+ + = ,所以 = −,所以为的中点. 又因为为
的中点,所以△ =
△
=
,
△
△
则
△
= .
考点一 平面向量的有关概念
例1 (多选)下列命题中的真命题是(
)
A.若 = ,则 =
B.若,,,是不共线的四点,则“ = ”是“四边形为平行四边
√
形”的充要条件
C.若 = , = ��,则 =
√
D. = 的充要条件是 = 且//
解析:两个向量的长度相等,但它们的方向不一定相同,A不正确;因为
= ,所以 = 且//,又,,,是不共线的四点,所以四
边形为平行四边形;反之,若四边形为平行四边形,则
2025届高考数学一轮复习讲义
平面向量、复数之
平面向量的概念及线性运算
1.向量的有关概念
方向
(1)向量:既有大小又有①______的量叫做向量,向量的大小叫做向量
模
的②____.
0
(2)零向量:长度为③___的向量,其方向是任意的.
1个单位长度
(3)单位向量:长度等于④_____________的向量.
定义
法则(或几何意义)
运算律
=⑩______,当
> 时,
=⑭_______;
相同
求实数
与的方向⑪______;
+ =⑮
数乘 与向量的 当 < 时,与 的方向⑫
+
_________;
相反
积的运算 ______;
+