[初中数学]不等式的性质教学设计 人教版
- 格式:doc
- 大小:335.50 KB
- 文档页数:4
数学人教版七年级下册《不等式的性质》教学设计《不等式的性质》教学设计一、教材分析(一)本节课在教材中的地位和作用:本节课是人教版《数学》第九章第一节9.1.2不等式的性质的第一课时的内容.它承接了等式的性质,让学生第一次经历不等式的变形,也经历了从“数”的大小关系到“式”的大小关系的转折,不等式的性质是解不等式的重要依据,因此它是不等式解法的核心内容之一,是本章的基础,地位相当重要.生活中的数量关系不外乎两种:相等关系与不等关系,通过这堂课的学习,学生将对数量关系的变形有一个完整的认识,形成一个知识体系.(二)教学目标:1.知识与技能目标:(1)掌握不等式的基本性质.(2)经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同.2.过程与方法目标:(1)能说出一个不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯.(2)进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力.(3)在等式性质与不等式性质的转换过程中,渗透类比的学习方法.3.情感与态度目标:(1)尊重学生的个体差异,关注学生的学习情感和自信心的建立.(2)关注学生对问题的实质性认识与理解.(3)通过分组探究活动让学生体会在解决问题过程中与他人合作的重要性,积累数学活动经验.教学重点:探索不等式的性质.二、学情分析学生的认知基础有:第一,会比较数的大小;第二,理解等式性质并知道等式性质是解方程的依据;第三、具备“通过观察、操作并抽象概括等活动获得数学结论”的体会,有一定的抽象概括能力和数学建模能力和合情推理归纳能力.学生认知的主要障碍是:第一,探索不等式性质时,如何与等式性质进行类比,类比什么,思路不是很清晰;第二,探索不等式性质2,3时,由于学生思维的片面性,会产生考虑不到不等式两边乘或除以同一个负数的情况;第三,运用不等式性质时,由于已有知识产生的负迁移,学生不理解运用性质3时,为什么要改变不等号的方向,以及在不等式的等价变形时,什么时候要改变不等号的方向.运用分组讨论合作交流的方式,使学生对不等式性质2、3经历猜测、验证、纠错、完善的充分的思考过程,自发生成.教学难点:不等式性质3的探索及其理解.三、教法:引导探究法本节课的教学设计意在让学生通过与旧知识——等式的性质的类比中,通过自主探索与合作交流获得新知.所以处处蕴含着类比的思想,在探索新知的过程中又引导学生经历猜想——验证——归纳的完整的数学思维过程,让学生在独立思考的基础上进行交流活动,培养合情推理的能力.同时帮助学生积累了数学的探究方法和获得新知的经验.在探索不等式的性质2、3时,采取自主探索与合作交流的形式化解学生学习的难度,使学生感受到当不等式两边同时乘以或除以同一个数时,分类的必要性,明确把不等式的两边都乘以或除以同一个(不为零)数时,必须认清这个数的符号,如果这个数是正数,那么不等号的方向不变,如果这个数是负数,那么不等号的方向改变.借用类比的学习方法,使学生对不等式性质2、3深有所感,让学生在感知、归纳、纠错、完善的过程中,经历充分的思考过程,自发生成.学法:自主探究、合作交流.四、教学媒体与资源的选择与应用:交互式电子白板以及与本节课同步的多媒体课件.五、教学过程1.复习引入师:上一节课学习了不等式及其解集,对于一些简单的不等式,我们可以直接得出它们的解集.但是对于比较复杂的不等式,例如452615->-+x x ,直接得出解集就比较困难.因此,还要讨论怎样解不等式.与解方程需要依据等式的性质一样,解不等式需要依据不等式的性质,今天,我们就来学习不等式有什么性质.(板书课题:9.1.2不等式的性质)等式有哪些性质?你能分别用文字语言和符号语言表示吗?教师边提问学生,边填写下表(课件给出):设计意图:通过回顾再现旧知识,为下一步类比学习不等式的性质作好铺垫和准备.二、探索新知:(一)、引导学生对照等式的性质1,猜想不等式是否有类似的性质,并验证自己的猜想,引导学生用准确的数学语言概括不等式的性质1.1.通过举实例让学生理解生活中存在的不等关系.2.用“>”或“<”填空(1)5>3 (2)-1<35+2__3+2,-1+2__3+2,5-2__3-2,-1-3__3-3,5+0__3+0;-1-0__3-0.请进行猜想,在小组内再找几组数据,试试看,并验证、总结.对照等式的性质1, 用准确的数学语言概括不等式的性质1.不等式的性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变.如果a>b,那么a±c>b±c.(二)、引导学生对照等式的性质2,猜想不等式是否有类似的性质,并验证自己的猜想,引导学生用准确的数学语言概括不等式的性质2、3.1.在乘除运算中,不等式是否仍具有不变性?2.不等式两边可否同时乘以或除以0?为什么?3.不等式两边可否同时乘以或除以同一个正数或同一个负数的规律相同吗?请大胆猜测.4.请从下列两组不等式中任意选取一组,在小组内讨论,验证你的猜想.A.-4<2B.-5<10不等式的性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变.如果a>b,c>0,那么ac>bc(或a÷c>b÷c).不等式的性质3 不等式两边加(或除以)同一个负数,不等号的方向改变.如果a>b,c<0,那么ac<bc(或a÷c<b÷c).< p="">(三)、等式的性质与不等式的性质有什么异同呢? (课件给出):这部分的三个环节采取自主探索——组内交流——师生共同探讨的学习方式。
人教版数学七年级下册《不等式的性质1》教学设计2一. 教材分析人教版数学七年级下册《不等式的性质1》是初中数学的重要内容,主要介绍了不等式的性质,包括不等式的两边同时加减同一个数或式子,不等式的两边同时乘除同一个正数,以及不等式的两边同时乘除同一个负数等。
这些性质为解决实际问题提供了有力的工具。
二. 学情分析学生在七年级上学期已经学习了不等式的基本概念和简单的运算,对于不等式的性质有一定的认知基础。
但学生对于不等式的性质的理解和应用还不够深入,需要通过本节课的学习进一步巩固和提高。
三. 教学目标1.了解不等式的性质,并能运用不等式的性质解决实际问题。
2.培养学生的逻辑思维能力和解决问题的能力。
3.激发学生学习数学的兴趣,提高学生的数学素养。
四. 教学重难点1.教学重点:不等式的性质及应用。
2.教学难点:不等式的性质的理解和运用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生通过自主学习、合作交流,掌握不等式的性质。
六. 教学准备1.准备相关的不等式性质的案例和练习题。
2.准备多媒体教学设备,制作课件。
七. 教学过程1.导入(5分钟)通过一个实际问题引入不等式的性质,例如:“小明比小红高,如果小明再长高5cm,那么他比小红高多少?”引导学生思考不等式的性质。
2.呈现(10分钟)呈现不等式的性质,引导学生观察和总结不等式的性质。
同时,通过多媒体课件展示不等式的性质,加深学生对性质的理解。
3.操练(15分钟)让学生通过小组合作,解决一些关于不等式性质的实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成一些关于不等式性质的练习题,检验学生对不等式性质的掌握程度。
教师选取部分学生的作业进行讲解和分析。
5.拓展(10分钟)引导学生思考不等式性质在实际生活中的应用,例如:“如何在购物时 maximize your savings?”,让学生体会数学与生活的紧密联系。
不等式的性质教学目标1、经历通过类比、猜测、验证发现不等式性质的探索过程,掌握不等式的性质;2、初步体会不等式与等式的异同;3、通过创设问题情境和实验探究活动,积极引导学生参与数学活动,提高学习数学的兴趣,增进学习数学的信心,体会在解决问题的过程中与他人交流合作的重要性.教学重点:理解并掌握不等式的性质。
教学难点:正确运用不等式的性质。
教学过程(师生活动)复习引入(问题一:什么是等式?等式的性质是什么?问题二:什么是不等式?)提出问题:教师出示天平,并请学生仔细观察老师的操作过程,回答下列问题:1、天平被调整到什么状态?2、给不平衡的天平两边同时加人相同质量的砝码,天平会有什么变化?3、不平衡的天平两边同时拿掉相同质量的砝码,天平会有什么变化?4、如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相同的倍数呢?探究新知1、用“>”或“<”填空.(1)-1<3-1+23+2-1-33-3 (2)5>35+a3+a5-a3-a(3)6>26×52×56×(-5)2×(-5)(4)-2<3(-2)×63×6 (-2)×(-6)3×(一6)(5)-4>-6(-4)÷2(-6)÷2 (-4)十(-2)(-6)十(-2)2、从以上练习中,你发现了什么?请你再用几个例子试一试,还有类似的结论吗?请把你的发现告诉同学们并与他们交流.3、让学生充分发表“发现”,师生共同归纳得出:不等式性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变.不等式性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.不等式性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变.4、你能说出不等式性质与等式性质的相同之处与不同之处吗?(讨论结果:区别:等式两边都乘以(或除以)同一个数(除数不能为0)时,结果仍相等;不等式两边都乘以(或除以)同一个数(除数不能为0)时,会出现两种情况,若是正数,不等号方向不改变,若是负数不等号方向要改变,而且不等式两边同乘以0,结果相等.联系:不等式性质和等式性质都讨论的是两边都加上或减去同一个数的情况和两边都乘以或除以同一个数(除数不为0)的情况,即研究“形式”一致.)课堂练习1.下列哪些是不等式x+3>6的解?哪些不是?-4,-2.5,0,1,2.5,3,3.2,4.8,8,122、直接想出不等式的解集,并在数轴上表示出来:(1)x+3>6(2)2x<8(3)x-2>0不等式性质的应用1.判断(1)∵a<b ∴a -b<b -b (2)∵a<b ∴33ba <(3)∵a<b ∴-2a<-2b (4)∵-2a>0∴a>0(5)∵-a<0∴a<32.填空:(1)∵2a>3a ∴a 是 数(2)∵23aa <∴a 是 数(3)∵ax<a 且x>1∴a 是 数3.根据下列已知条件,说出a 与b 的不等关系,并说明是根据不等式哪一条性质。
人教版七年级下册(新)第九章《9.1.2不等式的性质(第1课时)》教学设计(一)【知识与技能】1.理解不等式的性质;2.利用不等式的性质解不等式.(二)【过程与方法】利用天平实验探究不等式性质1,性质2;通过对具体不等式两边都乘以(或除以)同一个负数,不等式符号改变的情形探究不等式性质3;在此基础上,利用不等式的性质解不等式,要着重强化不等式性质3的理解与运用.(三)【情感与态度】通过观察、实验、类比获得新知,体验数学活动的探索性和创造性. (四)【教学重点】不等式的性质.(五)【教学难点】不等式的性质3.一、情境导入,初步认识问题1 用“<”或“>”填空:(1)5>3,则5+2_____3+2,5-2____3-2;(2)-1<3, -1+2___3+2 , -1-3___3-3(3) 6>2, 6×5____2×5 , 6×(-5)____2×(-5);(4)–2<3, (-2)×6___3×6 , (-2) ×(-6)___3×(-6 )问题2 观察(1)、(2)、(3)总结其中的规律,概括不等式有哪些性质.二、思考探究,获取新知先引导学生回顾等式的性质,再根据实验和问题1 ,2探索不等式的性质.思考不等式有哪些性质?怎样用式子表达不等式的性质?【归纳结论】不等式性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变,用式子表示:如果a>b,那么a±c>b±c.不等式性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变,用式子表示:如果a>b,c>0,那么ac>bc或a/c>b/c.不等式性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变,用式子表示:如果a>b,c<0,那么a/c<b/c或a/c<b/c.三、运用新知,深化理解1.设a>b,用“<”“>”填空并回答是根据不等式的哪一条基本性质.(1)a - 3____b - 3;(2)a÷3____b÷3(3)0.1a____0.1b;(4)-4a____-4b(5)2a+3____2b+3;(6)(m2+1)a____ (m2+1)b(m为常数)2.已知a<0,用“<”“>”填空:(1)a+2 ____2; (2)a-1 _____-1;(3)3a______0;(4)- ______0;(5)a2_____0; (6)a3______0;(7)a-1_____0; (8)|a|______0.【例】利用不等式的性质解下列不等式:(1)x-7>26;(2)3x<2x+1;(3) x﹥50;(4)-4x﹥3.分析:解未知数为x的不等式,就是要使不等式逐步化为x﹥a或x ﹤a的形式.【解析】(1)为了使不等式x-7>26中不等号的一边变为x,根据不等式的性质1,不等式两边都加7,不等号的方向不变,得x-7+7﹥26+7x﹥33这个不等式的解集在数轴上的表示如图所示:0 1为了使不等式3x<2x+1中不等号的一边变为x,根据_____________,不等式两边都减去____,不等号的方向_____,得3x-2x﹤2x+1-2x x﹤1这个不等式的解集在数轴上的表示如图所示:为了使不等式 x ﹥50中不等号的一边变为x ,根据不等 式的性质2,不等式的两边都除以 不等号的方向不变, 得x ﹥75这个不等式的解集在数轴上的表示如图所示:为了使不等式-4x ﹥3中的不等号的一边变为x ,根据 ______________,不等式两边都除以____,不等号的方 向______,得x ﹤-这个不等式的解集在数轴上的表示如图所示:四、跟踪练习 利用不等式的性质解下列不等式.(1)x-5 > -1(2)-2x > 3(3)7x > 6x-60 1-43 0 34【解析】(1)x-5 > -1根据不等式的性质______,两边都__________,得根据不等式的性质______,两边都__________,得即x >4(2)-2x > 3根据不等式的性质_____,两边都_______,得(3)7x < 6x -6根据不等式的性质____,两边都_______,得7x-6x<-6即x<-6五、拓展提高1.判断正误:(1)如果a >b ,那么ac >bc.(2)如果a >b ,那么ac2>bc2.(3)如果ac2>bc2,那么a >b.2.已知不等式2a +3b >3a +2b,试比较a 、b 的大小.解:根据不等式的性质1,不等式两边都减去(2a+2b),得32x <-2a+3b-(2a+2b)>3a+2b-(2a+2b)2a+3b-2a-2b>3a+2b-2a-2b所以b>a.六、随堂练习1.填空:(1) 因为2a<3a ,所以a是____数.(2) 因为,所以a是____数(3) 因为ax<a 且x>1, 所以a是____数.2.(无锡∙中考)若a>b,则( )(A)a>-b (B)a<-b(C)-2a>-2b (D)-2a<-2b【解析】选D.不等式的两边都乘以-2,不等号的方向改变3.(上海·中考)如果a>b,c<0,那么下列不等式成立的是()(A)a+c>b+c (B)c-a>c-b(C)ac>bc (D)【解析】选A.由不等式的性质1可知,a+c>b+c正确.4.(泰州·中考)不等式2x+1>-5的解集是.4.(泰州·中考)不等式2x+1>-5的解集是. 答案:x>-3七、课堂小节通过本课时的学习,需要我们掌握:不等式的性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式的性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式的性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变.【教学说明】让学生自主探究,独立完成,然后相互交流,发现问题并及时纠正,教师巡视,适时予以指导.。
《不等式的性质》教学设计黄冈市黄梅县晋梅中学:王曙光
例题讲解
例1:如果b a <,下列不等式错误的是()
A .11+<+b a
B .33-<-b a
C .b a 22<
D .b a -<-
学生仿练和能力提升
1.已知b a <,填空:
(1)2____2++b a ,(2)b a 4_____4--,(3)b a 3_____3. 2.已知n m >,比较13-m 和13-n 的大小.
3.34+>+a a 是在不等式____________的两边加上a 得到的. 4.班上的“小小数学家”宣布证明了:“4<0” 他的证明,到底错在哪里
已知:n m <
两边乘以4得:n m 44<①
两边减去n 4,得:044<-n m ② 即: 0)(4<-n m 两边除以n m -得:04< ③
当堂检测
1、(30分)将y x <变形为y x 22->-,是在不等式两边乘以__________,根据不等式的性质____,不等号的
方向______。
2、(40分)设b a <,用“<”“>”填空:
10____10++b a ;5_____5--b a ;2
____2b
a --
;b a 5_____5. 3、(20分)设n m >,用“<”“>”填空:
4、(30分)小丽说:a a >2,她的说法对吗你认为a 2与a 的大小关系怎样。
9.1.2 不等式的性质(第一课时)教学设计方案执笔人:顾芳芳学校:辽宁省抚顺市第四十二中学一、教学目的本节课是一堂探索活动课, 建立新的数学教学理念,实施课堂教学民主化,促进开放式教学的深入发展。
充分发挥学生的主体作用和教师的主导作用,充分暴露和展示学生数学思维活动过程,使学生经历一个“再发现”的学习过程。
本堂课以活动为载体,主要采用观察、实际操作、合作探究等各种手段,在经过猜想和推理的过程中,增强学生的探究好奇心,加深对数学的理解,激发出潜在的创造力,逐步形成创新意识。
在设计上体现出数学实验与论证的有机结合,体现知识的发生、形成和发展的整个过程。
教学中提供精心设计的数学实验设备,让学生积极参与到数学实验活动中,充分利用优质教学资源来拓宽学生知识面,培养多种能力,从而全面提高素质。
二、教学内容人民教育出版社七年级数学下册9.1.2 不等式的性质(第一课时)三、教学参加人员七年╳班全体学生四、教学形式观察发现、启发引导、探索相结合的教学形式。
启发引导学生积极准确地表达自己的数学思想;能通过对其他人的思维和策略的考察扩展自己的数学知识和使用数学语言的能力。
观察、概括、总结、归纳、类比、联想是学法指导的重点。
五、教学效果通过本节课的学习学生们理解并掌握不等式的性质,会根据不等式的性质解简单的一元一次不等式,并能在数轴上表示解集。
学生们经历通过类比、猜测、交流发现不等式性质的探索过程。
通过实验探究活动,积极引导学生参与数学活动,提高学习数学兴趣,增进学习数学信心,体会在解决问题的过程中与他人交流合作的重要性,学生分析问题和解决问题的能力也得到加强。
新课程要求改变传统教学中过分强调授受式学习的状况,倡导探究式学习,通过学生的合作互动、动手实践,从而探究出数学实际问题中蕴含的理论问题,或由特殊具体的数学问题探究出一般的数学规律和结论。
开展探究式学习有利于激发学生的求知欲望,有利于培养学生的创新精神和实践能力,使学生真正成为学习的主人。
《不等式的性质》教学设计
一、教材分析
(一)本节课在教材中的地位和作用:
本节课是人教版《数学》第九章第一节9.1.2不等式的性质的第一课时的内容。
它承接了等式的性质,让学生第一次经历不等式的等价变形,也经历了从“数”的大小关系到“式”的大小关系的转折,不等式的性质是解不等式的重要依据,因此它是不等式解法的核心内容之一,是本章的基础,地位相当重要。
生活中的数量关系不外乎两种:相等关系与不等关系,通过这堂课的学习,让学生对数量关系的变形有一个完整的认识,形成一个知识体系。
(二)教学目标:
1.经历探索不等式的性质的过程,理解不等式的性质.
2.会解简单的一元一次不等式,并能在数轴上表示出解集.
3.在等式性质与不等式性质的转换过程中,渗透类比的学习方法.
4.通过分组探究活动,让学生体会在解决问题过程中与他人合作的重要性,积累数学活动经验.
教学重点是探索不等式的性质.
二、学情分析:
学生的认知基础有:第一,会比较数的大小;第二,理解等式性质并知道等式性质是解方程的依据;第三、具备“通过观察、操作并抽象概括等活动获得数学结论”的体会,有一定的抽象概括能力和数学建模能力和合情推理归纳能力。
不等式性质3缺少生活经验的依据,已有知识经验对性质3造成负迁移,导致学生不理解运用性质3时“为什么要改变不等号的方向”;在不等式的等价变形时不知道“什么时候要改变不等号的方向”。
本设计运用分组讨论合作交流的方式,使学生对不等式性质2、3经历猜测、验证、纠错、归纳、完善的充分的思考过程,自发生成。
教学难点是不等式性质3的探索与运用.
三、教法:引导探究法
教法分析、
本节课的教学设计意在让学生通过与旧知识——等式性质及其应用类比中,通过自主探索与合作交流获得新知,所以处处蕴含着类比的思想,在探索新知的过程中又引导学生经历猜想——验证——归纳的完整的数学思维过程,培养了学生合情推理的能力,同时帮助学生积累了数学的探究方法和获得新知的经验。
在探索不等式性质2、3时,采取自主探索与合作交流的形式化解学生学习的难度,使学生感受到当不等式两边同时乘以或除以一个数时分类的必要性,明确把不等式的两边都乘以或除以同一个(不为零)数时,必须认清这个数的符号,如果这个数是正数,那么不等号的方向不变,如果这个数负数,那么不等号的方向改变。
借用类比的学习方法,使学生对不等式性质2、3深有所感,让学生在感知、归纳、纠错、完善的过程中,经历充分的思考过程,自发生成。
学法:自主探究、合作交流
四、教具
小白板、物理天平和砝码
五、教学过程。