风电防雷接地-14页文档资料
- 格式:doc
- 大小:34.50 KB
- 文档页数:14
风电防雷接地1 风机的防雷特点电闪雷鸣释放的巨大能量,会造成风机叶片爆裂、电气绝缘击穿、自动化控制和通信元件烧毁……1.1 一般雷击率在年均10雷电日地区,建筑物高度h与一般雷击率n的关系见表1。
1.2 环境风力发电特点是:风机分散安置在旷野,大型风机叶片高点(轮毂高度加风轮半径)达60~70 m,易受雷击;风力发电机组的电气绝缘低(发电机电压690 V、大量使用自动化控制和通信元件)。
因此,就防雷来说,其环境远比常规发电机组的环境恶劣。
1.3 严重性风力发电机组是风电场的贵重设备,价格占风电工程投资60%以上。
若其遭受雷击(特别是叶片和发电机贵重部件遭受雷击),除了损失修复期间应该发电所得之外,还要负担受损部件的拆装和更新的巨大费用。
丹麦LM公司资料介绍:1994年,害损坏超过6%,修理费用估计至少1 500万克朗(当年丹麦装机540 MW,平均2.8万克朗/MW) 。
按LM公司估计,世界每年有1%~2%的转轮叶片受到雷电袭击。
叶片受雷击的损坏中,多数在叶尖是容易被修补的,但少数情况则要更换整个叶片。
雷击风机常常引起机电系统的过电压,造成风机自动化控制和通信元件的烧毁、发电机击穿、电气设备损坏等事故。
所以,雷害是威胁风机安全经济运行的严重问题。
2 叶片防雷研究雷击造成叶片损坏的机理是:雷电释放巨大能量,使叶片结构温度急剧升高,分解气体高温膨胀,压力上升造成爆裂破坏。
美国瞬变特性研究院用人工电晕发生器,在全复合材料的叶片做雷击试验,高电压、长电弧冲击(3.5 MV,20 kA)加在无防雷设置的叶片上,结论是叶片必须加装防雷装置。
TACKE公司设计了玻璃钢防雷叶片(图1),叶片顶端铆装一个不锈钢叶尖,用铜丝网贴在叶片两面,将叶尖与叶根连为一导电体。
铜丝网一方面可将叶尖的雷电引导至大地,也防止雷击叶片主体。
丹麦LM公司于1994年获得叶片防雷的科研项目,由丹麦能源部资助,包括丹麦研究院雷电专家、风机生产厂、工业保险业、风电场和商业组织在内,目的在于调查研究雷电导致叶片损害,开发安全耐用的防雷叶片。
新疆大学电气工程学院课程作业题目: 风力发电机防雷系统讲课老师: 王海云学生姓名:学号:所属院系:电气工程学院专业:电气工程及其自动化班级:电气09-4班日期: 2013年5月风力发电机防雷系统0、引言风能是当前技术较好的、最具备规模开发条件的可再生洁净能源。
风能发电为人与自然和谐发展提供了基础。
由于风力发电机组是在自然环境下工作,不可避免的会受到自然灾害的影响。
由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大,为了吸收更多能量,轮毂高度和叶轮直径随着增高,相对的也增加了被雷击的风险,雷击成了自然界中对风力发电机组安全运行危害最大的一种灾害,并且雷击对风电机组造成的危害主要有直击雷、感应雷、雷电波侵入、地电位反击等形式。
雷电释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。
1、雷电的产生雷电是伴有闪电和雷鸣的一种雄伟壮观而又有点令人生畏的放电现象。
雷电一般产生于对流发展旺盛的积雨云中,因此常伴有强烈的阵风和暴雨,有时还伴有冰雹和龙卷风。
积雨云顶部一般较高,可达20公里,云的上部常有冰晶。
冰晶的凇附,水滴的破碎以及空气对流等过程,使云中产生电荷。
云中电荷的分布较复杂,但总体而言,云的上部以正电荷为主,下部以负电荷为主。
因此,云的上、下部之间形成一个电位差。
当电位差达到一定程度后,就会产生放电,这就是我们常见的闪电现象。
闪电的平均电流是3万安培,最大电流可达30万安培。
闪电的电压很高,约为1亿至10亿伏特。
一个中等强度雷暴的功率可达一千万瓦,相当于一座小型核电站的输出功率。
放电过程中,由于闪电通道中温度骤增,使空气体积急剧膨胀,从而产生冲击波,导致强烈的雷鸣。
带有电荷的雷云与地面的突起物接近时,它们之间就发生激烈的放电。
在雷电放电地点会出现强烈的闪光和爆炸的轰鸣声。
这就是人们见到和听到的闪电雷鸣。
它的破坏力十分巨大,若不能迅速将其泻放入大地,将导致放电通道内的物体、建筑物、设施、人畜遭受严重的破坏或损害——火灾、建筑物损坏、电子电气系统摧毁,甚至危及人畜的生命安全。
风力电力站的接地和防雷解决方案
风力电力站的接地和防雷问题解决
风机口及其输电设备的接地和防雷接地的要求:
风力电站的设备接地与防雷接地应该区分但又必须共用接地系统。
区分在于入地点之间的区分和选择。
共用接地在于地下部分的巧接和系统之间泄流与保护的功用关系
风力电站设备接地与防雷接地共用地网,其接地地阻为1欧姆以下。
地网布置适用双环行射线状,其外环与内环应间距应为内环到风机口的4倍。
其内环应根据风机口基础的深度确定,应大于基础深度的8-10倍,一般不低于12米。
外围射线布置根据土壤确定,不应低于4条,其长度为风机口到外环的2倍。
地网材料的要求:
水平接地体:5*50以上热镀锌扁钢或4*40以上铜条
垂直接地体:6*63以上热镀锌角钢或5*50以上铜包钢材料
为保证风力电站接地的长久效果,接地材料不适合采用降阻新型材料。
风力发电机组防雷接地的探讨摘要:随着风力发电技术的不断发展,越来越多的风力发电机组被建设起来,但是由于其高耸的塔身和叶片,容易成为雷击的对象,给设备带来损坏和安全隐患。
因此,风力发电机组的防雷接地问题备受关注。
基于此,文章首先阐述风电机组的雷电危害,然后综合分析其防雷接地措施。
关键词:风力发电机组;防雷接地;措施引言风力发电机组的防雷接地是指在雷电天气下,通过合理地设计和布置接地装置,将雷电能量释放到地面,保护设备和人员的安全。
一、风电机组的雷电危害风电机组在运行过程中可能会受到雷击,从而产生雷电危害。
首先当雷电直接击中风电机组时,可能会损坏机组的设备或者导致机组停机。
同时,由于风电机组往往建造在山顶等高地区,所以直接雷击还可能导致山火等附带危害。
其次当雷电在附近地区击中时,会产生电磁场,从而感应出电流来。
这些电流可能会对风电机组的电气设备造成损坏。
此外当雷电击中地面时,会产生接地电流。
如果接地电流通过风电机组的接地系统流过去,可能会导致接地系统受损或者引发火灾等危险。
为了减少这些危害,风电机组需要采取一些保护措施,如安装避雷针、接地系统等。
同时,在风电机组的设计和建造中,也需要考虑雷电危害因素,从而尽可能地减少潜在的危害。
二、风电机组的防雷接地措施(一)叶片防雷风电机组的叶片是一个主要的防雷目标,因为在风电机组运行过程中,叶片处于高处,容易受到雷击。
因此,为了保护叶片,需要采取一些防雷接地措施。
首先在叶片上安装一根或多根雷电接地线,将叶片与地面接地,以减少雷击对叶片的影响。
同时也可以在叶片上安装避雷针,可以有效地将雷电引到避雷针上,从而保护叶片不受雷击。
此外可以在叶片表面涂上一层防雷涂层,可以减少雷击对叶片的影响,从而保护叶片。
与此同时可以在叶片表面安装一层接地网格,将叶片与地面连接起来,以减少雷击对叶片的影响。
需要注意的是,不同的叶片防雷措施适用于不同的情况,需要根据具体情况进行选择。
同时,为了确保叶片防雷措施的有效性,需要进行定期检查和维护,及时更换损坏的部件,以保障风电机组的正常运行。
风电场升压站防雷接地本文主要总结了风电场升压站防雷接地设计步骤和方法,风电场升压站防雷接地设计流程图如图1 所示。
图1 风电场升压站防雷接地设计流程图1 外专业提资与分析1.1 总图首先要熟悉升压站的总平面布置图,主要从以下几个方面进行分析:(1)熟悉升压站各道路、各建筑物布置,明确升压站面积等参数。
(2)升压站所在位置的地形地貌:需要回填的区域,边坡的位置,坡度的急缓。
(3)如果场内电阻率过高,需要考虑引外路径。
注意所进道路是否已征地,附近是否有水渠和村庄,水源是否为保护水源。
1.2 土壤电阻率测量报告仔细阅读土壤电阻率测量报告,重点关注土壤电阻率成果表。
确定各测线位置,地表湿度,土壤电阻率。
根据附件1的接地电阻计算软件可以计算出垂直和水平方向土壤电阻与地网综合工频电阻,从而决定是否需要外引地网。
1.3 电气电气提资主要为电气主接线图和短路电流计算表,用以计算短路电流与阻抗,从而校验接地体的热稳定截面。
注意零序阻抗的计算要根据最不利的情况来选取。
如在云霄风电场中,#1主变容量为31.5MV A,远景的#2和#3主变容量为50 MV A 与40MV A,当发生三相短路时,最糟糕的情况是最大容量变压器发生三相短路,故计算零序阻抗的时候S e=50M。
1.4 建筑了解建筑剖面图与屋面图,主要用于建筑防雷提资,以设置防雷接地卡、接闪网、接闪器。
2 建筑防雷提资2.1 制图步骤(1)确定建筑防雷等级。
一般风电场升压站属于三类防雷建筑物,根据文献[1]可知第三类防雷建筑物上的接闪网、接闪器应沿屋角、屋脊、屋檐和檐角等易受雷击的部位敷设,并应在整个屋面组成不大于20m×20m或24m×26m的网格。
当建筑物高度超过60m时,首先应沿屋顶周边敷设接闪带,接闪带应设在外墙外表面或屋檐边垂直面上,也可设在外墙外表面或屋檐边垂直面外。
接闪器之间应互相连接。
(2)专设引下线不应少于2根,并应沿建筑物四周和庭院内四周均匀对称布置,其间距沿周长计算不应大于25m。
风力发电场防雷接地工程方案一、概述目前,风力发电被称为明日世界的能源。
由于它属于可再生能源,为人与自然和谐发展提供了基础。
而且不像火电、核电、水电会造成环境问题,所以符合社会可持续发展对能源的要求。
所以,风力发电已在我国达到了举足轻重的地位。
然而,风力发电机组是在空旷、自然、外露的环境下工作,不可避免的会遭受到直接雷击。
由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大。
主体高度约80米、叶片长度约40米、即最高点高度约为120米的风机,在雷雨天气时极易遭受直接雷击。
它是自然界中对风力发电机组安全运行危害最大的一种灾害。
雷电释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。
风机的防雷是一个综合性的防雷工程,防雷设计的到位与否,直接关系到风机在雷雨天气时能否正常工作,并且确保风机内的各种设备不受损害。
本方案针对风力发电机组的防雷接地。
二、风力发电厂地貌及接地电阻要求风力发电场位于河北张家口地区,风力发电功率为1500kw。
土壤电阻率比较高,超过450Ω.m。
由于有岩石的存在,造成不同深度的土壤电阻率分布不均匀。
风机接地电阻要求做到4欧姆。
风机基础占地面积大约14×14平方米,距其10m处有一台箱式变压器,其接地电阻值的要求为4欧姆。
三、接地材料的选择及地网设计接地是指将风机的外壳与大地连接一起,以便在正常运行、事故接地和遭受雷击的情况下,将其接地点的电位固定在允许范围内,从而保证人身和设备安全。
风机的接地系统是风机防雷保护系统中一个关键环节。
在地网开挖面积有限、土壤电阻率较高的环境条件下,要能达到上面的技术要求,用传统常规的角钢、扁铁等接地材料进行施工是非常困难的。
本方案建议采用新型的接地材料:高效低阻接地极。
下面介绍常规接地材料与新型高效接地模块的使用。
1、常规接地材料一般来说,水平接地体采用不小于40×4mm 的热镀锌扁钢,垂直接地体采用不小于50×50×5mm的角钢,每根角钢的长度大约-3米。
风电场风机基础防雷接地工法(三门峡渑池荆庄100MW风电项目)一、前言风能作为一种清洁的可再生能源,越来越受到世界各国的重视。
因此风力发电也因之崛起,由于它属于可再生能源,为人与自然和谐发展提供了基础,而且不像火电、核电、水电会造成环境问题,所以符合社会可持续发展对能源的要求,所以,风力发电已在我国达到了举足轻重的地位。
风力发电场广泛随着社会经济的发展,建设量也持续增加。
然而,风力发电机组是在空旷、外露的的环境下工作,不可避免的会遭受到直接雷击。
由于风电技术的迅速发展,风力发电机组的容量也越来越大,轮毂高度100米,叶片长度68米、即最高点高度约168米的风机,在雷雨天气时极易遭受直接雷击。
雷击是自然界中对风力发电机组安全运行危害最大的一种灾害,雷电释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。
这种情况下,防雷接地系统问世。
风机的防雷是一个综合性的防雷工程,防雷设计的到位与否,直接关系到风机在雷雨天气时能否正常工作,并且确保风机内的各种设备不受损害。
为保证风力发电机组的正常、安全使用,因此风机基础的防雷接地施工技术成为重中之重。
二、工法特点2.1施工工序衔接紧密,人员分工详细,各负其责,互相协作,既能确保工程质量,又可以提高工作效率。
2.2该工法易于掌握,施工方便,且满足设计要求。
三、适用范围本工法适用于风力发电机组基础、变电站防雷接地装置施工作业。
四、工艺原理该工法根据流水法施工原理,结合接地网施工特点,科学合理安排施工工序,将整个施工过程分为:(1)接地网测量放线;(2)接地沟开挖;(3)敷设接地扁钢与垂直接地极;(4)接地扁钢之间连接与垂直接地极连接;(5)接地扁钢涂刷防腐、防锈材料;(6)检查验收合格;(7)接地沟回填;(8)检测接地电阻值;(9)检测接地电阻值是否≤4Ω,如小于该步骤结束进入下到施工工序,如>4Ω需放置接地模块。
九个工序,按顺序施工,当上一道工序完成一定工作量后,同时开始下一道工序施工。
风光互补发电系统防雷接地知识和设计一、任务导入风力发电机安装在室外,塔架加风轮和轮毂高度达十几米,遭受雷击屡见不鲜,特别是雷电多发地区,雷击会造成风力发电机叶片损坏,并常常引起发电系统过电压,造成发电机击穿、控制设备烧毁、电气设备损坏等事故,甚至危及人员安全。
所以,雷击威胁着风力发电机的安全运行。
因此,在设计风光互补发电系统时,一定要做好防雷设计。
图3-7所示是直接雷击示意图。
由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大,为了吸收更多能量,轮毂高度和叶轮直径随着增高,相对的也增加了被雷击的风险,雷击成了自然界中对风力发电机组安全运行危害最大的一种灾害。
我国沿海地区地形复杂,雷暴日较多,应充分重视雷击给风力发电机组和运行人员带来的巨大威胁。
图3-8所示是感应雷击示意图。
图3-8所示是感应雷击示意图二、相关知识学习情境1风光互补发电系统防雷知识1.风光互补发电系统的避雷技术要求对于风光互补发电系统的避雷设计,主要考虑直击雷和感应雷的防护:风光互补发电系统的风力发电机、太阳能电池组件都安装在室外,当雷电发生时可能会受到直击雷的侵入,直击雷的防护通常采用避雷针、避雷带、避雷线、避雷网或金属体作为接闪器,将雷电流接收下来,并通过引T线引至埋于大地起散流作用的接地装置再泄散入地。
图3-9 所示是避雷装置设计图。
感应雷的防护主要考虑在风力发电机外壳、太阳能电池组件四周铝合金框架与支架作等电位连接并可靠接地,交直流输电线路和逆变器等的感应雷防护措施主要是采用防雷保护器。
图3-9 避雷装置设计图2.风光互补发电系统设备的雷电及过电压的影响风光互补发电系统作为一种新兴的发电系统在能源发电领域中已备受关注及广泛应用,由于风光互补发电系统本身安装位置和环境的特殊性,其设备遭受雷电电磁脉冲损坏的隐患也越来越突出。
因此,根据实际情况对风光互补发电系统防雷的研究有助于提高整个发电系统的安全、高效运行。
雷电对风光互补发电系统设备的影响主要由以下几个方面造成:(1)直击雷。
风电防雷接地1 风机的防雷特点电闪雷鸣释放的巨大能量,会造成风机叶片爆裂、电气绝缘击穿、自动化控制和通信元件烧毁……1.1 一般雷击率在年均10雷电日地区,建筑物高度h与一般雷击率n的关系见表1。
1.2 环境风力发电特点是:风机分散安置在旷野,大型风机叶片高点(轮毂高度加风轮半径)达60~70 m,易受雷击;风力发电机组的电气绝缘低(发电机电压690 V、大量使用自动化控制和通信元件)。
因此,就防雷来说,其环境远比常规发电机组的环境恶劣。
1.3 严重性风力发电机组是风电场的贵重设备,价格占风电工程投资60%以上。
若其遭受雷击(特别是叶片和发电机贵重部件遭受雷击),除了损失修复期间应该发电所得之外,还要负担受损部件的拆装和更新的巨大费用。
丹麦LM公司资料介绍:1994年,害损坏超过6%,修理费用估计至少1 500万克朗(当年丹麦装机540 MW,平均2.8万克朗/MW) 。
按LM公司估计,世界每年有1%~2%的转轮叶片受到雷电袭击。
叶片受雷击的损坏中,多数在叶尖是容易被修补的,但少数情况则要更换整个叶片。
雷击风机常常引起机电系统的过电压,造成风机自动化控制和通信元件的烧毁、发电机击穿、电气设备损坏等事故。
所以,雷害是威胁风机安全经济运行的严重问题。
2 叶片防雷研究雷击造成叶片损坏的机理是:雷电释放巨大能量,使叶片结构温度急剧升高,分解气体高温膨胀,压力上升造成爆裂破坏。
美国瞬变特性研究院用人工电晕发生器,在全复合材料的叶片做雷击试验,高电压、长电弧冲击(3.5 MV,20 kA)加在无防雷设置的叶片上,结论是叶片必须加装防雷装置。
TACKE公司设计了玻璃钢防雷叶片(图1),叶片顶端铆装一个不锈钢叶尖,用铜丝网贴在叶片两面,将叶尖与叶根连为一导电体。
铜丝网一方面可将叶尖的雷电引导至大地,也防止雷击叶片主体。
丹麦LM公司于1994年获得叶片防雷的科研项目,由丹麦能源部资助,包括丹麦研究院雷电专家、风机生产厂、工业保险业、风电场和商业组织在内,目的在于调查研究雷电导致叶片损害,开发安全耐用的防雷叶片。
风电防雷接地1 风机的防雷特点电闪雷鸣释放的巨大能量,会造成风机叶片爆裂、电气绝缘击穿、自动化控制和通信元件烧毁……1.1 一般雷击率在年均10雷电日地区,建筑物高度h与一般雷击率n的关系见表1。
1.2 环境风力发电特点是:风机分散安置在旷野,大型风机叶片高点(轮毂高度加风轮半径)达60~70 m,易受雷击;风力发电机组的电气绝缘低(发电机电压690 V、大量使用自动化控制和通信元件)。
因此,就防雷来说,其环境远比常规发电机组的环境恶劣。
1.3 严重性风力发电机组是风电场的贵重设备,价格占风电工程投资60%以上。
若其遭受雷击(特别是叶片和发电机贵重部件遭受雷击),除了损失修复期间应该发电所得之外,还要负担受损部件的拆装和更新的巨大费用。
丹麦LM公司资料介绍:1994年,害损坏超过6%,修理费用估计至少1 500万克朗(当年丹麦装机540 MW,平均2.8万克朗/MW) 。
按LM公司估计,世界每年有1%~2%的转轮叶片受到雷电袭击。
叶片受雷击的损坏中,多数在叶尖是容易被修补的,但少数情况则要更换整个叶片。
雷击风机常常引起机电系统的过电压,造成风机自动化控制和通信元件的烧毁、发电机击穿、电气设备损坏等事故。
所以,雷害是威胁风机安全经济运行的严重问题。
2 叶片防雷研究雷击造成叶片损坏的机理是:雷电释放巨大能量,使叶片结构温度急剧升高,分解气体高温膨胀,压力上升造成爆裂破坏。
美国瞬变特性研究院用人工电晕发生器,在全复合材料的叶片做雷击试验,高电压、长电弧冲击(3.5 MV,20 kA)加在无防雷设置的叶片上,结论是叶片必须加装防雷装置。
TACKE公司设计了玻璃钢防雷叶片(图1),叶片顶端铆装一个不锈钢叶尖,用铜丝网贴在叶片两面,将叶尖与叶根连为一导电体。
铜丝网一方面可将叶尖的雷电引导至大地,也防止雷击叶片主体。
丹麦LM公司于1994年获得叶片防雷的科研项目,由丹麦能源部资助,包括丹麦研究院雷电专家、风机生产厂、工业保险业、风电场和商业组织在内,目的在于调查研究雷电导致叶片损害,开发安全耐用的防雷叶片。
研究人员在实验室进行一系列的仿真测试,电压达1.6 MV,电流到200 kA,进行雷电冲击,验证叶片结构能力和雷电安全性。
研究表明:不管叶片是用木头或玻璃纤维制成,或是叶片包导电体,雷电导致损害的范围取决于叶片的形式。
叶片全绝缘并不减少被雷击的危险,而且会增加损害的次数。
研究还表明:多数情况下被雷击的区域在叶尖背面(或称吸力面)。
在研究的基础上,LM叶片防雷性能得到了发展,在叶尖装有接闪器(图2)捕捉雷电,再通过叶片内腔导引线使雷电导入大地,约束雷电,保护叶片,设计简单和耐用。
如果接闪器或传导系统附件需要更换,只是机械性的改换。
3 雷害资料数据3.1 我国个别案例1995年8月,浙江苍南风电场1台FD16型55 k W风机受雷击,从叶尖到叶根开裂损坏报废。
我国各风场的雷害,没有统计资料。
3.2 丹麦和德国统计的雷击数据3.2.1 风机雷击率丹麦1200台、德国1400台风机遭雷击数据见表2。
德国雷击率比丹麦高出1倍。
除了地点不同,收集时间短(一般认为需要15 a),或许有德国的风机平均总高度44.3 m比丹麦的35.5 m高等因素。
3.2.2 雷击地区分布德国1992~1995年雷击地区分布数据见表3。
3.2.3 受雷击损坏部位德国和丹麦风机受雷击损坏部位数据见表4。
3.2.4 影响利用率德国和丹麦因风机受雷击损坏造成损失的天数见表5。
3.2.5 影响发电量因风机受雷击损坏不同部位所影响的发电量(丹麦)见表6。
3.2.6 修理费用用在修复受雷击损坏的风机上的费用(德国)见表7。
3.2.7 德国资料记录雷击停机后可再次顺利启动的大约占10.5%,说明防雷保护的作用。
3.2.8 统计资料分析通过上述统计资料分析,可以认为:a)德国、丹麦统计数据说明风机遭雷击概率高,估计我国多雷地区会更严重;b)安装在高山的风机,比在低地和海边更容易受雷击;c)控制系统损坏率最高,是雷害薄弱环节,电气系统和发电机损坏概率也不低,说明雷电造成的过电压必须引起重视;d)叶片损坏造成损失电量最多、修理费用最大;e)德国记录雷击停机后有大约10.5%可再次顺利启动,很值得进一步研究。
4 防雷标准及地电阻要求现代的雷电保护,可分为外部雷电保护和内部的雷电保护两部分。
按照IEC1024-1标准,以雷电5个重要参数,确定保护水平分I~IV级(表8)。
如今,风机叶片(如LM叶片)的防雷,是按照IEC1024-1的Ⅰ级保护水平设计,并通过有关型式试验,所以,叶片避免直击雷的破坏大有改善。
当外部直击雷打到叶片,将雷电引导入大地也不难。
但是,风力发电机组在离地40~50 m机舱内的设备,和地面控制框设备都与雷电引下系统有某种相连,雷电流引起过电压,造成这些设备的损坏是面广而棘手的问题。
雷电流引起过电压,取决引下系统和接地网。
目前,国际风机厂家对地电阻值的要求(表9)很不一样:丹麦(Vestas、Micon)允许较大;美国(Zond)西班牙(Made)次之;德国(Nordex、Jacobs)要求地电阻值最小。
我国尚没有风力发电机组防雷和过电压保护(包括地电阻值)的行业标准,这是风机国产化和风电场设计急需解决的问题。
5 防雷和过电压保护设计5.1 外部直击雷的保护设计5.1.1 叶片如上所述,包含接闪器和敷设在叶片内腔连接到叶片根部的导引线,叶片的铝质根部连接到轮毂、引至机舱主机架、一直引入大地。
叶片防雷系统的主要目标是避免雷电直击叶片本体,而导致叶片本身发热膨胀、迸裂损害。
5.1.2 机舱机舱主机架除了与叶片相连,还连接机舱顶上避雷棒,见图3。
避雷棒用作保护风速计和风标免受雷击。
主机架再连接到塔架和基础的接地网。
5.1.3 塔架及引下线专设的引下线连接机舱和塔架,减轻电压降,跨越偏航环,机舱和偏航刹车盘通过接地线连接,因此,雷击时将不受到伤害,通过引下线将雷电顺利地引入大地。
5.1.4 接地网接地网设在混凝土基础的周围,见图4。
接地网包括1个50 mm2铜环导体,置在离基础1 m地下1 m 处;每隔一定距离打入地下镀铜接地棒,作为铜导电环的补充;铜导电环连接到塔架2个相反位置,地面的控制器连接到连点之一。
有的设计在铜环导体与塔基中间加上两个环导体,使跨步电压更加改善。
如果风机放置在高地电阻区域,地网将要延伸保证地电阻达到规范要求。
一个有效的接地系统,应保证雷电入地,为人员和动物提供最大限度的安全,以及保护风机部件不受损坏。
5.2 内部防雷(过电压)保护系统5.2.1 等电位汇接风速计和风标与避雷针一起接地等电位;机舱的所有组件如主轴承、发电机、齿轮箱、液压站等以合适尺寸的接地带,连接到机舱主框作为等电位;地面开关盘框由一个封闭金属盒,连接到地等电位。
5.2.2 隔离在机舱上的处理器和地面控制器通信,采用光纤电缆连接;对处理器和传感器,分开供电的直流电源。
5.2.3 过电压保护设备在发电机、开关盘、控制器模块电子组件、信号电缆终端等,采用避雷器或压敏块电阻的过电压保护。
6 分析及结论a) 不论从实际统计或理论分析都表明,雷害是威胁风力发电机组安全生产和风场效益的严峻问题。
风力发电是新兴的行业,至今从防雷研究成果看,风力发电机组的外部直击雷保护,重点是放在改进叶片的防雷系统上;而内部的防雷———过电压保护则由风机厂家设计完成。
此外,各个国际风机厂家实际设计所依据标准和参数 (包括地网电阻)就有很大差别。
所以,这样形成的风机制造不能不在产品上就留下某些薄弱环节。
为了改进风机的防雷性能,首先要确定合理统一的防雷设计标准,明确防止外部雷电和内部雷电(过电压)保护的制造工艺规范,这是提高风力发电机组防雷性能的基础。
在我国要发展风电,就必须尽快建立我国风电行业(包括风机防雷)技术规范,是非常急迫和非常必要的。
b) 地域不同的雷电活动有所差别,我国北方和南方的雷电活动强度也不一样。
如上所列的丹麦和德国雷害统计资料对我国很有参考价值,但是,他们都是雷电活动少的北欧地区,在我国将来的规范标准中,应该考虑到地域的不同、我国北方和南方的差别等。
c) 风机的一般外部雷击路线是:雷击(叶片上)接闪器→(叶片内腔)导引线→叶片根部→机舱主机架→专设(塔架)引下线→接地网引入大地。
但是,从丹麦和德国统计受雷击损坏部位中,雷电直击的叶片损坏占15%~20%,而80%以上是与引下线相连的其他设备,受雷电引入大地过程中产生过电压而损坏,就是说,雷电形成的过电压必须引起充分重视。
d) 风场微观选点中,地质好的风机基础和低电阻率地网点是有矛盾的;而风机设备耐雷性能的设计和要求现场地电阻值的高低也是有矛盾的。
所以,必须充足考虑各方面因素,进行技术经济的优化。
e) 我国正在实施风机国产化,而国外风机防雷和过电压设计也不是很完善。
所以,在引进吸收过程中,改进风机防雷和过电压设计是必要的。
由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大,为了吸收更多能量,轮毂高度和叶轮直径随着增高,相对的也增加了被雷击的风险,雷击成了自然界中对风力发电机组安全运行危害最大的一种灾害。
雷电释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。
我国沿海地区地形复杂,雷暴日较多,应充分重视雷击给风力风电机组和运行人员带来的巨大威胁。
例如,红海湾风电场建成投产至今发生了多次雷击事件,据统计,叶片被击中率达4%,其他通讯电器元件被击中率更高达20%。
为了降低自然灾害带来的损失,必须充分了解它,并做出有针对性的防范措施。
风机的防雷是一个综合性的防雷工程,防雷设计的到位与否,直接关系到风机在雷雨天气时能否正常工作,并且确保风机内的各种设备不受损害等。
一、直击雷防护该风机主体高度约80米,叶片长度约40米,即风机最高点高度约为120米,且大多数风力发电机位于空旷地带,较孤立。
风机的高度加上所处特殊的环境,造成风力发电机在雷雨天气时极易遭受直击雷。
国际电工委员会对防雷过电压保护的防护区域划分为:LPZ0 区(LPZ0A、LPZ0B),LPZ1 区,LPZ2 区。
在金属塔架接地良好的情况下,叶片、机舱的外部(包括机舱)、塔架外部(包括塔架)、箱式变压器应属于LPZ0 区,这些部位是遭受直击雷(绕雷)或不遭受直击雷但电磁场没有衰减的部位。
机舱内、塔架内的设备应属于 LPZ1 区,这其中包括电缆、发电机、齿轮箱等。
塔架内电气柜中的设备,特别是屏蔽较好的弱电部分应属于 LPZ2。
对与现有风力发电机的 LPZ0 区防雷过电压保护装置进行分析后,在LPZ0 区内,直击雷的防护在没有技术突破的前提下仍然沿用传统的富兰克林避雷方法:利用自身的高度使雷云下的电场发生畸变,从而将雷电吸引,以自身代替被保护物受雷击,以达到保护避雷的目。