现代控制理论基本内容
- 格式:ppt
- 大小:161.50 KB
- 文档页数:17
现代控制理论HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】1、什么是对偶系统,从传递函数矩阵,特征多项式和能控、能观性说明互为对偶的两个系统之间的关系。
答:定义:如果两个系统满足A2=A1T,B2=C1T,C2=B1T,则称这两个系统互为对偶函数。
互为对偶系统传递函数矩阵互为转置特征多项式相同,一个函数的能控性等价于另一个函数的能观性。
2、什么是状态观测器?简述构造状态观测器的原则。
答:系统的状态不易检测,以原系统的输入和输出为输入量构造,一动态系统,使其输出渐近于原系统状态,此动态系统为原系统的状态观测器。
原则:(1)观测器应以原系统的输入和输出为输入量;(2)原系统完全能观或不能观于系统是渐近稳定的;(3)观测器的输出状态应以足够快速度超近于原系统状态;(4)有尽可能低的维数,以便于物理实现。
3、说明应用李氏第二法判断非线性系统稳定性基本思想和方法步骤和局限性。
答:基本思想:从能量观点分析平衡状态的稳定性。
(1)如果系统受扰后,其运动总是伴随能量的减少,当达到平衡状态时,能量达到最小值,则此平衡状态渐近稳定:(2)如果系统不断从外界吸收能量,储能越来越大,那么这个平衡状态就是不稳定的:(3)如果系统的储能既不增加也不消耗,那么这个平衡状态时李亚普诺夫意义下的稳定。
方法步骤:定义一个正定的标量函数V(x)作为虚构的广义能量函数,然后根据V(x)=dV(x)/dt的符号特征来判别系统的稳定性。
局限性:李雅普诺夫函数V(x)的选取需要一定的经验和技巧。
4、举例说明系统状态稳定和输出稳定的关系。
答:关系:(1)状态稳定一定输出稳定,但输出稳定不一定状态稳定;(2)系统状态完全能观且能控=状态稳定与输出稳定等价。
举例:A的特征值 =-1 =1 所以状态不是渐进稳点的,W(s)的极点S=-1,所以输出稳点。
5、什么是实现问题什么是最小实现说明实现存在的条件。
第一章线性离散系统第一节概述随着微电子技术,计算机技术和网络技术的发展,采样系统和数字控制系统得到广泛的应用。
通常把采样系统,数字控制系统统称为离散系统。
一、举例自动测温,控温系统图;加热气体图解:1. 当炉温h变化时,测温电阻R变化→R∆,电桥失去平衡状态,检流计指针发生偏转,其偏转角度为)e;(t2. 检流计是个高灵敏度的元件,为防磨损不允许有摩擦力。
当凸轮转动使指针),接触时间为τ秒;与电位器相接触(凸轮每转的时间为T3. 当炉温h 连续变化时,电位器的输出是一串宽度为τ的脉冲信号e *τ(t);4.e *τ(t)为常值。
加热气体控制阀门角度调速器电动机放大器h →→→→→→ϕ 二、相关定义说明(通过上例来说明) 1. 信号采样偏差)(t e 是连续信号,电位器的输出的e *τ(t)是脉冲信号。
连续信号转变为脉冲信号的过程,成为采样或采样过程。
实现采样的装置成为采样器。
To —采样周期,f s =--To1采样频率,W s =2πf s —采样角频率 2.信号复现因接触时间很小,τo T 〈〈τ,故可把采样器的输出信号)(t e *近似看成是一串强度等于矩形脉冲面积的理想脉冲,为了去除采样本身带来的高额分量,需要把离散信号)(t e *恢复到原信号)(t e 。
实现方法:是在采样器之后串联一个保持器,及信号复现滤波器。
作用:是把)(t e *脉冲信号变成阶梯信号e h (t)3.采样系统结构图r(t),e(t),c(t),y(t)为连续信号,)(t e *为离散信号)(s G h ,)(s G p ,)(s H 分别为保持器,被控对象和反馈环节的传递函数。
(t)r4.采样系统工作过程⇒由保持器5. 采样控制方式采样周期To ⎪⎩⎪⎨⎧=≠=⇒相位不同步采样常数常数6. 采样系统的研究方法(或称使用的数字工具)因运算过程中出现s 的超越函数,故不用拉式变换法,二采用z 变换方法,状态空间法。
现代控制理论及其在工程中的应用现代控制理论是指以数学和理论为基础的系统控制方法和技术,它通过对系统的建模、分析和设计,使得工程系统能够以最佳方式运行。
现代控制理论的应用广泛,可以涵盖从自动化工程到航空航天工程等各个领域。
本文将探讨现代控制理论的基本原理以及它在工程中的实际应用。
一、现代控制理论基本原理现代控制理论的基本原理包括控制系统原理、线性控制理论、非线性控制理论、自适应和鲁棒控制等。
在控制系统原理中,主要研究控制系统的基本概念和结构,包括反馈控制、前馈控制等。
线性控制理论主要用于研究线性控制系统的建模和设计方法,其中包括经典控制理论和现代控制理论。
非线性控制理论则是用于研究非线性系统的建模和分析方法,它考虑了系统中的非线性因素。
自适应和鲁棒控制则是用于处理控制系统中的不确定性和变化环境的方法。
二、现代控制理论在工程中的应用1. 自动化工程现代控制理论在自动化工程中得到了广泛的应用。
例如,在工业生产中,通过引入现代控制理论,可以提高生产效率和质量。
自适应和鲁棒控制方法可以应对系统参数变化和外部干扰,使得系统能够更加稳定地运行。
另外,在自动化系统中,控制器的设计对系统性能至关重要,通过利用现代控制理论的方法,可以设计出更优秀的控制器,提高系统的响应速度和稳定性。
2. 电力工程在电力工程中,现代控制理论被广泛应用于电力系统的运行和控制中。
例如,在电力系统的稳定性分析中,线性控制理论可以用于建立电力系统的传输方程,从而评估系统的稳定性。
另外,在电力系统的控制中,现代控制理论的方法可以用于设计和优化发电机、变压器等设备的控制系统,提高电力系统的响应能力和稳定性。
3. 交通工程现代控制理论在交通工程中的应用也非常广泛。
例如,在交通信号控制中,现代控制理论可以用于对交通流进行建模和预测,从而在不同的交通状况下,自动调整交通信号的控制策略,使得交通流能够更加顺畅地运行。
另外,在交通系统中,现代控制理论的方法也可以用于设计和优化交通系统的控制器,提高交通系统的效率和安全性。
现代控制理论pdf
1 现代控制理论
现代控制理论是一种控制策略,主要针对复杂系统而设计。
它将
传统的算法和最新的技术结合在一起,旨在实现平衡及对系统即时控制、自行调节。
简而言之,现代控制理论是一种使复杂系统更稳定更
健壮的以自适应为主的控制理论系统,该理论以创新的参数估计和变
化条件的识别而着称。
现代控制理论的基本原理是系统的全局预测,通过分析所有可能
的变化,对系统作出及时的反应和控制,以达到系统的最佳性能。
此外,现代控制理论更注重对系统的实时调节和迭代,以达到更高精度
的控制。
在系统变更和失效时,可以使用现代控制理论进行快速调节,以快速恢复系统性能。
数字控制系统是现代控制理论大部分应用于实践中的主要形式。
这种系统使用算法来跟踪系统状态,并使系统按照计划行动;同时,
它也允许实时调节以保持系统的预期性能。
实践中,该系统被广泛应
用于汽车、机器人和工业控制系统中。
另外,现代控制理论还使用多种优化算法,如模拟退火、遗传算
法等,以确定系统参数,使系统更自动化和准确。
现代控制理论也会
联合智能控制方法,有利于实现更复杂的控制效果,尽可能减少失常,从而实现系统的智能化运行。
综上所述,现代控制理论充分利用最新技术和自适应元素,为系统提供更可靠的稳定性,可以有效解决复杂系统的稳定性和可靠性等问题,是当前国际上先进的控制理论之一。
天津市考研控制科学与工程复习资料现代控制理论概述随着社会的进步和科技的发展,现代控制理论在各个领域的应用越来越广泛。
考研控制科学与工程的学生需要对现代控制理论有一个全面的了解,并掌握其核心知识。
本文将对天津市考研控制科学与工程的复习资料进行概述,重点介绍现代控制理论的基本概念、发展历程以及常用技术等内容。
一、现代控制理论的基本概念现代控制理论是指利用数学、电子、计算机等现代科学技术手段对系统进行分析、设计和运行控制的理论体系。
它的核心思想是通过建立数学模型描述系统行为,并设计控制策略来实现系统的预期性能。
现代控制理论包括了许多基本概念,如控制对象、控制器、控制算法等。
掌握这些基本概念是理解和应用现代控制理论的基础。
二、现代控制理论的发展历程现代控制理论起源于20世纪40年代,经过几十年的发展,已经形成了较为完善的理论体系。
从经典控制理论到现代控制理论的转变,标志着控制理论由定性研究转向了定量分析,从而实现了对复杂系统的精确控制。
现代控制理论的发展历程可以总结为三个阶段:线性控制理论、非线性控制理论和鲁棒控制理论。
每个阶段都在控制理论的某个方面提出了新的理论和方法,为实际应用提供了有力支持。
三、现代控制理论的常用技术现代控制理论的研究涉及到许多技术方法,其中一些常用技术对于理解和应用现代控制理论至关重要。
例如,状态空间方法是描述和分析系统动态行为的重要工具。
频域分析方法可以帮助我们理解系统的频率响应特性。
最优控制理论可以帮助我们设计出最优的控制器,提高系统的性能。
自适应控制方法可以应对系统参数变化和外部扰动,保证系统的稳定性和鲁棒性。
这些技术方法在实际工程中得到了广泛的应用,对于提高系统的性能和可靠性具有重要意义。
综上所述,天津市考研控制科学与工程的复习资料中,现代控制理论是重要的考点之一。
掌握现代控制理论的基本概念、发展历程以及常用技术,对于学生们的考试复习和职业发展都具有重要意义。
希望本文能够帮助大家对现代控制理论有一个全面的了解,为复习提供有效的参考资料。