且T不在x轴上,直线TA1与C 的另一个交点为M,直线TA2与C的另一个交点为N,F为曲线C的左焦点,求证:△FMN的周长为定值.20(2023·四川绵阳·四川省绵阳南山中学校考三模)已知椭圆C的焦点为F1-2,0,F22,0,且C 过点E2,1.(1)求C的方程;(2)设A为椭圆C的右顶点,直线l与椭圆C交于P,Q两点,且P,Q均不是C的左、右顶点,M为PQ的中点.若AMPQ=12,试探究直线l是否过定点?若过定点,求出该定点坐标;若不过定点,请说明理由.椭圆中的定点、定值1(2023春·河北石家庄·高二校考开学考试)已知椭圆C:x28+y24=1,直线l:y=kx+n(k>0)与椭圆C交于M,N两点,且点M位于第一象限.(1)若点A是椭圆C的右顶点,当n=0时,证明:直线AM和AN的斜率之积为定值;(2)当直线l过椭圆C的右焦点F时,x轴上是否存在定点P,使点F到直线NP的距离与点F到直线MP的距离相等?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)见解析;(2)存在,P(4,0).【分析】(1)联立直线方程和椭圆方程得(1+2k2)x2-8=0,由韦达定理可得x1,x2的关系,再由k AM⋅k AN=y1x1-22⋅y2x2-22计算即可得证;(2)由题意可得直线l的方程为y=k(x-2),联立直线方程与椭圆方程得(1+2k2)x2-8k2x+8(k2-1)= 0,由韦达定理x3,x4之间的关系,假设存在满足题意的点P,设P(m,0),由题意可得k PM+k PN=0.代入计算,如果m有解,则存在,否则不存在.【详解】(1)证明:因为n=0,所以直线l:y=kx,联立直线方程和椭圆方程:y=kxx2+2y2-8=0,得(1+2k2)x2-8=0,设M(x1,y1),N(x2,y2),则有x1+x2=0,x1x2=-81+2k2,所以y1y2=k2x1x2=-8k21+2k2,又因为A(22,0),所以k AM=y1x1-22,k AN=y2x2-22,所以k AM⋅k AN=y1x1-22⋅y2x2-22=y1y2x1x2-22(x1+x2)+8=y1y2x1x2+8=-8k21+2k2-81+2k2+8=-8k21+2k216k21+2k2=-8k2 16k2=-12所以直线AM和AN的斜率之积为定值-1 2;(2)解:假设存在满足题意的点P,设P(m,0),因为椭圆C的右焦点F(2,0),所以2k+n=0,即有n=-2k,所以直线l的方程为y=k(x-2).由y=k(x-2)x2+2y2-8=0,可得(1+2k2)x2-8k2x+8(k2-1)=0,设M(x3,y3),N(x4,y4),则有x3+x4=8k21+2k2,x3x4=8(k2-1)1+2k2;因为点F到直线NP的距离与点F到直线MP的距离相等,所以PF平分∠MPN,所以k PM+k PN=0.即y 3x 3-m +y 4x 4-m =k (x 3-2)x 3-m +k (x 4-2)x 4-m =k (x 3-2)(x 4-m )+k (x 3-m )(x 4-2)(x 3-m )(x 4-m )=k [2x 3x 4-(m +2)(x 3+x 4)+4m ](x 3-m )(x 4-m )=0,又因为k >0,所以2x 3x 4-(m +2)(x 3+x 4)+4m =0,代入x 3+x 4=8k 21+2k 2,x 3x 4=8(k 2-1)1+2k 2,即有4m -161+2k 2=0,解得m =4.故x 轴上存在定点P (4,0),使得点F 到直线NP 的距离与点F 到直线MP 的距离相等.2(2023·全国·模拟预测)在平面直角坐标系xOy 中,A -2,0 ,B 2,0 ,M -1,0 ,N 1,0 ,点P 是平面内的动点,且以AB 为直径的圆O 与以PM 为直径的圆O 1内切.(1)证明PM +PN 为定值,并求点P 的轨迹Ω的方程.(2)过点A 的直线与轨迹Ω交于另一点Q (异于点B ),与直线x =2交于一点G ,∠QNB 的角平分线与直线x =2交于点H ,是否存在常数λ,使得BH =λBG恒成立?若存在,求出λ的值;若不存在,请说明理由.【答案】(1)证明见解析,x 24+y 23=1(2)存在,λ=12【分析】(1)依题意可得OO 1 =2-PM 2,连接PN ,可得OO 1 =PN2,即可得到PM +PN 为定值,根据椭圆的定义得到点P 的轨迹是以M ,N 为焦点的椭圆,且2a =4,c =1,即可求出椭圆方程;(2)设Q x 0,y 0 ,G 2,y 1 ,H 2,y 2 ,直线AQ 的方程为x =my -2m ≠0 ,即可得到m =4y 1,再联立直线与椭圆方程,解出y 0,从而得到k QN ,k NH ,设∠BNH =θ,再根据二倍角的正切公式得到方程,即可得到y 2=12y 1,从而得解;【详解】(1)解:如图,以AB 为直径的圆O 与以PM 为直径的圆O 1内切,则OO 1 =AB 2-PM 2=2-PM2.连接PN ,因为点O 和O 1分别是MN 和PM 的中点,所以OO 1 =PN2.故有PN 2=2-PM2,即PN +PM =4,又4>2=MN,所以点P的轨迹是以M,N为焦点的椭圆.因为2a=4,c=1,所以b2=a2-c2=3,故Ω的方程为x24+y23=1.(2)解:存在λ=12满足题意.理由如下:设Q x0,y0,G2,y1,H2,y2.显然y1y2>0.依题意,直线AQ不与坐标轴垂直,设直线AQ的方程为x=my-2m≠0,因为点G在这条直线上,所以my1=4,m=4 y1 .联立x=my-2,3x2+4y2=12,得3m2+4y2-12my=0的两根分别为y0和0,则y0=12m3m2+4,x0=my0-2=6m2-83m2+4,所以k QN=y0x0-1=12m3m2+46m2-83m2+4-1=4mm2-4=4y14-y21,k NH=y2.设∠BNH=θ,则∠BNQ=2θ,则k QN=tan2θ,k NH=tanθ,所以tan2θ=2tanθ1-tan2θ=2y21-y22=4y14-y21,整理得y1-2y2y1y2+2=0,因为y1y2>0,所以y1-2y2=0,即y2=12y1.故存在常数λ=12,使得BH=λBG.3(2023·全国·高三专题练习)仿射变换是处理圆锥曲线综合问题中求点轨迹的一类特殊而又及其巧妙的方法,它充分利用了圆锥曲线与圆之间的关系,具体解题方法为将C:x2a2+y2b2=1(a>b>0)由仿射变换得:x =xa,y=yb,则椭圆x2a2+y2b2=1变为x 2+y 2=1,直线的斜率与原斜率的关系为k =abk,然后联立圆的方程与直线方程通过计算韦达定理算出圆与直线的关系,最后转换回椭圆即可.已知椭圆C:x2 a2+y2b2=1(a>b>0)的离心率为55,过右焦点F2且垂直于x轴的直线与C相交于A,B两点且AB=855,过椭圆外一点P作椭圆C的两条切线l1,l2且l1⊥l2,切点分别为M,N.(1)求证:点P的轨迹方程为x2+y2=9;(2)若原点O到l1,l2的距离分别为d1,d2,延长表示距离d1,d2的两条直线,与椭圆C交于Y,W两点,过O作OZ⊥YW交YW于Z,试求:点Z所形成的轨迹与P所形成的轨迹的面积之差是否为定值,若是,求出此定值;若不是,请求出变化函数.【答案】(1)证明见解析(2)是定值,定值为619π【分析】(1)利用仿射变换将椭圆方程变为圆的方程,设原斜率分别为k1,k2,k1k2=-1,则变换后斜率k 1⋅k 2=a2b2k1k2,设变换后坐标系动点Q x0,y0,过点Q x0,y0的直线为l:y-y0=k x-x0,将圆的方程和直线方程联立,利用直线和圆相切结合韦达定理求解即可;(2)由图中的垂直关系,利用等面积法S△OYW=12OYOW=12YWOZ和1|OY|2+1|OW|2=OY|2+OW|2 OY|2OW|2=|YW|2OW|2OY|2,结合椭圆的性质求解即可.【详解】(1)由仿射变换得:x =xa,y=yb,则椭圆x2a2+y2b2=1变为x 2+y 2=1设原斜率存在分别为k1,k2,k1k2=-1,变换后为k 1=abk1,k 2=abk2,所以k 1⋅k 2=a2b2k1k2=-a2b2=e2-1,设变换后的坐标系动点Q x0,y0,过点Q x0,y0的直线为l:y-y0=k x-x0l:kx-y-kx0-y0=0到原点距离为d=kx0-y0k2+1=1,即kx0-y02=k2+1⇒x20-1k2-2x0y0k+y20-1=0,由韦达定理得:k 1k 2=y20-1x20-1=-a2b2,化简得:a2x20+b2y20=a2+b2由于原坐标系中x0=xa,y0=yb⇒x=ax0,y=by0所以在原坐标系中轨迹方程为:x2+y2=a2+b2,由e=ca=55b2a=455解得a2=5b2=4,所以点P的轨迹方程为x2+y2=9,当切线斜率不存在时,由椭圆方程x25+y24=1易得P点在x2+y2=9上.(2)如图所示延长OY交l1于N,延长OW交l2于M,由题意可知∠GPM=∠OGP=∠OHP=π2,所以四边形OGPH为矩形,∠YOW=π2,所以S△OYW=12OYOW=12YWOZ,且1|OY|2+1|OW|2=OY|2+OW|2OY|2OW|2=|YW|2OW|2OY|2,|YW |2OW |2OY |2分子分母同乘|OZ |2得4S 24OZ 2S 2=1OZ 2=1OY 2+1OW 2,因为OY ⊥OW ,当直线OY ,OW 斜率存在时,设l OY :y =k 3x ,l OW :y =-1k 3x ,由x 2a 2+y 2b 2=1y =k 3x解得x 2Y=a 2b 2b 2+a 2k 23,y 2Y =a 2b 2k 23b 2+a 2k 23,所以OY 2=a 2b 21+k 23 b 2+a 2k 23,由x 2a 2+y 2b 2=1y =-1k 3x解得x 2W=a 2b 2k 23b 2k 23+a 2,y 2W =a 2b 2b 2k 23+a 2,所以OW 2=a 2b 21+k 23 b 2k 23+a2,所以1OY 2+1OW 2=b 2+a 2k 23a 2b 2(1+k 23)+b 2k 23+a 2a 2b 2(1+k 23)=a 2+b 2a 2b 2,当斜率不存在时仍成立,所以1|OZ |2=a 2+b 2a 2b 2,OZ 2=x 2+y 2=a 2b 2a 2+b 2=209,所以Z 所形成的轨迹与P 所形成的轨迹的面积之差=9-209 π=619π是定值.4(2023·湖南·湖南师大附中校联考模拟预测)在平面直角坐标系xOy 中,已知椭圆W :x 2a 2+y 2b2=1(a >b >0)的离心率为22,椭圆W 上的点与点P 0,2 的距离的最大值为4.(1)求椭圆W 的标准方程;(2)点B 在直线x =4上,点B 关于x 轴的对称点为B 1,直线PB ,PB 1分别交椭圆W 于C ,D 两点(不同于P 点).求证:直线CD 过定点.【答案】(1)x 28+y 24=1(2)证明见解析【分析】(1)根据离心率可得a =2b =2c ,设点T m ,n 结合椭圆方程整理得TP =-(n +2)2+8+2b 2,根据题意分类讨论求得b =2,即可得结果;(2)设直线CD 及C ,D 的坐标,根据题意结合韦达定理分析运算,注意讨论直线CD 的斜率是否存在.【详解】(1)设椭圆的半焦距为c ,由椭圆W 的离心率为22,得a =2b =2c ,设点T m ,n 为椭圆上一点,则m 22b 2+n 2b2=1,-b ≤n ≤b ,则m 2=2b 2-2n 2,因为P 0,2 ,所以TP =m 2+(n -2)2=2b 2-2n 2+n 2-4n +4=-(n +2)2+8+2b 2,①当0<b <2时,|TP |max =-(-b +2)2+8+2b 2=4,解得b =2(舍去);②当b ≥2时,|TP |max =8+2b 2=4,解得b =2;综上所述:b =2,则a =22,c =2,故椭圆W 的标准方程为x 28+y 24=1.(2)①当CD 斜率不存在时,设C x 0,y 0 ,-22<x 0<22且x 0≠0,则D x 0,-y 0 ,则直线CP 为y =y 0-2x 0x +2,令x =4,得y =4y 0-8x 0+2,即B 4,4y 0-8x 0+2,同理可得B 14,-4y 0-8x 0+2.∵B 与B 1关于x 轴对称,则4y 0-8x 0+2+-4y 0-8x 0+2=0,解得x 0=4>22,矛盾;②当直线CD 的斜率存在时,设直线CD 的方程为y =kx +m ,m ≠2,设C x 1,y 1 ,D x 2,y 2 ,其中x 1≠0且x 2≠0,联立方程组y =kx +mx 28+y 24=1,消去y 化简可得2k 2+1 x 2+4kmx +2m 2-8=0,Δ=16k 2m 2-42k 2+1 2m 2-8 =88k 2+4-m 2 >0,则m 2<8k 2+4,所以x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-81+2k 2,由P 0,2 ,可得k PC =y 1-2x 1,k PD =y 2-2x 2,所以直线PC 的方程为y =y 1-2x 1x +2,令x =4,得y =4y 1-8x 1+2,即4,4y 1-8x 1+2,直线PD 的方程为y =y 2-2x 2x +2,令x =4,得y =4y 2-8x 2+2,即4,4y 2-8x 2+2,因为B 1和B 关于x 轴对称,则4y 1-8x 1+2+4y 2-8x 2+2=0,把y 1=kx 1+m ,y 2=kx 2+m 代入上式,则4kx 1+m -8x 1+2+4kx 2+m -8x 2+2=0,整理可得1+2k x 1x 2+m -2 x 1+x 2 =0,则1+2k ×2m 2-81+2k 2+m -2 ×-4km1+2k2=0,∵m ≠2,则m -2≠0,可得1+2k ×m +2 -2km =0,化简可得m =-4k -2,则直线CD 的方程为y =kx -4k -2,即y +2=k x -4 ,所以直线CD 过定点4,-2 ;综上所述:直线CD 过定点4,-2 .【点睛】方法定睛:过定点问题的两大类型及解法(1)动直线l 过定点问题.解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).(2)动曲线C 过定点问题.解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.5(2023春·四川眉山·高二校考阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,短轴长为2.(1)求椭圆C 的标准方程;(2)点D (4,0),斜率为k 的直线l 不过点D ,且与椭圆C 交于A ,B 两点,∠ADO =∠BDO (O 为坐标原点).直线l 是否过定点?若过定点,求出定点坐标;若不过定点,说明理由.【答案】(1)x 24+y 2=1;(2)过定点,1,0 .【分析】(1)根据已知条件列方程即可解得a ,b 值,方程可求解;(2)设直线l 的方程为y =kx +m ,联立椭圆方程结合韦达定理得x 1,x 2关系,又∠ADO =∠BDO 得k AD +k BD =0,代入坐标化简即可求解.【详解】(1)由题意可得2b =2ca =32c 2=a 2-b 2,解得a 2=4,b 2=1所以椭圆C 的标准方程为x 24+y 2=1.(2)设直线l 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 联立y =kx +mx 24+y 2=1整理得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=8km 2-44k 2+1 (4m 2-4)>0,即4k 2-m 2+1>0又x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1因为∠ADO =∠BDO ,所以k AD +k BD =0,所以y 1x 1-4+y 2x 2-4=kx 1+m x 2-4 +kx 2+m x 1-4x 1-4 x 2-4 =0所以2kx 1x 2+(m -4k )x 1+x 2 -8m =0,即2k ⋅4m 2-44k 2+1+(m -4k )⋅-8km 4k 2+1-8m =0整理得8k +8m =0,即m =-k ,此时Δ=3k 2+1>0则直线l 的方程为y =kx -k ,故直线l 过定点1,0 .6(2023·内蒙古赤峰·校联考模拟预测)已知椭圆C :y 2a 2+x 2b2=1a >b >0 的离心率为12,且经过点6,2 ,椭圆C 的右顶点到抛物线E :y 2=2px p >0 的准线的距离为4.(1)求椭圆C 和抛物线E 的方程;(2)设与两坐标轴都不垂直的直线l 与抛物线E 相交于A ,B 两点,与椭圆C 相交于M ,N 两点,O 为坐标原点,若OA ⋅OB=-4,则在x 轴上是否存在点H ,使得x 轴平分∠MHN ?若存在,求出点H 的坐标;若不存在,请说明理由.【答案】(1)y 212+x 29=1;y 2=4x(2)存在;H 92,0 【分析】(1)依题意得到方程组,即可求出a 2,b 2,从而得到椭圆方程,再求出椭圆的右顶点,即可求出p ,从而求出抛物线方程;(2)设直线l 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 ,联立直线与抛物线方程,消元、列出韦达定理,根据OA ⋅OB=-4得到m =-2k ,再假设在x 轴上存在点H x 0,0 ,使得x 轴平分∠MHN ,则直线HM 的斜率与直线HN 的斜率之和为0,设M x 3,y 3 ,N x 4,y 4 ,联立直线与椭圆方程,消元、列出韦达定理,由y 3x 3-x 0+y 4x 4-x 0=0,即可求出x 0,从而求出H 的坐标;【详解】(1)解:由已知得c a =124a 2+6b 2=1a 2=b 2+c 2,∴a 2=12,b 2=9.∴椭圆C 的方程为y 212+x 29=1.∴椭圆C 的右顶点为3,0 .∴3+p2=4,解得p =2.∴抛物线E 的方程为y 2=4x .(2)解:由题意知直线l 的斜率存在且不为0.设直线l 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 .由y =kx +my 2=4x消去y ,得k 2x 2+2km -4 x +m 2=0.∴Δ1=2km -4 2-4k 2m 2=-16km +16>0,∴km <1.∴x 1+x 2=4-2km k 2,x 1x 2=m 2k2.∴y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2=km 4-2km k2+2m 2=4m k .∴OA ⋅OB =x 1x 2+y 1y 2=m 2k2+4m k =-4.∴m k +2 2=0,∴mk=-2.∴m =-2k ,此时km =-2k 2<1.∴直线l 的方程为y =k x -2 .假设在x 轴上存在点H x 0,0 ,使得x 轴平分∠MHN ,则直线HM 的斜率与直线HN 的斜率之和为0,设M x 3,y 3 ,N x 4,y 4 ,由y =k x -2y 212+x 29=1消去y ,得3k 2+4 x 2-12k 2x +12k 2-36=0.∴Δ2=12k 2 2-43k 2+4 12k 2-36 >0,即5k 2+12>0恒成立.∴x 3+x 4=12k 23k 2+4,x 3x 4=12k 2-363k 2+4.∵y 3x 3-x 0+y 4x 4-x 0=0,∴k x 3-2 x 4-x 0 +k x 4-2 x 3-x 0 =0.∴2x 3x 4-x 0+2 x 3+x 4 +4x 0=0.∴24k 2-723k 2+4-x 0+2 12k 23k 2+4+4x 0=0.∴16x 0-723k 2+4=0.解得x 0=92.∴在x 轴上存在点H 92,0 ,使得x 轴平分∠MHN .【点睛】本题考查直线与圆锥曲线的综合问题,考查椭圆的方程以及韦达定理法在圆锥曲线综合中的应用,属于难题;在解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.7(2023·宁夏·六盘山高级中学校考一模)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为B 1,若△F 1B 1F 2为等边三角形,且点P 1,32在椭圆E 上.(1)求椭圆E 的方程;(2)设椭圆E 的左、右顶点分别为A 1,A 2,不过坐标原点的直线l 与椭圆E 相交于A 、B 两点(异于椭圆E 的顶点),直线AA 1、BA 2与y 轴的交点分别为M 、N ,若|ON |=3|OM |,证明:直线过定点,并求该定点的坐标.【答案】(1)x 24+y 23=1(2)点1,0 或4,0【分析】(1)由已知条件,椭圆的定义及a ,b ,c 的关系可知a 2=4c 2和b 2=3c 2,再设出椭圆的方程,最后将点代入椭圆的方程即可求解;(2)设点A x 1,y 1 ,B x 2,y 2 ,由直线AA 1的方程即可求出点M 的坐标,由BA 2的方程即可求出点N 的坐标,由已知条件可知5x 1+x 2 -2x 1x 2-8=0,分直线AB 的斜率存在和直线AB 的斜率不存在两种情况分别求解,得出直线AB 的方程,即可判断出直线恒过定点的坐标.【详解】(1)∵△F 1B 1F 2为等边三角形,且B 1F 1 +B 1F 2 =2a ,∴a =2c ,又∵a 2=b 2+c 2,∴b 2=3c 2,设椭圆的方程为x 24c 2+y 23c 2=1,将点P 1,32 代入椭圆方程得14c 2+912c2=1,解得c 2=1,所以椭圆E 的方程为x 24+y 23=1.(2)由已知得A 1-2,0 ,A 22,0 ,设A x 1,y 1 ,B x 2,y 2 ,则直线AA 1的斜率为y 1x 1+2,直线AA 1的方程为y =y 1x 1+2x +2 ,即点M 坐标为0,2y 1x 1+2,直线BA 2的斜率为y 2x 2-2,直线AA 1的方程为y =y 2x 2-2x -2 ,即点N 坐标为0,-2y 2x 2-2,∵|ON |=3|OM |,∴|ON |2=9|OM |2,∴4y 22x 2-2 2=36y 21x 1+2 2,又∵y 21=3-3x 214=12-3x 214,y 22=3-3x 224=12-3x 224,∴4-x 22x 2-2 2=9×4-x 21x 1+22,即2+x 22-x 2=92-x 1 2+x 1,整理得5x 1+x 2 -2x 1x 2-8=0,①若直线AB 的斜率存在时,设直线AB 的方程为y =kx +b ,将直线方程与椭圆方程联立y =kx +bx 24+y 23=1得3+4k 2 x 2+8kbx +4b 2-12=0,其中Δ=64k 2b 2-43+4k 2 4b 2-12 =1612k 2-3b 2+9 >0,x 1+x 2=-8kb 3+4k 2,x 1x 2=4b 2-123+4k 2,即-5×8kb 3+4k 2-2×4b 2-123+4k2-8=0,4k 2+5kb +b 2=0,4k +b k +b =0,所以b =-4k 或b =-k ,当b =-4k 时,直线AB 的方程为y =kx -4k =k x -4 ,此时直线AB 恒过点4,0 ,当b =-k 时,直线AB 的方程为y =kx -k =k x -1 ,此时直线AB 恒过点1,0 ,②若直线AB 的斜率不存在时x 1=x 2,由2+x 22-x 2=92-x 1 2+x 1得2+x 22-x 2=92-x 2 2+x 2,即x 22-5x 2+4=0,解得x 2=1或x 2=4,此时直线AB 的方程为x =1或x =4,所以此时直线AB 恒过点1,0 或4,0 ,综上所述,直线AB 恒过点1,0 或4,0 .8(2023·江苏扬州·仪征中学校考模拟预测)已知F 1(-2,0),F 2(2,0)为椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,且A 2,53为椭圆上的一点.(1)求椭圆E 的方程;(2)设直线y =-2x +t 与抛物线y 2=2px (p >0)相交于P ,Q 两点,射线F 1P ,F 1Q 与椭圆E 分别相交于M 、N .试探究:是否存在数集D ,对于任意p ∈D 时,总存在实数t ,使得点F 1在以线段MN 为直径的圆内?若存在,求出数集D 并证明你的结论;若不存在,请说明理由.【答案】(1)x 29+y 25=1(2)存在,D =(5,+∞),证明见解析【分析】(1)求出点A 2,53到两焦点的距离,再用椭圆的定义可得a =3,结合b 2=a 2-c 2可得b 2,从而可得椭圆的方程;(2)直线l 与抛物线联立,结合判别式有p +4t >0,要使得点F 1在以线段MN 为直径的圆内,根据题意,有F 1P ⋅F 1Q<0,结合韦达定理可得p >5,从而可证明问题.【详解】(1)由题意知c =2,A 2,53为椭圆上的一点,且AF 2垂直于x 轴,则AF 2 =53,AF 1 =(2+2)2+53 2=133,所以2a =AF 1 +AF 2 =133+53=6,即a =3,所以b 2=32-22=5,故椭圆的方程为x 29+y 25=1;(2)l 方程为y =-2x +t ,联立抛物线方程,得y 2=2px y =-2x +t ,整理得y 2+py -pt =0,则Δ=p 2+4tp >0,则p +4t >0①,设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=-p ,y 1y 2=-pt ,则x 1+x 2=t +p 2,x 1x 2=(y 1y 2)24p 2=t 24,由F 1的坐标为(-2,0),则F 1P =(x 1+2,y 1),F 1Q=(x 2+2,y 2),由F 1M 与F 1P 同向,F 1N 与F 1Q 同向,则点F 1在以线段MN 为直径的圆内,则F 1M ⋅F 1N <0,则F 1P ⋅F 1Q<0,则(x 1+2)(x 2+2)+y 1y 2<0,即x 1x 2+2(x 1+x 2)+4+y 1y 1<0,则t 24+2t +p 2 +4-pt <0,即t 24+(2-p )t +p +4<0②,当且仅当Δ=(2-p )2-4×14(p +4)>0,即p >5,总存在t >-p4使得②成立,且当p >5时,由韦达定理可知t 24+(2-p )t +p +4=0的两个根为正数,故使②成立的t >0,从而满足①,故存在数集D =(5,+∞),对任意p ∈D 时,总存在t ,使点F 1在线段MN 为直径的圆内.9(2023·四川绵阳·四川省绵阳南山中学校考模拟预测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右顶点分别为M 1、M 2,短轴长为23,点C 上的点P 满足直线PM 1、PM 2的斜率之积为-34.(1)求C 的方程;(2)若过点1,0 且不与y 轴垂直的直线l 与C 交于A 、B 两点,记直线M 1A 、M 2B 交于点Q .探究:点Q是否在定直线上,若是,求出该定直线的方程;若不是,请说明理由.【答案】(1)x 24+y 23=1(2)点Q 在定直线x =4上【分析】(1)设点P x 0,y 0 ,则x 0≠±a ,可得出y 20=b 21-x 20a2,利用斜率公式结合已知条件可得出b 2=34a 2,再利用椭圆的短轴长可得出b 2、a 2的值,即可得出椭圆C 的方程;(2)设l 的方程为x =my +1,设点A x 1,y 1 、B x 2,y 2 ,设点Q x ,y ,将直线l 的方程与椭圆C 的方程联立,列出韦达定理,写出直线M 1A 、M 2B 的方程,联立这两条直线方程,可得出点Q 的横坐标,即可得出结论.【详解】(1)解:设P x 0,y 0 ,则x 0≠±a ,且x 20a 2+y 20b 2=1,所以,y 20=b 21-x 20a2,则k PM 1⋅k PM 2=y 0x 0+a ⋅y 0x 0-a =y20x 20-a 2=b 21-x 20a 2x 20-a2=-b 2a2=-34,故b 2=34a 2①,又2b =23②,联立①②,解得a 2=4,b 2=3,故椭圆C 的方程为x 24+y 23=1.(2)解:结论:点Q 在定直线上x =4.由(1)得,M 1-2,0 、M 22,0 ,设Q x ,y ,设直线l 的方程为x =my +1,设点A x 1,y 1 、B x 2,y 2 ,联立x 24+y 23=1x =my +1,整理得3m 2+4 y 2+6my -9=0,Δ=36m 2+363m 2+4 =144m 2+1 >0,∴y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4, 直线M 1A 的方程为y =y 1x 1+2x +2 ,直线M 2B 的方程为y =y 2x 2-2x -2 ,所以,y 1x 1+2x +2 =y 2x 2-2x-2 ,可得x +2x -2=y 2x 1+2 y 1x 2-2 =y 2my 1+3 y 1my 2-1 =my 1y 2+3y 2my 1y 2-y 1=-9m 3m 2+4+3-6m 3m 2+4-y 1 -9m 3m 2+4-y 1=-27m 3m 2+4-3y 1-9m 3m 2+4-y 1=3,解得x =4,因此,点Q 在直线x =4上.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 、x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.10(2023·全国·高三专题练习)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)内切于矩形ABCD ,其中AB ,CD 与x 轴平行,直线AC ,BD 的斜率之积为-12,椭圆的焦距为2.(1)求椭圆E 的标准方程;(2)椭圆上的点P ,Q 满足直线OP ,OQ 的斜率之积为-12,其中O 为坐标原点.若M 为线段PQ 的中点,则MO 2+MQ 2是否为定值?如果是,求出该定值;如果不是,说明理由.【答案】(1)x 22+y 2=1(2)是定值,定值为32【分析】(1)由题意求出直线AC ,BD 的斜率,即可求出-b 2a2=-12,又因为焦距为2,即可就出椭圆的标准方程.(2)方法一:联立直线PQ 与椭圆的方程由k OP ⋅k OQ =-12可求出2t 2=1+2k 2,又因为:MO 2+MQ 2=x 21+x 222+y 21+y 222,又点P ,Q 在椭圆上,代入即可求出答案.方法二:由P ,Q 是椭圆C 上的点,可得x 21+2y 21=2x 22+2y 22=2,联立直线PQ 与椭圆的方程由k OP ⋅k OQ =-12可求出y 1=-x 1x 22y 2,代入化简得x 21=2y 22,即可求出答案.【详解】(1)由题意,c =1,则A -a ,-b ,B a ,-b ,C a ,b ,D -a ,b ,所以k AC =2b 2a =b a ,k BD =2b-2a=b -a ,所以k AC ⋅k BD =-b 2a2=-12,解得:a =2,=1,∴椭圆的标准方程为x 22+y 2=1.(2)(方法一)设P x 1,y 1 ,Q x 2,y 2 ,则M x 1+x 22,y 1+y 22.设直线PQ :y =kx +t ,由y =kx +t x 22+y 2=1,得:1+2k 2 x 2+4ktx +2t 2-2=0,x 1+x 2=-4kt1+2k2x 1x 2=2t 2-21+2k2,由k OP ⋅k OQ =-12,得x 1x 2+2y 1y 2=1+2k 2 x 1x 2+2kt x 1+x 2 +2t 2=0,代入化简得:2t 2=1+2k 2.∵MO 2+MQ 2=x 1+x 22 2+y 1+y 22 2+x 1-x 1+x 22 2+y 1-y 1+y 222=x 21+x 222+y 21+y 222,又点P ,Q 在椭圆上,∴x 212+y 21=1,x 222+y 22=1,即x 21+x 224+y 21+y 222=1,∵x 21+x 22=x 1+x 2 2-2x 1x 2=-4kt 2t 22-2⋅2t 2-22t 2=2,∴x 21+x 224=12.∴MO 2+MQ 2=x 21+x 224+y 21+y 222+x 21+x 224=32.即MO 2+MQ 2=32为定值.(方法二)由P ,Q 是椭圆C 上的点,可得x 21+2y 21=2x 22+2y 22=2 ,把y 1=-x 1x 22y 2代入上式,化简x 21=2y 22,得y 21+y 22=1,x 21+x 22=2,MO 2+MQ 2=12x 21+x 22+y 21+y 22 =32.11(2023春·湖北襄阳·高三襄阳五中校考阶段练习)已知离心率为22的椭圆C :x 2a 2+y 2b2=1a >b >0 的左焦点为F ,左、右顶点分别为A 1、A 2,上顶点为B ,且△A 1BF 的外接圆半径大小为3.(1)求椭圆C 方程;(2)设斜率存在的直线l 交椭圆C 于P ,Q 两点(P ,Q 位于x 轴的两侧),记直线A 1P 、A 2P 、A 2Q 、A 1Q 的斜率分别为k 1、k 2、k 3、k 4,若k 1+k 4=53k 2+k 3 ,求△A 2PQ 面积的取值范围.【答案】(1)x 24+y 22=1(2)0,5830 【分析】(1)根据椭圆离心率确定椭圆中a ,b ,c 的关系,再结合正弦定理的推论确定外接圆半径与边角关系即可得c 的值,从而求得椭圆方程;(2)由题可设直线l :x =ty +m t ≠0 ,P x 1,y 1 ,Q x 2,y 2 ,联立直线与椭圆即可得交点坐标关系,根据斜率的计算式可得k 1k 2=-12,k 3k 4=-12,再由已知等式k 1+k 4=53k 2+k 3 确定k 2k 3=-310,由坐标关系进行转化可求得m 的值,求解△A 2PQ 面积的表达式,结合函数性质即可得△A 2PQ 面积的取值范围.【详解】(1)根据椭圆C 的离心率为22知a =2c ,所以b =a 2-c 2=c ,如图,则OF =OB =c则在△A 1BF 中,可得∠BFA 1=3π4,A 1B =OA 1 2+OB 2=3c ,由正弦定理得A 1Bsin ∠BFA 1=3c22=6c =2×3,解得c =2,所以a =2,b =2,所以椭圆C 的方程为x 24+y 22=1.(2)由条件知直线l 的斜率不为0,设直线l :x =ty +m t ≠0 ,P x 1,y 1 ,Q x 2,y 2 ,联立x =ty +mx 24+y 22=1,得t 2+2 y 2+2mty +m 2-4=0,Δ>0得2t 2+4>m 2于是y 1+y 2=-2mt t 2+2,y 1y 2=m 2-4t 2+2,因为A 1-2,0 ,A 22,0 ,P x 1,y 1 代入椭圆方程得x 214+y 212=1,所以k 1k 2=y 1x 1+2⋅y 1x 1-2=y 21x 21-4=21-x 214 x 21-4=-12,同理k 3k 4=-12,于是k 1=-12k 2,k 4=-12k 3,因为k 1+k 4=53k 2+k 3 ,所以-12k 2-12k 3=53k 2+k 3 ,即-k 2+k 32k 2k 3=53k 2+k 3 .又直线l 的斜率存在,所以k 2+k 3≠0,于是k 2k 3=-310,所以y 1x 1-2⋅y 2x 2-2=-310,即10y 1y 2+3x 1-2 x 2-2 =0,又x 1=ty 1+m ,x 2=ty 2+m ,所以10y 1y 2+3ty 1+m -2 ty 2+m -2 =0,整理得3t 2+10 y 1y 2+3t m -2 y 1+y 2 +3m -2 2=0,所以3t 2+10 m 2-4t 2+2 +3t m -2 -2mt t 2+2+3m -2 2=0,化简整理得m -2 2m +1 =0,又P 、Q 位于x 轴的两侧,所以y 1y 2=m 2-4t 2+2<0,解得-2<m <2,所以m =-12,此时直线l 与椭圆C 有两个不同的交点,于是直线l 恒过定点D -12,0 .当m =-12时,y 1+y 2=t t 2+2,y 1y 2=-154t 2+2,△A 2PQ 的面积S △A 2PQ =12A 2D ⋅y 1-y 2 =12×52×y 1+y 2 2-4y 1y 2=54t t 2+22-4-154t 2+2 =54⋅16t 2+30t 2+2,令16t 2+30=λ,因为直线l 的斜率存在,则λ>30,t 2=λ2-3016,于是S △A 2PQ =54⋅16λλ2+2=20λ+2λ,又函数y =20λ+2λ在30,+∞ 上单调递减,所以△A 2PQ 面积的取值范围为0,5830 .【点睛】关键点点睛:本题考查了直线与椭圆相交的坐标关系,利用坐标运算解决直线斜率关系及面积关系.解决本题的关键是确定直线直线A 1P 、A 2P 、A 2Q 、A 1Q 之间的斜率关系,结合椭圆上的任意一点与左右顶点之间的斜率关系,可将四个斜率值简化为两个斜率关系,即可减少位置数,从而利用坐标运算及坐标关系确定所设直线过定点,于是简化所求面积表达式中的变量个数从而可结合函数关系确定取值范围,得以解决问题.12(2023·江西南昌·统考模拟预测)已知A 2,0 ,B 0,1 是椭圆E :x 2a 2+y 2b2=1a >b >0 的两个顶点.(1)求椭圆E 的标准方程;(2)过点P 2,1 的直线l 与椭圆E 交于C ,D ,与直线AB 交于点M ,求PM PC +PMPD的值.【答案】(1)x 24+y 2=1(2)PM PC +PM PD =2【分析】(1)根据椭圆顶点坐标直接可得椭圆方程;(2)设直线方程,可得点M ,联立直线与椭圆结合韦达定理,再根据两点间距离化简可得解.【详解】(1)由A 2,0 ,B 0,1 是椭圆E :x 2a 2+y 2b2=1a >b >0 的两个顶点,得a =2,b =1,即E :x 24+y 2=1;(2)当直线l 的斜率不存在时,直线l 与椭圆有且只有一个公共点,不成立,所以设C x 1,y 1 ,D x 2,y 2 ,M x 3,y 3 ,直线l 的斜率为k ,则PC =x P -x 1 1+k 2=2-x 1 1+k 2,同理PD =2-x 2 1+k 2,PM =2-x 3 1+k 2,则PM PC+PM PD=2-x 32-x 1+2-x 32-x 2.设l :y -1=k x -2 ,而AB :x 2+y =1,联立解得x 3=4k2k +1,所以2-x 3=2-4k 2k +1=22k +1;联立直线l 与椭圆E 方程,消去y 得:4k 2+1 x 2-8k 2k -1 x +16k 2-16k =0,所以x 1+x 2=8k 2k -1 4k 2+1,x 1x 2=16k 2-16k 4k 2+1,所以12-x 1+12-x 2=-x 1+x 2-4x 1-2 x 2-2=-x 1+x 2-4x 1x 2-2x 1+x 2 +4=-8k 2k -14k 2+1-416k 2-16k4k 2+1-2×8k 2k -1 4k 2+1+4=2k +1,所以2-x 32-x 1+2-x 32-x 2=22k +1×2k +1 =2,即PM PC +PMPD =2.【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.。
椭圆中的最值问题与定点、定值问题解决与椭圆有关的最值问题的常用方法 (1)利用定义转化为几何问题处理;(2)利用数形结合,挖掘数学表达式的几何特征进而求解; (3)利用函数最值得探求方法,将其转化为区间上的二次 函数的最值来处理,此时应注意椭圆中x 、y 的取值范围;(4)利用三角替代(换元法)转化为 三角函数的最值问题处理。
一 、椭圆上一动点与焦点的距离的最值问题 椭圆上一动点与焦点的距离称为焦半径,椭圆上一动点与长轴的两端点重合时,动点与焦点取得最大值a+c (远日点)、最小值a -c (近日点)。
推导:设点),(00y x P 为椭圆)0( 12222>>=+b a by a x 上的任意一点,左焦点为)0,(1c F -,2201)(||y c x PF ++=,由 1220220=+b y a x 得)1(22020ax b y -=,将其代入 20201)(||y c x PF ++=并化简得a x acPF +=01||。
所以,当点),(00y x P 为长轴的右端点)0,(2a A 重合时,a c a a acPF +=+⋅=max 1||;当点),(00y x P 为长轴的左端点)0,(1a A -重合时。
c a a a acPF -=+-⋅=)(||min 1。
当焦点为右焦点)0,(2c F 时,可类似推出。
1. (2015浙江卷)如图,已知椭圆 1222=+y x 上两个 不同的点A 、B 关于直线21+=mx y 对称。
(1)求实数m 的取值范围;(2)求AOB ∆面积的最大值(O 为坐标原点)。
解:(1)由题意知0≠m ,可设直线AB 的方程为b x my +-=1。
联立⎪⎩⎪⎨⎧+-==+bx m y y x 11222,消y 去,得012)121(222=-+-+b x m b x m 。
因为直线b x my +-=1与椭圆 1222=+y x 有两个不同的交点, 所以042222>++-=∆m b 。
椭圆曲线中的定点定值问题的四种方法
椭圆曲线密码学是现代密码学领域中的一个重要分支,其核心是解决椭圆曲线上的定点定值问题。
本文将介绍椭圆曲线中的定点定值问题及其四种常用解决方法。
定点定值问题是指给定一个椭圆曲线上的点P和整数k,求kP 的值。
下面将介绍四种方法来解决这个问题:
1. 变形重复平方算法(Double-and-Add Algorithm):这是最简单和直观的方法,通过将k表示为二进制形式,并根据位的值来迭代地进行计算。
当某一位为1时,将点P加到结果上;当某一位为0时,将点P进行加法运算。
该算法的时间复杂度为O(log(k))。
2. NAF (Non-Adjacent Form)方法:在变形重复平方算法的基础上,在k表示为二进制时可以选择使用加1或减1的方式,使得连续1的位数尽可能少。
这样可以减少加法运算的次数,进而提高效率。
3. 有穷域上的运算法则:将椭圆曲线上的点坐标和系数限定在一个有限域中,通过定义该有限域上的加法和乘法运算法则来求解定点定值问题。
这种方法在实际应用中经常使用,可以利用有限域运算的高效性。
4. 同态映射方法:根据椭圆曲线的同态性质,将定点定值问题转化为其他更容易求解的问题,并利用同态映射的特性进行计算。
这种方法具有较高的复杂性和灵活性,适用于特定的情况。
通过掌握这四种方法,我们可以更好地理解和应用椭圆曲线密码学中的定点定值问题。
根据实际情况选择合适的方法可以提高计算效率和保证系统的安全性。
椭圆定点定值问题
椭圆的定点定值问题是指给定一个椭圆和一个定点,在这个椭圆上找到一个点,使得这个点到给定定点距离等于给定值。
具体来说,设椭圆的标准方程为 $\frac{x^2}{a^2} +
\frac{y^2}{b^2} = 1$ ,给定定点为 $(h,k)$ ,给定值为 $d$ ,
求点 $(x,y)$ 满足 $\sqrt{(x-h)^2 + (y-k)^2} = d$ 。
为了解决这个问题,可以将椭圆方程代入距离方程,得到
$ \sqrt{(x-h)^2 + (y-k)^2} = d$ ,展开并平方,得到 $ (x-h)^2 + (y-k)^2 = d^2$ 。
将椭圆标准方程 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 代入
上式,可得 $ \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = d^2$ 。
进一步整理,并消去分母,得到 $ b^2(x-h)^2 + a^2(y-k)^2 =
a^2b^2d^2$ 。
这个方程实际上是一个椭圆,其长轴和短轴分别为 $2a$ 和
$2b$ ,定点为 $(h,k)$ ,到定点距离之和为 $2d$ 。
因此,解
决椭圆的定点定值问题就转化为了找到满足这个新椭圆方程的点。
具体求解这个椭圆方程可能需要使用数值方法或者图形方法,先确定椭圆的长轴和短轴长度,然后在椭圆上画出定点,并找到到定点距离之和为给定值的点。
椭圆中的定点和定值问题作者:张晓帆来源:《新课程·下旬》2019年第09期在椭圆问题中,部分几何量和参数无关,不会随着参数大小的改变而改变,而定点和定值这两个几何量和参数无关,这就构成了椭圆中的定点和定值问题。
解决此类问题的关键在于引进参数表示直线方程、数量积、比例关系等,然后根据等式恒成立、等式变形、数式变换等寻找不受参数影响的量。
解决椭圆定点定值问题不仅能培养学生科学探究和逻辑思维的能力以及科学的学习态度和坚持不懈的学科精神,也培养了学生勇于创新、求真求实的思想品质。
本文给出椭圆中定点和定值问题的解题策略,希望对广大师生有所帮助。
类型一:定点问题策略:合理选择参变量证明直线恒过定点问题评注:本题要求证明直线恒过定点问题,为了利用好两直线斜率之和为-1的条件,需设出B、C两点的坐标,从而表示出两条直线的斜率。
而在设参数问题的选取上,常用的方案有两种,设直线或者设点,本题中,两者兼具,只有合理选择参数,才能减少运算量,进而求出定点的坐标。
在本题第2小题的解题过程中,也有不少学生采用联立消去x的方法进行求解,这种方法则涵盖了斜率不存在的情况,同样值得肯定。
而在课堂上,我也投影展示了这两种不同的方法,并对这两种方法进行了及时的肯定。
学生在进行方法选择的同时也锻炼了自身的科学探究和逻辑思维的能力。
反思与感悟要解决椭圆中的定点问题,若题设条件中给出定点坐标,则应合理选择参变量进行验证;若题设并未给出定点坐标,则首先需要确定定点的坐标,常用的方法是利用从特殊到一般的数学思想方法,先通过符合题设条件的一些特殊情况确定定点的坐标,找到这个定点,明确解决问题的方向与目标,然后再进一步探究和推导,得出一般情况下的结论。
类型二:定值问题策略:用点坐标作為参变量代入化简计算定值例1(普陀区2018.12高三模拟)评注:本题探究两条直线斜率的关系,选择用椭圆上任意一点的坐标作为参变量,利用直线斜率的坐标公式,表示出两条直线的斜率,从而表示出其乘积。
椭圆中的最值问题与定点、定值问题解决与椭圆有关的最值问题的常用方法(1)利用定义转化为几何问题处理;(2)利用数形结合,挖掘数学表达式的几何特征进而求解;(3)利用函数最值得探求方法,将其转化为区间上的二次函数的最值来处理,此时应注意椭圆中x 、y 的取值范围;(4)利用三角替代(换元法)转化为三角函数的最值问题处理。
一、椭圆上一动点与焦点的距离的最值问题椭圆上一动点与焦点的距离称为焦半径,椭圆上一动点与长轴的两端点重合时,动点与焦点取得最大值a+c (远日点)、最小值a-c (近日点)。
推导:设点),(00y x P 为椭圆)0(12222>>=+b a b y a x 上的任意一点,左焦点为)0,(1c F -,20201)(||y c x PF ++=,由1220220=+b y ax 得)1(22020a x b y -=,将其代入20201)(||y c x PF ++=并化简得a x a cPF +=01||。
所以,当点),(00y x P 为长轴的右端点)0,(2a A 重合时,a c a a acPF +=+×=max 1||;当点),(00y x P 为长轴的左端点)0,(1a A -重合时。
c a a a a cPF -=+-×=)(||min 1。
当焦点为右焦点)0,(2c F 时,可类似推出。
1.(2015浙江卷)如图,已知椭圆1222=+y x 上两个不同的点A 、B 关于直线21+=mx y 对称。
(1)求实数m 的取值范围;(2)求AOB D 面积的最大值(O 为坐标原点)。
解:(1)由题意知0¹m ,可设直线AB 的方程为b x my +-=1。
联立ïîïíì+-==+bx m y y x 11222,消y 去,得012)121(222=-+-+b x m b x m 。
因为直线b x m y +-=1与椭圆1222=+y x 有两个不同的交点,所以042222>++-=D mb 。
定点定值重要结论定理1:已知动点A 在椭圆:C 12222=+bx a y )0(>>b a 上,动点B 在直线c ab x =(或者cabx -=)上,且满足OA OB ⊥,直线AB 与圆b y x =+22相切 推论:已知动点A 在椭圆:C 12222=+bx a y )0(>>b a 上,动点B 在直线c ab y =(或者caby -=)上,且满足OA OB ⊥,直线AB 与圆b y x =+22相切 例 (2014北京)已知椭圆22:24C x y +=,(1)求椭圆C 的离心率.(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB与圆222xy +=的位置关系,并证明你的结论.解:(I )由题意,椭圆C 的标准方程为22142x y +=。
所以224,2a b ==,从而2222c a b =-=。
因此2,a c ==。
故椭圆C的离心率2c e a ==。
(Ⅱ) 直线AB 与圆222x y +=相切。
证明如下: 设点A,B 的坐标分别为00(,)x y ,(,2)t ,其中00x ≠。
因为OA OB ⊥,所以0OA OB ⋅=,即0020tx y +=,解得02y t x =-。
当0x t =时,202t y =,代入椭圆C 的方程,得t =,故直线AB的方程为x =圆心O 到直线AB的距离d =。
此时直线AB 与圆222x y +=相切。
当0x t ≠时,直线AB 的方程为0022()y y x t x t--=--, 即0000(2)()20y x x t y x ty ---+-=,圆心0到直线AB 的距离d =又220024x y +=,02y t x =-故d === 此时直线AB 与圆222x y +=相切。
例(2014太原二模试题)已知动点A 在椭圆:C 12222=+bx a y )0(>>b a 上,动点B 在直线2-=x 上,且满足OA OB ⊥,(O 为原点),椭圆上的点)3,23(M 到两焦点距离之和为34 (1)求椭圆的方程(2)判断直线AB 与圆322=+y x 的位置关系,并证明你的结论.解:(1)131222=+x y (2)证明:设点A,B 的坐标分别为00(,)x y ,),(m t ,其中00x ≠。
椭圆中的定点定值问题1.已知椭圆C:22221x ya b+=(0a b>>)的右焦点为F(1,0),且(1-,22)在椭圆C上。
(1)求椭圆的标准方程;(2)已知动直线l过点F,且与椭圆C交于A、B两点,试问x轴上是否存在定点Q,使得716QA QB⋅=-恒成立?若存在,求出点Q的坐标;若不存在,请说明理由。
解:(1)由题意知c=1.由椭圆定义得22222(11)()22a=--++,即2a= --3分∴2211b=-=,∴椭圆C 方程为2212xy+=.(2)假设在x轴上存在点Q(m,0),使得716QA QB⋅=-恒成立。
当直线l的斜率不存在时,A (1,22),B(1,22-),由于(521,42-)·(521,42--)=716-,所以54m=,下面证明54m=时,716QA QB⋅=-恒成立。
当直线l的斜率为0时,A(2,0)B(2-,0)则(524-,0)•(524--,0)=716-,符合题意。
当直线l的斜率不为0时,设直线l的方程为x=ty+1,A()11,x y,B()22,x y,由x=ty+1及2212xy+=得22(2)210t y ty++-=有0∆>∴12122221,22ty y y yt t+=-=-++;111x ty=+,221x ty=+∴112212125511(,)(,)()()4444x y x y ty ty y y-⋅-=--+=2(1)t+121211()416y y t y y-++=22222211212217(1)242162(2)1616t t tt tt t t--+-++⋅+=+=-+++,综上所述:在x轴上存在点Q(54,0)使得716QA QB⋅=-恒成立。
2.如图,中心在坐标原点,焦点分别在x轴和y轴上的椭圆1T,2T都过点(0,2)M-,且椭圆1T与2T的离心率均为22.(Ⅰ)求椭圆1T与椭圆2T的标准方程;(Ⅱ)过点M引两条斜率分别为,k k'的直线分别交1T,2T于点P,Q,当4k k'=时,问直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.解:(Ⅰ)22221,1422x y yx+=+=;(Ⅱ)直线MP的方程为2y kx=-,联立椭圆方程得:221422x yy kx⎧+=⎪⎨⎪=-⎩,消去y得22(21)420k x kx+-=,则42Pkx=,则点P的坐标为242222:(,)k kP-,同理可得点Q的坐标为:222222:(,)k kQ''-,又4k k'=,则点Q为:22242822(,)8181k kk k-++,22222282222218121242428121PQk kk kkkk kk k---++==--++,则直线PQ的方程为:2222142()2k ky xk--=--,即222222142()21221k ky xk k k--=--++,化简得122y xk=-+,即当0x=时,2y=,故直线PQ过定点(0,2).3.已知,椭圆C过点A,两个焦点为(﹣1,0),(1,0).(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.解:(1)由题意,c=1,可设椭圆方程为,解得b2=3,(舍去)所以椭圆方程为.(2)设直线AE方程为:,代入得,设E(x E,y E),F(x F,y F),因为点在椭圆上,所以由韦达定理得:,,所以,.又直线AF的斜率与AE的斜率互为相反数,yxOPQ在上式中以﹣K 代K,可得,所以直线EF 的斜率,即直线EF的斜率为定值,其值为.4.已知椭圆E:+=1(a>b>0)经过点(0,),离心率为,点O为坐标原点.(Ⅰ)求椭圆E的标准方程;(Ⅱ)过左焦点F任作一直线l ,交椭圆E 于P、Q两点.(i)求•的取值范围;(ii)若直线l不垂直于坐标轴,记弦PQ的中点为M,过F作PQ的垂线FN交直线OM 于点N ,证明:点N在一条定直线上.解:(Ⅰ)由题意可得b=,e==,又a2﹣b2=c2,解得a=,c=2,即有椭圆方程为+=1;(Ⅱ)(i)F(﹣2,0),当直线的斜率不存在时,设P(x1,y1),Q(x2,y 2),直线方程为x=﹣2,可得P(﹣2,),Q(﹣2,﹣),•=4﹣=;当直线的斜率存在,设l:y=k(x+2),设P(x1,y1),Q(x2,y2),代入椭圆方程x2+3y2=6,可得(1+3k2)x2+12k2x+12k2﹣6=0,x1+x2=﹣,x1x2=,•=x1x2+y1y2=x1x2+k2(x1+2)(x2+2)=(1+k2)x1x2+2k2(x 1+x2)+4k2=(1+k2)•+2k2•(﹣)+4k2==﹣,由k2≥0,3k2+1≥1,可得﹣6≤•<,综上可得,•的取值范围是[﹣6,];(ii)证明:由直线l的斜率一定存在,且不为0,可设PQ:y=k(x+2),FN:y=﹣(x+2),设M (x0,y0),则x0=,由x1+x2=﹣,可得x0=,y0=k(x 0+2)=,直线OM的斜率为k OM==﹣,直线OM:y=﹣x,由得,即有k取何值,N的横坐标均为﹣3,则点N在一条定直线x=﹣3上.5.椭圆C:+=1(a>b>0).(1)若椭圆C过点(﹣3,0)和(2,).①求椭圆C的方程;②若过椭圆C的下顶点D点作两条互相垂直的直线分别与椭圆C相交于点P,M,求证:直线PM经过一定点;(2)若椭圆C过点(1,2),求椭圆C的中心到右准线的距离的最小值.解:(1)①∵椭圆C:+=1(a>b>0)过点(﹣3,0)和(2,),∴,解得a=3,b=1,∴椭圆C的方程.证明:②由题意得PD、MD的斜率存在且不为0,设直线PD 的斜率为k,则PD :y=kx ﹣1,由,得P (,),用﹣代k,得M(,),∴=,∴直线PM:y﹣=,即y=,∴直线PM经过定点T(0,).解:(2)椭圆C 的中心到右准线的距离d=,由=1,得,∴==,令t=a 2﹣5,t >0,则=t++9≥2+9=4+9,当且仅当t=2,时,等号成立,∴椭圆C 的中心到右准线的距离的最小值为.6.已知椭圆()222210x y a b a b +=>>的右焦点到直线2:a l x c =的距离为45,离心率5e =,,A B 是椭圆上的两动点,动点P 满足OP OA OB λ=+,(其中λ为常数).(1)求椭圆标准方程;(2)当1λ=且直线AB 与OP 斜率均存在时,求AB OP k k +的最小值;(3)若G 是线段AB 的中点,且OA OB OG AB k k k k ⋅=⋅,问是否存在常数λ和平面内两定点,M N ,使得动点P 满足18PM PN +=,若存在,求出λ的值和定点,M N ;若不存在,请说明理由.解:(1)由题设可知:右焦点到直线2:a l x c=的距离为: 2a c c -=455, 又53c a =,222b a c =-,∴24b =.∴椭圆标准方程为22194x y +=. (2)设()()1122,,,A x y B x y 则由OP OA OB =+得()1212,P x x y y ++.∴221212122212121249AB OPy y y y y y k k x x x x x x -+-⋅=⋅==--+-. 由()0,AB k ∈+∞得,423AB OP AB OP k k k k +≥⋅=,当且仅当23AB k =±时取等号 (3)221212122212121249AB OGy y y y y y k k x x x x x x -+-⋅=⋅==--+-.∴4·9OA OB k k =-.∴12124+90x x y y =. 设(),P x y ,则由OP OA OB λ=+,得)11221212,,,,x y x y x y x x y y λλλ=+=++, 即1212,x x x y y y λλ=+=+.因为点A 、B 在椭圆224+9=36x y 上,所以()2221212493636249x y x x y y λλ+=+++.所以222493636x y λ+=+.即222219944x y λλ+=++,所以P点是椭圆222219944x yλλ+=++上的点, 设该椭圆的左、右焦点为,M N ,则由椭圆的定义18PM PN +=得182299λ=+, ∴22λ=±,()35,0M ,()35,0N -.7.已知椭圆22221(0)x y a b a b +=>>的右焦点为F 2(1,0),点3(1,)2H 在椭圆上.(1)求椭圆方程;(2)点00(,)M x y 在圆222x y b +=上,M 在第一象限,过M 作圆222x y b +=的切线交椭圆于P 、Q 两点,问|F 2P|+|F 2Q|+|PQ|是否为定值?如果是,求出定值,如不是,说明理由. 解:(1) 右焦点为2(1,0)F ,∴1=c ,左焦点为)0,1(1-F ,点3(1,)2H 在椭圆上 222212332(11)(11)422a HF HF ⎛⎫⎛⎫=+=+++-+= ⎪ ⎪⎝⎭⎝⎭,2=∴a ,322=-=c a b所以椭圆方程为13422=+y x(2)设()),(,,2211y x Q y x P ,()213412121≤=+x y x()()212121212122)4(41)41(311-=-+-=+-=x x x y x PF112212)4(21x x PF -=-=∴,连接OM ,OP ,由相切条件知1212121212122221413)41(33||||x PM x x x y x OM OP PM =∴=--+=-+=-=221212112=+-=+∴x x PM PF ,同理可求221212222=+-=+∴x x QM QF所以22224F P F Q PQ ++=+=为定值.8.分别过椭圆E :=1(a >b >0)左、右焦点F 1、F 2的动直线l 1、l 2相交于P 点,与椭圆E 分别交于A 、B 与C 、D 不同四点,直线OA 、OB 、OC 、OD 的斜率分别为k 1、k 2、k 3、k 4,且满足k 1+k 2=k 3+k 4,已知当l 1与x 轴重合时,|AB|=2,|CD|=.(1)求椭圆E 的方程;(2)是否存在定点M ,N ,使得|PM|+|PN|为定值?若存在,求出M 、N 点坐标,若不存在,说明理由. 解:(1)当l 1与x 轴重合时,k 1+k 2=k 3+k 4=0, 即k 3=﹣k 4,∴l 2垂直于x 轴,得|AB|=2a=2,|CD|=,解得a=,b=,∴椭圆E 的方程为.(2)焦点F 1、F 2坐标分别为(﹣1,0),(1,0),当直线l 1或l 2斜率不存在时,P 点坐标为(﹣1,0)或(1,0), 当直线l 1,l 2斜率存在时,设斜率分别为m 1,m 2,设A(x1,y1),B(x2,y2),由,得,∴,,===,同理k3+k4=,∵k1+k2=k3+k4,∴,即(m1m2+2)(m2﹣m1)=0,由题意知m1≠m2,∴m1m2+2=0,设P(x,y),则,即,x≠±1,由当直线l1或l2斜率不存在时,P点坐标为(﹣1,0)或(1,0)也满足,∴点P(x,y)点在椭圆上,∴存在点M,N其坐标分别为(0,﹣1)、(0,1),使得|PM|+|PN|为定值2.9.如图,在平面直角坐标系xOy中,已知椭圆C:+=1,设R(x0,y0)是椭圆C上的任一点,从原点O向圆R:(x﹣x0)2+(y﹣y0)2=8作两条切线,分别交椭圆于点P,Q.(1)若直线OP,OQ互相垂直,求圆R的方程;(2)若直线OP,OQ的斜率存在,并记为k1,k2,求证:2k1k2+1=0;(3)试问OP2+OQ2是否为定值?若是,求出该值;若不是,说明理由.解:(1)由圆R的方程知,圆R的半径的半径,因为直线OP,OQ互相垂直,且和圆R相切,所以,即,①又点R在椭圆C上,所以,②联立①②,解得所以所求圆R的方程为.(2)因为直线OP:y=k1x,OQ:y=k2x,与圆R相切,所以,化简得=0同理,所以k1,k2是方程(x02﹣8)k2﹣2x0y0k+y02﹣8=0的两个不相等的实数根,,因为点R(x0,y0)在椭圆C上,所以,即,所以,即2k1k2+1=0.(3)OP2+OQ2是定值,定值为36,理由如下:法一:(i)当直线OP,OQ不落在坐标轴上时,设P(x1,y1),Q(x2,y2),联立解得所以,同理,得,由,所以====36(ii)当直线ξ落在坐标轴上时,显然有OP2+OQ2=36,综上:OP2+OQ2=36.法二:(i)当直线OP,OQ不落在坐标轴上时,设P(x1,y1),Q(x2,y2),因为2k1k2+1=0,所以,即,因为P(x1,y1),Q(x2,y2),在椭圆C上,所以,即,所以,整理得,所以,所以OP2+OQ2=36.(ii)当直线OP,OQ落在坐标轴上时,显然有OP2+OQ2=36,综上:OP2+OQ2=36.10.已知椭圆C:)0(12222>>=+babyax,左焦点)0,3(-F,且离心率23=e.(1)求椭圆C的方程;(2)若直线l:mkxy+=(0≠k)与椭圆C交于不同的两点M,N(M,N不是左、右顶点),且以MN 为直径的圆经过椭圆C 的右顶点A .求证:直线l 过定点,并求出定点的坐标.解:(1)由题意可知⎪⎪⎩⎪⎪⎨⎧+====222233c b a a ce c ,解得2=a ,1=b 所以椭圆的方程为1422=+y x . (2)由方程组⎪⎩⎪⎨⎧=++=1422y x m kx y 得0448)41(222=-+++m kmx x k ,0)44)(41(4)8(222>-+-=∆m k km , 整理得01422>+-m k ,设),(11y x M ,),(22y x N ,则221418k kmx x +=+,22214144k m x x +-= 由已知,AN AM ⊥,即0=⋅AN AM ,又椭圆的右顶点为)0,2(A ,所以0)2)(2(2121=+--y y x x ,∵2212122121)())((m x x km x x k m kx m kx y y +++=++=,∴04))(2()1(221212=+++-++m x x km x x k ,即04418)2(4144)1(22222=+++⋅-++-⋅+m kkmkm k m k . 整理得01216522=++k mk m , 解得k m 2-=或56km -=均满足01422>+-m k . 当k m 2-=时,直线l 的方程为k kx y 2-=,过定点)0,2(,与题意矛盾,舍去;当56k m -=时,直线l 的方程为)56(-=x k y ,过定点)0,56(,故直线l 过定点,且定点的坐标为)0,56(.11.已知椭圆C :)0(12222>>=+b a by a x,点A 在椭圆C 上,O 为坐标原点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,是否存在圆心在坐标原点,半径为定值的定圆C ,使得l 与圆C 相交于不在坐标轴上的两点1P ,2P ,记直线1OP ,2OP 的斜率分别为1k ,2k ,满足12k k ⋅为定值,若存在,求出定圆的方程并求出12k k ⋅的值,若不存在,请说明理由.解:(Ⅰ)由题意,得c a =a 2=b 2+c 2,又因为点A 在椭圆C 上,所以221314a b+=, 解得a=2,b=1,c =C 的方程为2214x y +=. (Ⅱ)结论:存在符合条件的圆,且此圆的方程为x 2+y 2=5.证明如下:假设存在符合条件的圆,并设此圆的方程为x 2+y 2=r 2(r >0). 当直线l 的斜率存在时,设l 的方程为y=kx+m .由方程组2214y kx m x y =+⎧⎪⎨+=⎪⎩得(4k 2+1)x 2+8kmx +4m 2﹣4=0,因为直线l 与椭圆C 有且仅有一个公共点,所以2221(8)4(41)(44)0km k m ∆=-+-=,即m 2=4k 2+1.由方程组222y kx mx y r=+⎧⎨+=⎩得(k 2+1)x 2+2kmx+m 2﹣r 2=0,则22222(2)4(1)()0km k m r ∆=-+->.设P 1(x 1,y 1),P 2(x 2,y 2),则12221kmx x k -+=+,221221m r x x k -=+,设直线OP 1,OP 2的斜率分别为k 1,k 2,所以221212121212121212()()()y y kx m kx m k x x km x x M k k x x x x x x +++++===222222222222222111m r kmk km m m r k k k m r m rk --⋅+⋅+-++==--+,将m 2=4k 2+1代入上式,得221222(4)14(1)r k k k k r -+=+-. 要使得k 1k 2为定值,则224141r r-=-,即r 2=5,验证符合题意. 所以当圆的方程为x 2+y 2=5时,圆与l 的交点P 1,P 2满足k 1k 2为定值14-.当直线l 的斜率不存在时,由题意知l 的方程为x=±2, 此时,圆x 2+y 2=5与l 的交点P 1,P 2也满足1214k k =-. 综上,当圆的方程为x 2+y 2=5时,圆与l 的交点P 1,P 2满足斜率之积k 1k 2为定值14-. 12.已知椭圆)0(1:2222>>=+b a by a x C ,经过点)22,1(,且两焦点与短轴的一个端点构成等腰直角三角形.(1)求椭圆方程;(2)过椭圆右顶点的两条斜率乘积为21-的直线分别交椭圆于N M ,两点,试问:直线MN 是否过定点?若过定点,请求出此定点,若不过,请说明理由.解:(1)根据题意12121211222222222=+⇒⎩⎨⎧==⇒⎪⎩⎪⎨⎧+==+=y x b a cb a b ac b .当MN 的斜率存在时,设0224)21(22:22222=-+++⇒⎩⎨⎧=++=m kmx x k y x mkx y MN ,⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=+-=+>+-=∆22212212221222140)12(8k m x x k km x x m k ,∴21222222112211-=-+⋅-+=-⋅-=⋅x m kx x m kx x y x y k k NA MA , ∴k m m km m m x x km x x k 200202))(22()12(2221212-==⇒=+⇒=++-++或(舍). ∴直线MN kx y =过定点(0,0),当MN 斜率不存在时也符合,即直线MN 恒过定点(0,0). 14.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为6,以原点O 为圆心,椭圆C 的长半轴为半径的圆与直线2260x y -+=相切. (1)求椭圆C 标准方程;(2)已知点,A B 为动直线(2)(0)y k x k =-≠与椭圆C 的两个交点,问:在x 轴上是否存在点E ,使2EA EA AB +⋅为定值?若存在,试求出点E 的坐标和定值,若不存在,说明理由.解:(1)由36=e 得36=a c ,即a c 36=① 又以原点O 为圆心,椭圆C 的长轴长为半径的圆为222a y x =+且与直线0622=+-y x 相切,所以6)2(2622=-+=a 代入①得c=2, 所以2222=-=c a b .所以椭圆C 的标准方程为12622=+y x (2)由⎪⎩⎪⎨⎧-==+)2(12622x k y y x 得061212)31(2222=-+-+k x k x k设()()1122,,,A x y B x y ,所以2221222131612,3112kk x x k k x x +-=+=+ 根据题意,假设x 轴上存在定点E (m ,0),使得2()EA EA AB EA AB EA EA EB +⋅=+⋅=⋅为定值. 则()()()11221212,,()EA EB x m y x m y x m x m y y ⋅=-⋅-=--+=()()()()()()22222221221231610123421k m k m mm k x x m k x x k +-++-=++++-+要使上式为定值,即与k 无关,()631012322-=+-m m m ,得37=m .此时,22569EA EA AB m +⋅=-=-,所以在x 轴上存在定点E (37,0)使得2EA EA AB +⋅为定值,且定值为95-. 15.已知椭圆具有如下性质:若椭圆的方程为22221(0)x y a b a b+=>>,则椭圆在其上一点00(,)A x y 处的切线方程为00221x x y ya b+=,试运用该性质解决以下问题:已知椭圆221:12x C y +=和椭圆222:4x C y λ+=(1,λλ>为常数).(1)如图(1),点B 为1C 在第一象限中的任意一点,过B 作1C 的切线l ,l 分别与x 轴和y 轴的正半轴交于,C D 两点,求OCD ∆面积的最小值; (2)如图(2),过椭圆2C 上任意一点P 作1C 的两条切线PM 和PN ,切点分别为,M N ,当点P 在椭圆2C 上运动时,是否存在定圆恒与直线MN 相切?若存在,求出圆的方程;若不存在,请说明理由. 解:(1)设22(,)B x y ,则椭圆1C 在点B 处的切线方程为2212x x y y += 令210,D x y y ==,令220,C y x x ==,所以221OCD S x y ∆=又点B 在椭圆的第一象限上,所以2222220,0,12x x y y >>+=∴222222222212222x x y y x y =+≥= ∴221222OCD S x y ∆=≥=,当且仅当22222x y =2221x y ⇔== 所以当2(1,)2B 时,三角形OCD 的面积的最小值为22. (2)设(,)P m n ,则椭圆1C 在点33(,)M x y 处的切线为:3312xx y y +=又PM 过点(,)P m n ,所以3312x m y n +=,同理点44(,)N x y 也满足4412xm y n +=所以,M N 都在12x m yn +=上,即直线MN 的方程为12xm yn +=,又(,)P m n 在2C 上,224m n λ+=,故原点O 到直线MN 的距离为:224d m n λ==+, 所以直线MN 始终与圆221x y λ+=相切.16.已知直线1y x =+被圆2232x y +=截得的弦长恰与椭圆2222:1(0)x y C a b a b +=>>的短轴长相等,椭圆C 的离心率22e =.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知过点1(0,)3M -的动直线l 交椭圆C 于,A B 两点,试问:在坐标平面上是否存在一个定点T ,使得无论l 如何转动,以AB 为直径的圆恒过定点T ?若存在,求出点T 的坐标,若不存在,请说明理由。
椭圆中的定值、定点问题说我之前说的:什么是硬件解码的定理?这个计算太多太多了,刺激!现在更新很慢,不过我在笔记本里整理了一些模型,准备有空就发。
接下来要给出的结论,可以说是“非常一般”。
在这里先给出结论,可以自己用几何画板验证:结论给定椭圆 \Gamma:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 与椭圆上的定点 P(x_0,y_0) ,过 P 点作两条射线 PA 和PB ,与椭圆 \Gamma 交于 A 和 B 两点,记直线 PA 和 PB 的斜率分别为 k_1 和 k_2 ,则有:(1)若 k_1+k_2=\lambda ,则直线 AB 过定点 (x_0-\frac{2y_0}{\lambda},-y_0-\frac{2b^2x_0}{a^2\lambda}) 。
(2)若 k_1\cdot k_2=\lambda ,则直线 AB 过定点(\frac{2b^2x_0}{\lambda a^2-b^2}+x_0,\frac{-2a^2\lambda y_0}{\lambda a^2-b^2}+y_0) 。
这也是各个地区高考、模拟题出题常见的题型,当然,最重要的是,它说明了一个规律:只要直线过椭圆上的定点,并且斜率有关系,那么就一定有“定点”的出现。
例如以下题目:例1 (2017年全国1卷)已知椭圆C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0) ,四点P_1(1,1) , P_2(0,1) , P_3(-1,\frac{\sqrt3}{2}) ,P_4(1,\frac{\sqrt3}{2}) 中恰有三点在椭圆 C 上。
(1) 求 C 的方程;(2) 设直线 l 不经过点且与 C 相交于 A , B 两点。
若直线P_2A 与直线 P_2B 的斜率的和为 -1 ,证明: l 过定点。
例2 (例1变式)在例1中,若直线 P_2A 与直线 P_2B 互相垂直,证明: l 过定点。
椭 圆一、直线与椭圆问题的常规解题方法:1.设直线与方程;提醒:①设直线时分斜率存在与不存在;②设为y=kx+b 与x=my+n 的区别2.设交点坐标;提醒:之所以要设是因为不去求出它,即“设而不求”3.联立方程组;4.消元韦达定理;提醒:抛物线时经常是把抛物线方程代入直线方程反而简单5.根据条件重转化;常有以下类型:①“以弦AB 为直径的圆过点0”提醒:需讨论K 是否存在⇔OA OB ⊥ ⇔121K K •=- ⇔0OA OB •= ⇔ 12120x x y y += ②“点在圆内、圆上、圆外问题”⇔“直角、锐角、钝角问题” ⇔“向量的数量积大于、等于、小于0问题” ⇔12120x x y y +>>0;③“等角、角平分、角互补问题” ⇔斜率关系120K K +=或12K K =; ④“共线问题”如:AQ QB λ= ⇔数的角度:坐标表示法;形的角度:距离转化法; 如:A 、O 、B 三点共线⇔直线OA 与OB 斜率相等; ⑤“点、线对称问题” ⇔坐标与斜率关系;⑥“弦长、面积问题”⇔转化为坐标与弦长公式问题提醒:注意两个面积公式 的 合理选择; 6.化简与计算; 7.细节问题不忽略;①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0.二、基本解题思想:1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式;2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解;3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无 关;⑵也可先在特殊条件下求出定值,再给出一般的证明;4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求 出定点;⑵也可先取参数的特殊值探求定点,然后给出证明,5、求最值问题时:将对象表示为变量的函数,几何法、配方法转化为二次函数的最值、 三角代换法转化为三角函数的最值、利用切线的方法、利用均值不等 式的方法等再解决;6、转化思想:有些题思路易成,但难以实施;这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验;椭圆中的定值、定点问题一、常见基本题型:在几何问题中,有些几何量和参数无关,这就构成定值问题,解决这类问题常通过 取参数和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三 角式,证明该式是恒定的; 1直线恒过定点问题1、已知点00(,)P x y 是椭圆22:12x E y +=上任意一点,直线l 的方程为0012x xy y +=, 直线0l 过P 点与直线l 垂直,点M-1,0关于直线0l 的对称点为N,直线PN 恒过一定点G,求点G 的坐标;2、已知椭圆两焦点1F 、2F 在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一 象限弧上一点,且121PF PF ⋅=,过P 作关于直线F 1P 对称的两条直线PA 、PB 分别交椭 圆于A 、B 两点;1求P 点坐标;2求证直线AB 的斜率为定值;3、已知动直线(1)y k x =+与椭圆22:1553x y C +=相交于A 、B 两点,已知点 7(,0)3M -, 求证:MA MB ⋅为定值.4、 在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不 过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E , 射线OE 交椭圆C 于点G ,交直线3x =-于点(3,)D m -.Ⅰ求22m k +的最小值;Ⅱ若2OG OD =OE ,求证:直线l 过定点;椭圆中的取值范围问题一、常见基本题型:对于求曲线方程中参数范围问题,应根据题设条件及曲线的几何性质构造参数满足的不等式,通过解不等式求得参数的范围;或建立关于参数的目标函数,转化为函数的值域来解. 1从直线和二次曲线的位置关系出发,利用判别式的符号,确定参数的取值范围;5、已知直线l 与y 轴交于点(0,)P m ,与椭圆22:21C x y +=交于相异两点A 、B , 且3AP PB =,求m 的取值范围.(2)利用题中其他变量的范围,借助于方程产生参变量的函数表达式,确定参数的取值范 围.6、已知点(4, 0)M ,(1, 0)N ,若动点P 满足6||MN MP PN ⋅=. Ⅰ求动点P 的轨迹C 的方程;Ⅱ设过点N 的直线l 交轨迹C 于A ,B 两点,若181275NA NB -⋅-≤≤,求 直线l 的斜率的取值范围.3利用基本不等式求参数的取值范围7、已知点Q 为椭圆E :221182x y +=上的一动点,点A 的坐标为(3,1),求AP AQ ⋅的取值范围.8.已知椭圆的一个顶点为(0,1)A -,焦点在x 轴上.若右焦点到直线220x y -+=的距 离为3.1求椭圆的方程.2设直线(0)y kx m k =+≠与椭圆相交于不同的两点,M N .当||||AM AN =时,求m 的 取值范围.9. 如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上, 点N 在CM 上,且满足N AM NP AP AM 点,0,2=⋅=的轨迹为曲线E . I 求曲线E 的方程;II 若过定点F 0,2的直线交曲线E 于不同的两点,G H 点G 在点,F H 之间,且满足FH FG λ=, 求λ的取值范围.10、.已知椭圆E 的中心在坐标原点O ,两个焦点分别为)0,1(-A 、)0,1(B ,一个顶点为)0,2(H .1求椭圆E 的标准方程;2对于x 轴上的点)0,(t P ,椭圆E 上存在点M ,使得MH MP ⊥,求t 的取值范围.11.已知椭圆2222:1x y C a b +=(0)a b >>的离心率为2,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -=相切.Ⅰ求椭圆C 的方程;Ⅱ若过点M 2,0的直线与椭圆C 相交于两点,A B ,设P 为椭圆上一点,且满足OP t OB OA =+O 为坐标原点,-时,求实数t 取值范围.椭圆中的最值问题一、常见基本题型: 1利用基本不等式求最值,12、已知椭圆两焦点1F 、2F 在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一 象限弧上一点,且121PF PF ⋅=,过P 作关于直线F 1P 对称的两条直线PA 、PB 分别交 椭圆于A 、B 两点,求△PAB 面积的最大值; 2利用函数求最值,13.如图,DP x ⊥轴,点M 在DP 的延长线上,且||2||DM DP =.当点P 在圆221x y +=上运动时; I 求点M 的轨迹C 的方程;Ⅱ过点22(0,)1T t y +=作圆x 的切线l 交曲线 C 于A,B 两点,求△AOB 面积S 的最大值和相应的点T 的坐标;14、已知椭圆22:14x G y +=.过点(,0)m 作圆221x y +=的切线l 交椭圆G 于A,B 两点. 将|AB|表示为m 的函数,并求|AB|的最大值.选做1、已知A 、B 、C 是椭圆)0(1:2222>>=+b a by a x m 上的三点,其中点A 的坐标为)0,32(,BC 过椭圆m 的中心,且||2||,0AC BC BC AC ==•.1求椭圆m 的方程;2过点),0(t M 的直线l 斜率存在时与椭圆m 交于两点P,Q,设D 为椭圆m 与y 轴负半轴的交点,且||||DQ DP =.求实数t 的取值范围.2.已知圆M :222()()x m y n r -+-=及定点(1,0)N ,点P 是圆M 上的动点,点Q 在NP上,点G 在MP 上,且满足NP =2NQ ,GQ ·NP =0. 1若1,0,4m n r =-==,求点G 的轨迹C 的方程;2若动圆M 和1中所求轨迹C 相交于不同两点,A B ,是否存在一组正实数,,m n r , 使得直线MN 垂直平分线段AB ,若存在,求出这组正实数;若不存在,说明理由.3、已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.Ⅰ求椭圆C 的标准方程;Ⅱ若直线:l y kx m =+与椭圆C 相交于A ,B 两点A B ,不是左右顶点,且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.4.如图,已知椭圆的中心在原点,焦点在x 轴上,长轴长是短轴长的2倍且经过点M 2,1,平行于OM 的直线l 在y 轴上的截距为mm ≠0,l 交椭圆于A 、B 两个不同点; 1求椭圆的方程; 2求m 的取值范围;3求证直线MA 、MB 与x 轴始终围成一个等腰三角形.参考答案1、解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --= 设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n则0000001212022x nm y x n m y x y ⎧=-⎪+⎪⎨-⎪⋅--=⎪⎩,解得320002043200002002344424482(4)x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩∴ 直线PN 的斜率为4320000032000042882(34)n y x x x x k m x y x x -++--==---+ 从而直线PN 的方程为: 432000000320004288()2(34)x x x x y y x x y x x ++---=---+ 即3200043200002(34)14288y x x x y x x x x --+=+++-- 从而直线PN 恒过定点(1,0)G2、解:1设椭圆方程为22221y x a b+=,由题意可得2,2,22a b c ===所以椭圆的方程为22142y x +=则122),(0,2)F F -,设0000(,)(0,0)P x y x y >>则100200(,2),(,2),PF x y PF x y =--=--221200(2)1PF PF x y ∴⋅=--=点00(,)P x y 在曲线上,则2200 1.24x y += 220042y x -∴=从而22004(2)12y y ---=,得02y =则点P 的坐标为2);2由1知1//PF x 轴,直线PA 、PB 斜率互为相反数,设PB 斜率为(0)k k >,则PB 的直线方程为:2(1)y k x =-由222(1)124y k x x y ⎧-=-⎪⎨+=⎪⎩得222(2)2(2)(2)40k x k k x k ++-+--=设(,),B B B x y 则2222(2)222122B k k k k x k k ---=-=++同理可得222222A k k x k +-=+,则2422A B kx x k-=+ 28(1)(1)2A B A B ky y k x k x k-=----=+ 所以直线AB 的斜率2A BAB A By y k x x -==-为定值;3、 解: 将(1)y k x =+代入221553x y +=中得2222(13)6350k x k x k +++-= 4222364(31)(35)48200k k k k ∴∆=-+-=+>,2122631k x x k +=-+,21223531k x x k -=+所以112212127777(,)(,)()()3333MA MB x y x y x x y y ⋅=++=+++ 2121277()()(1)(1)33x x k x x =+++++2221212749(1)()()39k x x k x x k =++++++2222222357649(1)()()313319k k k k k k k -=+++-++++ 4222316549319k k k k ---=+++49=; 4、 解:Ⅰ由题意:设直线:(0)l y kx n n =+≠,由2213y kx nx y =+⎧⎪⎨+=⎪⎩消y 得:222(13)6330k x knx n +++-=, 2222364(13)3(1)∆=-+-k n k n ×2212(31)0k n =+->设A 11(,)x y 、B 22(,)x y ,AB 的中点E 00(,)x y ,则由韦达定理得:12x x +=2613kn k -+,即02313kn x k -=+,002313kny kx n k n k-=+=⨯+=+213n k +, 所以中点E 的坐标为23(,13kn k -+2)13nk+, 因为O 、E 、D 三点在同一直线上,所以OE OD k K =,即133mk -=-, 解得1m k =,所以22m k +=2212k k+≥,当且仅当1k =时取等号, 即22m k +的最小值为2. Ⅱ证明:由题意知:n>0,因为直线OD 的方程为3my x =-,所以由22313m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩得交点G 的纵坐标为223G m y m =+, 又因为213E n y k=+,D y m =,且2OG OD =OE ,所以222313m n m m k =⋅++, 又由Ⅰ知: 1m k=,所以解得k n =,所以直线l 的方程为:l y kx k =+, 即有:(1)l y k x =+, 令1x =-得,y=0,与实数k 无关, 5、 解:1当直线斜率不存在时:12m =±2当直线斜率存在时:设l 与椭圆C 交点为 1122(,),(,)A x y B x y ∴2221y kx mx y =+⎧⎨+=⎩得 222(2)210k x kmx m +++-=22222(2)4(2)(1)4(22)0km k m k m ∴∆=-+-=-+>212122221,22km m x x x x k k --+==++∵3AP PB =,∴123x x -=,∴122212223x x x x x x +=-⎧⎨=-⎩. 消去2x ,得212123()40x x x x ++=, 2222213()4022km m k k --∴+=++ 整理得22224220k m m k +--=214m =时,上式不成立; 214m ≠时,2222241m k m -=-, ∴22222041m k m -=≥-,∴211-<≤-m 或121≤<m 把2222241m k m -=-代入得211-<<-m 或121<<m ∴211-<<-m 或121<<m 综上m 的取值范围为211-<≤-m 或121≤<m ; 6、解:Ⅰ设动点(, )P x y ,则(4, )MP x y =-,(3, 0)MN =-,(1, )PN x y =--.由已知得22)()1(6)4(3y x x -+-=--,化简得223412x y +=,得22143x y +=. 所以点P 的轨迹C 是椭圆,C 的方程为13422=+y x . Ⅱ由题意知,直线l 的斜率必存在,不妨设过N 的直线l 的方程为(1)y k x =-, 设A ,B 两点的坐标分别为11(, )A x y ,22(, )B x y .由22(1),143y k x x y =-⎧⎪⎨+=⎪⎩消去y 得2222(43)84120k x k x k +-+-=.因为N 在椭圆内,所以0∆>.所以212221228,34412.34k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩因为2121212(1)(1)(1)(1)(1)NA NB x x y y k x x ⋅=--+=+--]1)()[1(21212++-+=x x x x k222222243)1(943438124)1(k k k k k k k ++-=+++--+=,所以22189(1)127345k k -+--+≤≤. 解得213k ≤≤. 7、 解: (1,3)AP =,设Qx ,y ,(3,1)AQ x y =--,(3)3(1)36AP AQ x y x y ⋅=-+-=+-.∵221182x y +=,即22(3)18x y +=, 而22(3)2|||3|x y x y +⋅≥,∴-18≤6xy ≤18.则222(3)(3)6186x y x y xy xy +=++=+的取值范围是0,36.3x y +的取值范围是-6,6.∴36AP AQ x y ⋅=+-的取值范围是-12,0. 8、解:1依题意可设椭圆方程为2221x y a+=,则右焦点)F3=,解得23a =,故所求椭圆的方程为22 1.3x y +=2设(,)P P P x y 、(,)M M M x y 、(,)N N N x y ,P 为弦MN 的中点,由2213y kx m x y =+⎧⎪⎨+=⎪⎩ 得222(31)63(1)0k x mkx m +++-=直线与椭圆相交,22222(6)4(31)3(1)031,mk k m m k ∴∆=-+⨯->⇒<+ ①23231M N P x x mkx k +∴==-+,从而231P P m y kx m k =+=+, 21313P APP y m k k x mk +++∴==-,又||||,,AM AN AP MN =∴⊥则:23113m k mk k++-=-,即2231m k =+,②把②代入①得22m m <,解02m <<,由②得22103m k -=>,解得12m >.综上求得m 的取值范围是122m <<. 9、解:Ⅰ.0,2=⋅=AM NP AP AM∴NP 为AM 的垂直平分线,∴|NA|=|NM| 又.222||||,22||||>=+∴=+AN CN NM CN ∴动点N 的轨迹是以点C -1,0,A1,0为焦点的椭圆.且椭圆长轴长为,222=a 焦距2c=2. .1,1,22===∴b c a∴曲线E 的方程为.1222=+y x Ⅱ当直线GH 斜率存在时,设直线GH 方程为,12,222=++=y x kx y 代入椭圆方程 得.230.034)21(222>>∆=+++k kx x k 得由设2212212211213,214),,(),,(k x x k k x x y x H y x G +=+-=+则 )2,()2,(,2211-=-∴=y x y x FH FG λλ 又λλλλλ2122221222122121)1(.,)1(,x x x x x x x x x x x x x ==++∴=+=+∴=∴, λλλλ222222)1()121(316,213)1()214(+=++=++-∴kk k k 整理得.331.316214.316323164,2322<<<++<∴<+<∴>λλλ解得k k .131,10<<∴<<λλ 又 又当直线GH 斜率不存在,方程为.31,31,0===λFH FG x)1,31[,131的取值范围是即所求λλ<≤∴10、解:1由题意可得,1c =,2a =,∴3b =.∴所求的椭圆的标准方程为:22143x y +=. 2设),(00y x M )20±≠x (,则 2200143x y +=. ① 且),(00y x t MP --=,),2(00y x MH --=,由MH MP ⊥可得0=⋅MH MP ,即∴0)2)((2000=+--y x x t . ②由①、②消去0y 整理得3241)2(0200-+-=-x x x t . ∵20≠x∴23411)2(4100-=---=x x t .∵220<<-x , ∴ 12-<<-t .∴t 的取值范围为)1,2(--.11、 解:Ⅰ由题意知22c e a ==, 所以22222212c a b e a a -===. 即222a b =. 又因为2111b ==+,所以22a =,21b =. 故椭圆C 的方程为1222=+y x . Ⅱ由题意知直线AB 的斜率存在.设AB :(2)y k x =-,11(,)A x y ,22(,)B x y ,(,)P x y ,由22(2),1.2y k x x y =-⎧⎪⎨+=⎪⎩得2222(12)8820k x k x k +-+-=. 422644(21)(82)0k k k ∆=-+->,212k <. 2122812k x x k +=+,21228212k x x k -=+.∵OP t OB OA =+,∴1212(,)(,)x x y y t x y ++=,21228(12)x x k x t t k +==+, 1212214[()4](12)y y ky k x x k t t t k +-==+-=+. ∵点P 在椭圆上,∴222222222(8)(4)22(12)(12)k k t k t k -+=++, ∴22216(12)k t k =+.∵PB PA -<253,∴2122513k x x +-<,∴22121220(1)[()4]9k x x x x ++-<∴422222648220(1)[4](12)129k k k k k -+-<++, ∴22(41)(1413)0k k -+>,∴214k >. ∴21142k <<,∵22216(12)k t k =+,∴222216881212k t k k ==-++, ∴2623t -<<-或2623t <<, ∴实数t 取值范围为)2,362()362,2( --. 12、解、设椭圆方程为22221y x a b+=,由题意可得2,2,22a b c ===,故椭圆方程为22142y x +=设AB 的直线方程:m x y +=2.由⎪⎩⎪⎨⎧=++=142222y x m x y ,得0422422=-++m mx x , 由0)4(16)22(22>--=∆m m ,得2222<<-mP 到AB 的距离为3||m d =,则3||3)214(21||212m m d AB S PAB ⋅⋅-=⋅=∆2)28(81)8(8122222=+-≤+-=m m m m ;当且仅当()22,222-∈±=m 取等号, ∴三角形PAB 面积的最大值为2; 13、 解:设点M 的坐标为()y x ,,点P 的坐标为()00,y x ,则0x x =,02y y =,所以x x =0,20yy =, ① 因为()00,y x P 在圆122=+y x 上,所以12020=+y x ②将①代入②,得点M 的轨迹方程C 的方程为1422=+y x . Ⅱ由题意知,1||≥t .当1=t 时,切线l 的方程为1=y ,点A 、B 的坐标分别为),1,23(),1,23(-此时3||=AB ,当1-=t 时,同理可得3||=AB ; 当1>t 时,设切线l 的方程为,m kx y +=R k ∈由⎪⎩⎪⎨⎧=++=,14,22y x t kx y 得042)4(222=-+++t ktx x k ③ 设A 、B 两点的坐标分别为),(),,(2211y x y x ,则由③得:222122144,42k t x x k kt x x +-=+-=+. 又由l 与圆122=+y x 相切,得,11||2=+k t 即.122+=k t所以212212)()(||y y x x AB -+-=]4)4(4)4(4)[1(222222kt k t k k +--++=2.3||342+=t t因为,2||3||343||34||2≤+=+=t t t t AB 且当3±=t 时,|AB|=2,所以|AB|的最大值为2依题意,圆心O 到直线AB 的距离为圆122=+y x 的半径,所以AOB ∆面积1121≤⨯=AB S , 当且仅当3±=t 时,AOB ∆面积S 的最大值为1,相应的T 的坐标为()3,0-或者()3,0.14、 解:由题意知,||1m ≥.当1m =时,切线l 的方程为1x =,点A,B 的坐标分别为33(1,),(1,)22-, 此时||3AB =;当1m =-时,同理可得||3AB =; 当1m >时,设切线l 的方程为()y k x m =-.由22()14y k x m x y =-⎧⎪⎨+=⎪⎩得22222(14)8440k x k mx k m +-+-=. 设A,B 两点的坐标分别为1122(,),(,)x y x y . 又由l 与圆221x y +=相切,211k =+,即2221m k k =+.所以222221212112||()()(1)[()4]AB x x y y k x x x x =-+-=++- 42222222644(44)(1)[](14)14k m k m k k k -=+-++243|3m m =+. 由于当1m =±时,||3AB 243|43||233||||m AB m m m ==≤++,当且当3m =,||2AB =.所以|AB|的最大值为2.选做1、 解1椭圆m :141222=+y x2由条件D0,-2 ∵M0,t 1°当k=0时,显然-2<t<2 2°当k≠0时,设t kx y l +=:⎪⎩⎪⎨⎧+==+t kx y y x 141222 消y 得 01236)31(222=-+++t ktx x k由△>0 可得 22124k t +< ①设),(),,(),,(002211y x H PQ y x Q y x P 中点则22103132k kt x x x +=+=20031k tt kx y +=+= ∴)31,313(22k tk kt H ++-由kk PQ OH DQ DP DH 1||||-=⊥∴=即∴2223110313231k t k k kt kt+=-=-+-++化简得 ② ∴t>1 将①代入②得 1<t<4 ∴t 的范围是1,4综上t ∈-2,4 2、解:12,NP NQ =∴∴点Q 为PN 的中点,又0GQ NP ⋅=,GQ PN ∴⊥或G 点与Q 点重合.∴.||||GN PG =又|||||||||| 4.GM GN GM GP PM +=+== ∴点G 的轨迹是以,M N 为焦点的椭圆,且2,1a c ==,∴b G ==∴的轨迹方程是221.43x y +=2解:不存在这样一组正实数,下面证明: 由题意,若存在这样的一组正实数, 当直线MN 的斜率存在时,设之为k ,故直线MN 的方程为:(1)y k x =-,设1122(,),(,)A x y B x y ,AB 中点00(,)D x y ,则22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得: 12121212()()()()043x x x x y y y y -+-++=. 注意到12121y y x x k -=--,且12012022x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩ ,则00314x y k = , ② 又点D 在直线MN 上,00(1)y k x ∴=-,代入②式得:04x =. 因为弦AB 的中点D 在⑴所给椭圆C 内,故022x -<<, 这与04x =矛盾,所以所求这组正实数不存在. 当直线MN 的斜率不存在时,直线MN 的方程为1x =,则此时1212,2y y x x =+=,代入①式得120x x -=,这与,A B 是不同两点矛盾.综上,所求的这组正实数不存在.3、解:Ⅰ椭圆的标准方程为22143x y +=. Ⅱ设11()A x y ,,22()B x y ,,联立22 1.43y kx m x y =+⎧⎪⎨+=⎪⎩,, 得222(34)84(3)0k x mkx m +++-=, 22222212221226416(34)(3)03408344(3).34m k k m k m mk x x k m x x k ⎧⎪∆=-+->+->⎪⎪+=-⎨+⎪⎪-=⎪+⎩,即,则, 又22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -=++=+++=+, 因为以AB 为直径的圆过椭圆的右焦点(20)D ,, 1AD BD k k ∴=-,即1212122y y x x =---,1212122()40y y x x x x ∴+-++=,2222223(4)4(3)1640343434m k m mk k k k--∴+++=+++, 2291640m mk k ∴++=.解得:12m k =-,227k m =-,且均满足22340k m +->, 当12m k =-时,l 的方程为(2)y k x =-,直线过定点(20),,与已知矛盾; 当227k m =-时,l 的方程为2()7y k x =-,直线过定点2(0)7,. 所以,直线l 过定点,定点坐标为2(0)7,. 4、解:1设椭圆方程为)0(12222>>=+b a by a x 则⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧=+=2811422222b a b a b a 解得 ∴椭圆方程为12822=+y x 2∵直线l 平行于OM,且在y 轴上的截距m, 又K OM =21 m x y l +=∴21的方程为: 由0422128212222=-++∴⎪⎪⎩⎪⎪⎨⎧=++=m mx x y x m x y ∵直线l 与椭圆交于A 、B 两个不同点,分且解得8...........................................................0,22,0)42(4)2(22≠<<->--=∆∴m m m m3设直线MA 、MB 的斜率分别为k 1,k 2,只需证明k 1+k 2=0即可设42,2),,(),,(221212211-=-=+m x x m x x y x B y x A 且则21,21222111--=--=x y k x y k 由可得042222=-++m mx x 42,222121-=-++m x x m x x 而)2)(2()2)(1()2()1(2121211221221121----+---=--+--=+x x x y x y x y x y k k )2)(2()1(4)2)(2(42)2)(2()1(4))(2()2)(2()2)(121()2)(121(212212*********------+-=----+++=----++--+=x x m m m m x x m x x m x x x x x m x x m x13......................................................0)2)(2(444242212122=+∴=--+-+--=k k x x m m m m 分 故直线MA 、MB 与x 轴始终围成一个等腰三角形;。
椭圆中的“定”
五、一般结论
30. 已知点()()0,0000≠y x y x A 是椭圆122
22=+b y a x C :()0>>b a 上一定点,过点A 的两直线21,l l 与椭圆C 的另一个交点分别为Q P 、,直线21,l l 的斜率分别为21,k k .
(1)若2221a b k k =⋅,直线PQ 的斜率为定值0
0x y -.反之亦然. (2)若021=+k k ,直线PQ 的斜率为定值0
202x a y b .反之亦然. 31.椭圆122
22=+b
y a x C :()0>>b a 的动弦BC 的两端点与椭圆上定点()00,y x A 连线的斜率存在,若斜率之积为定值()122≠m m a b ,则直线BC 必定过定点()()⎪⎭⎫ ⎝⎛-+--+11,1100m m y m m x M . 32.椭圆122
22=+b
y a x C :()0>>b a 的动弦BC 的两端点与椭圆上定点()00,y x A 连线的斜率存在,若斜率之和为定值()02≠n n a b ,则直线BC 必定过定点⎪⎭
⎫ ⎝⎛---0000,y x an b y bn a x N . 33.(1)一条经过点()0,m M 的直线l 与椭
圆122
22=+b
y a x C :()0>>b a 交于B A ,两点,作A 关于长轴的对称点A ',则直线A B
'过定点2,0a T m ⎛⎫ ⎪⎝⎭
.
(2)一条经过点()()0,M m b m b -<<的直线l 与椭圆122
22=+b
y a x C :()0>>b a 交于,P R 两点,
设点20,b Q m ⎛⎫ ⎪⎝⎭
,则PQM RQM ∠=∠.
34.(1)过椭圆C 的左(右)准线上任意一点N 作椭圆的
切线,切点为B A ,,则直线AB 必过椭圆的左(右)焦点,反之,当圆锥曲线的焦点弦AB 绕焦点F 运动时,过弦的端点,A B 的两切线交点的轨迹为F 对应的准线.
(2)过椭圆C 的左(右)准线上任意一点N 作椭圆的切线,切点为A ,则以NA 为直径的圆过椭圆的左(右)焦点,即090NFA ∠=.
35.过点()00,P x y 作直线交12222=+b
y a x C :()0>>b a 于,A B 两点,点,P Q 在椭圆的异侧且点Q 在直线AB 上,若A P Q B A Q P B =,则点Q 在定直线00221x x y y a b
+=上.
36.已知()00,P x y 是椭圆 22
22:1x y E a b
+=外一点,过点P 作椭圆的切线,切点为,A B ,再过P 作椭圆的割线交椭圆于,M N ,交AB 于点Q ,令111,,s t u PM PN PQ
===,则
,,s t u 的关系是2s t u +=.
37.自()00,P x y 点作椭圆122
22=+b
y a x C :()0>>b a 的两条切线,切点分别为12,P P ,则切点弦12PP 的方程为00221x x y y a b
+=:.
38.过椭圆()222210x y a b a b
+=>>上一点()000,P x y 的切线方程为00221x x y y a b +=.
39. (1)过圆2222
x y a b +=+上任意一点作椭圆122
22=+b y a x C :()0>>b a 的两条切线,则这两条切线相互垂直.反之,作椭圆
122
22=+b
y a x C :()0>>b a 的两条相互垂直的切线,则切线交点一定在圆2222x y a b +=+上.
(2)过圆2222x y a b +=+上任意一点P 作椭圆122
22=+b
y a x C :()0>>b a 的两条切线,PA PB ,,A B 为切点,中心O 至切点弦的距离为1d ,P 点至切点弦的距离为2d ,则
22
1222a b d d a b =+.
40.在椭圆122
22=+b
y a x C :()0>>b a 中,焦点分别为1F 、2F ,点P 是椭圆上任意一点,θ=∠21PF F ,则2
tan 221θb S PF F =∆。