离子推进器结构及应用
- 格式:docx
- 大小:848.16 KB
- 文档页数:16
涡流离子加速器工作原理解析涡流离子加速器(EDS,Electrodynamic Ion Thruster)是一种新型的电推进技术,已经在航天领域得到了广泛的应用。
它基于通过产生电场和磁场加速带电粒子的原理,能够提供高比冲和长持续推力,适用于航天器的姿态控制和运行轨道调整。
本文将深入探讨涡流离子加速器的工作原理,并分享对这一技术的观点和理解。
1. 什么是涡流离子加速器涡流离子加速器是一种离子推进器,与传统的化学推进器相比,它使用电力而不是化学反应来产生推进力。
涡流离子加速器主要由离子发生器、加速器(加电场和磁场)和推力室组成。
通过引入气体并通过电子轰击产生离子,然后通过加速器加速这些离子,并在推力室中排出,从而产生反作用力。
2. 工作原理涡流离子加速器的工作原理基于带电粒子在电场和磁场中受力的基本物理原理。
当气体进入发生器时,电子被加热并获得足够的能量,使其能够将气体分子电离成离子。
这些离子会被电场和磁场加速并聚焦,形成一个加速的离子束。
在涡流离子加速器中,电场和磁场起到了关键作用。
电场通过在离子附近产生一个电势梯度,使其受到推力。
磁场则用来限制离子束的径向扩散,确保离子能够保持稳定的轨道。
这样,离子束就能够以高速射出,并产生反作用力推动航天器。
3. 设计与优势涡流离子加速器设计的关键因素包括加速器内的电场和磁场形式、加速器电压和电流以及气体注射速率等。
通过合理设计这些参数,可以实现更高的比冲和较长的推力持续时间。
涡流离子加速器相比传统的化学推进器具有多个优势。
它的燃料效率更高,能够提供更高的比冲,因为化学推进器需要带上足够多的燃料和氧化剂来产生足够的推力。
涡流离子加速器具有较长的推力持续时间,能够在航天器运行期间持续提供推力,从而使得航天器的航程更加灵活。
涡流离子加速器还具有较小的推力受阻力,可以提高航天器的加速度和速度。
4. 观点和理解涡流离子加速器作为一种新兴的电推进技术,展现出了良好的应用前景。
霍尔推进器结构全文共四篇示例,供读者参考第一篇示例:霍尔推进器是一种新型的电磁推进器,它利用霍尔效应产生的电磁力来驱动航天器进行推进,主要用于长期在太空中执行任务的航天器。
霍尔推进器的结构复杂而精密,下面将介绍霍尔推进器的结构组成及工作原理。
一、霍尔推进器的基本结构1. 离子源:离子源是霍尔推进器的重要组成部分,它主要负责提供离子,通常采用离子束或离子注疗法产生离子。
2. 离子传输管:离子传输管将离子从离子源输送到推进器中,保持离子的运动轨迹和速度。
3. 磁环:磁环是霍尔推进器的关键部件,它主要负责产生磁场,通过磁场引导离子运动。
4. 阴极:阴极是霍尔推进器中的一个电极,主要用于引导离子流向磁环。
5. 阴极电子发射器:阴极电子发射器通过向离子源提供电子,间接提供电子,使离子发生电离形成等离子体。
6. 网络电格:网络电格通过电场与磁场耦合,将带电离子引出,产生推进力。
7. 推进器壳体:推进器壳体作为推进器的外壳,保护整个结构,确保推进器的稳定运行。
二、霍尔推进器的工作原理霍尔推进器的工作原理是利用霍尔效应产生的磁场和电场,通过对带电离子进行加速和引导,产生推进力。
其具体工作过程如下:2. 磁场引导离子运动:磁环产生磁场,通过磁场引导带电离子运动,使其流动在磁场内。
3. 电场加速离子:网络电格通过电场作用,对带电离子进行加速,增加其速度,形成推进力。
4. 引导离子喷出:阴极引导离子向外喷出,冲击推进器壳体的反作用力产生推进力,推动航天器前进。
第二篇示例:霍尔推进器是一种用于航天器推进的设备,其结构复杂且精密,是现代航天技术的重要组成部分。
霍尔推进器的结构主要由霍尔效应装置、推进剂供给装置、能量供给装置和控制系统等部分组成。
霍尔推进器的核心部分是霍尔效应装置,通过霍尔效应产生的电场使离子发生加速,达到推进的效果。
霍尔效应是指在电流通过导体时,导体两侧产生电势差的现象,当导体受到外磁场作用时,导体两侧产生的电势差会使电子产生受力,从而导致电子流动,形成电流。
推力只够举起8根头发,为啥霍尔推进器能使我国空间站叫板美国?我国新一代空间站即将开建,未来将安装4台LHT100型霍尔离子推进器,单台推力80毫牛,虽然推力很小,但在推进原理方面却比由美国主导、采用化学推进的国际空间站整整领先了一代!中国天宫空间站构型80毫牛的推力是个什么概念?一根头发丝儿重量约1毫克,如果在地球上,举起它需要10毫牛,80毫牛霍尔推进器只能举起8根头发!那么问题来了:“离子推进”、“霍尔电推”都是什么原理,推力这么小,为什么还总说它先进呢?人马君今天和大家聊聊这种神奇的推进方式,相信看完之后您就不会再一头雾水了!推力虽小,却有大用霍尔电推是离子推进器的一种,而离子推进器并不是新生事物,它早已应用在航天器上。
记得嫦娥五号在执行月球采样任务时,总有不少人拿日本的隼鸟号小行星探测器跟嫦五对比,说隼鸟号由于采用离子发动机,所以比嫦五更先进。
这纯属无稽之谈。
由于推力太小,仅28毫牛,与嫦五的7500牛和3000牛发动机没法儿比,如果让隼鸟号去执行登月任务,一定会像某船二号那样摔得稀巴烂,返回就更别提了。
飞行了数亿公里的隼鸟号但为什么这么小的推力用在空间站上,又要说它很先进,是不是太双标了?并没有!咱们举个不太形象的栗子:喜欢打羽毛球的朋友应该不少,羽毛球可以暴力扣杀,也可以轻轻地把球推到网前,两种打法相辅相成,都很有用。
如果你用扣杀的力量去放网前球,那就打过头了,而且杀几次就会把力气用光,后继乏力。
而轻巧的网前小球却可以很好地控制方向,并且几乎不会累。
化学火箭就如同暴力扣杀,霍尔电推则更像是温柔的网前小球,推力小有小的好处,它可以用很少的燃料实现长时间的推进,还可以更精确的调整航天器的姿态。
化学火箭属于“大力出奇迹”这种能力对大型空间站或卫星来说非常实用。
它们本来已经在地球轨道上安了家,不用动力就能绕着地球转,按说不再需要火箭推进了。
但近地轨道并不是完全的真空,存在非常非常稀薄的大气分子。
等离子推进器的基本原理1. 引言等离子推进器是一种利用电磁力将离子或等离子体排出以产生推力的推进器。
它是目前最先进、最高效的推进系统之一,被广泛应用于航天器、卫星和深空探测器等空间应用中。
本文将详细介绍等离子推进器的基本原理。
2. 等离子体的形成等离子体是由带正电荷的离子和带负电荷的电子组成的高度电离的气体。
在等离子推进器中,等离子体是通过电离气体来产生的。
一般情况下,气体通过电离源(如电离针或电离电极)进行电离,将其中的部分原子或分子电离为正离子和电子。
这些正离子和电子通过电场或磁场的作用被加速,并形成等离子体。
3. 等离子体加速等离子体在等离子推进器中的加速是通过电场或磁场的作用实现的。
3.1 电场加速在电场加速中,等离子体被放置在两个电极之间,形成一个电场。
电场的作用下,正离子和电子受到电场力的驱动,被加速并喷出推进器。
为了确保电场加速的效果,电极之间需要保持一定的电势差。
正离子和电子的加速方向相反,因此在推进器的设计中需要考虑如何使正离子和电子的运动方向一致,以最大程度地利用它们的动能。
3.2 磁场加速在磁场加速中,等离子体通过磁场的作用被加速。
磁场可以通过磁铁或线圈产生。
当等离子体穿过磁场时,正离子和电子的运动轨迹受到磁场力的影响,形成螺旋状轨迹。
通过调整磁场的强度和方向,可以控制等离子体的加速和排出方向。
4. 等离子体排出和推力产生等离子体在被加速后被排出推进器,形成推力。
排出等离子体的过程中,需要注意以下几个因素:4.1 离子排出由于正离子和电子具有相反的电荷,它们在排出过程中会受到相互作用力的影响。
为了最大限度地减小这种相互作用力的影响,推进器通常采用网状的阳极来排出正离子,而电子则通过中性化装置中和。
4.2 离子流束为了产生高效的推力,等离子体需要以高速排出。
离子流束的速度取决于等离子体的加速方式和加速能量。
为了确保离子流束的稳定性和一致性,推进器通常采用多级加速结构,以逐级加速离子。
新型推进系统在深空探测中的应用随着人类对宇宙的探索不断深入,深空探测成为了当今航天领域的重要研究方向。
而要实现更远距离、更高效、更精确的深空探测任务,新型推进系统的研发和应用就显得至关重要。
在传统的航天推进系统中,化学推进一直占据着主导地位。
化学推进系统通过燃烧燃料产生推力,但其能量密度相对较低,且燃料消耗量大,限制了航天器的航程和有效载荷。
为了突破这些限制,科学家们致力于研究和开发各种新型推进系统。
电推进系统是近年来发展迅速的一种新型推进技术。
它利用电能将推进剂加速并喷射出去,从而产生推力。
电推进系统具有比冲高、燃料消耗少的显著优点。
常见的电推进系统包括离子推进器和霍尔推进器。
离子推进器通过电离推进剂并将离子加速到高速喷出,其比冲可以达到数千秒甚至更高,这意味着使用相同质量的推进剂,离子推进器能够提供更长时间和更大的速度增量。
霍尔推进器则利用磁场和电场的相互作用来加速推进剂,具有结构相对简单、可靠性高的特点。
电推进系统在深空探测任务中已经得到了一定的应用,例如一些卫星的轨道调整和姿态控制。
在未来的深空探测任务中,电推进系统有望成为主要的推进手段,大大提高航天器的性能和效率。
太阳能热推进系统也是一种具有潜力的新型推进方式。
它利用太阳能聚焦产生高温,加热推进剂使其膨胀并喷出产生推力。
这种推进系统不需要携带大量的燃料,而是依靠太阳能源,具有较高的能量利用效率。
然而,太阳能热推进系统的推力相对较小,目前还处于研究和试验阶段。
核推进系统是另一个备受关注的研究方向。
核推进系统利用核反应产生的能量来加热推进剂或直接产生高速粒子流产生推力。
核推进系统具有极高的能量密度,可以提供强大的推力,使航天器能够在较短的时间内到达遥远的目的地。
不过,核推进系统面临着诸多技术挑战和安全问题,如核反应堆的小型化、辐射防护等,目前还处于概念研究和技术验证阶段。
除了上述几种新型推进系统,还有一些其他的创新概念也在不断涌现。
例如,激光推进系统利用强大的激光束加热推进剂产生推力;磁流体动力学推进系统则利用磁场和导电液体的相互作用来产生推力。
离子推进器是一种空间电推进技术中的一种动力装置,利用静电场加速离子喷出来产生推力。
它的推力虽然小,但是燃料重量很轻,工质加速效率很高,也就是使用很轻的气体储备,就能获得一段持续时间很长的加速度。
因此,在太空没有空气阻力的环境中,离子推进器可以将飞船加速到气体喷射速度的上限,即约80公里每秒。
请注意,离子推进器的推力小是其致命弱点,这意味着它永远无法将一个相对静止的物体加速,因此它无法用于火箭起飞等需要将物体从静止状态加速到高速的运动。
将飞船送到太空中,还是需要依靠简单粗暴的化学燃料。
以上信息仅供参考,如需了解更多关于离子推进器的信息,可查阅航空航天类书籍或咨询航空航天专家。
离子推力器c栅极研究
结果
由于离子推力器的电场在具有对称轴的多极结构中均匀分布,因此离子推
进器在c栅极构件中的发射效率较高,而c栅极可大大改善离子推进器的
发射效率和发射精度。
研究表明,采用c栅极构件的离子推进器的发射速度可达到10km/s左右,而传统的离子推进器的发射速度只有7km/s左右。
另外,采用c栅极构件
的离子推进器的离子束分散度可达到0.1°左右,而传统的离子推进器的
分散度为0.4°左右。
这表明采用c栅极构件的离子推进器可以大大改善
离子束的分散度,从而提高其推进器的精度和性能。
另外,使用c栅极构件能够有效抑制离子束束中的电离子,从而减少离子
束的噪声水平,提高离子束发射射束的稳定性,优化离子推进效率。
总之,c栅极构件可以有效改善离子推进器的性能,提高其发射效率和精度。
等离子推进器原理
等离子推进器是一种利用等离子体加热和加速的推进技术。
它利用电磁场将气体或液体等离子体加热至高温,使其获得高能量,并通过喷射产生推力。
等离子体是由正离子和自由电子组成的带电气体。
在等离子推进器中,先将某种工作气体注入到推进器内部的燃烧室或离子化室。
然后,利用电场或电磁场将气体中的原子或分子电离,形成带电的离子和自由电子。
接下来,利用电场或磁场对这些带电粒子进行加热和加速,使它们获得高速运动的能量。
在等离子体加热和加速的过程中,等离子体会与推进器内壁碰撞,产生反冲力,即推力。
由于等离子体具有高速和高温,所以产生的推力可以用来推动飞行器或航天器。
等离子推进器的主要优点是具有高比冲(单位质量推力的推进效率)和长寿命。
它不需要像化学推进器那样燃料消耗快,并且可以在长时间内保持高推力。
然而,等离子推进器的主要缺点是其推力较小,只适用于航天器的精细调整和站定推进,较难用于提供巨大推力的任务。
总的来说,等离子推进器的原理是通过加热和加速等离子体,产生推力以推动飞行器或航天器。
它是一种高效、长寿命的推进技术,但推力相对较小。
等离子体推动器一、为什么要使用电推动器?1.传统化学推进剂的缺点:(a)在深空探测中,化学推进剂占航天器重量的绝大部分,有效载荷小,效率低,造价高。
-(附:肼(联氨)-----一种无色发烟的、具有腐蚀性和强还原性的液体化合物NH2 NH[hydrazine],它是比氨弱的碱,通常由水合肼脱水制得,燃烧热较大主要用作火箭2和喷气发动机的燃料,用在制备盐(如硫酸盐)及有机衍生物中)在探索更远的星球时,化学燃料推动已不可行。
(b)通信卫星长寿命增加(15 年),为保持轨道定点位置,所需的推进剂越来越多(使用次数愈来愈多),大量挤占了有效载荷的重量。
因此,大型通信卫星的推进系统改用电推进已势在必行。
目前航天领域广泛使用的化学火箭发动机,对于完成航天器从地面向空间轨道的发射任务,还难以用其它动力装置代替。
但由于化学推进的比冲偏小,最大不超过4.6kN*s/kg,所以,如果对于航天器的轨道转移、轨道修正、姿态控制、对接交会、位置保持、南北轨控和星际航行等特殊任务仍然采用化学动力装置,那么就会使一直昂贵的航天器发射成本居高不下,而且也会严重影响其使用寿命。
2.电推进器的优缺点优点:(a)效率高―――喷射离子速度远高于化学燃烧气体粒子速度;电推进技术的推进剂效率(或比冲) 是化学推进系统的几倍甚至几十倍(b)所需重量降低;(c)最终速度高(化学推进剂: 5 km/s,电推动:10-20 km/s)。
缺点:推力小,加速时间长,需要电源,二、推进器的任务✹轨道转移;✹遥感卫星的轨道调整和姿态控制;✹通讯卫星的轨道保持;✹深空探测;三、电推进简史1.国际电推动发展史☞第一次离子推动实验室实验By 1916 Goddard and his students were conducting perhaps the world's first electric propulsion experiments with ion sources. Four years later Goddard devoted passages of his technical reports to his EP experiments.☞第一次电推动飞行实验世界上首次电推进(脉冲等离子体推进) 空间飞行试验是前苏联于1962 年进行的;(该次发射的意义:标志科学界已接受电推进技术,进入一个新的历史时期:不再是证明电推进是否有价值的时期,而是解决静电推进存在的问题。
霍尔推进器结构全文共四篇示例,供读者参考第一篇示例:霍尔推进器是一种广泛应用于航天领域的推进系统,其结构设计和工作原理对于推进器的性能和效率起着关键作用。
本文将对霍尔推进器的结构进行详细介绍,以帮助读者更好地理解这一重要的航天装置。
霍尔推进器的结构主要包括推进剂箱、霍尔离子源、电源系统、推力控制系统和外壳等组成部分。
推进剂箱用于储存推进剂,通常采用气体或液体推进剂,如氙气、氩气或离子液体等。
霍尔离子源是推进器的核心部件,通过对推进剂进行离子化、加速和排出来产生推力。
电源系统提供能量供给给霍尔推进器,通常使用太阳能电池来为离子源和其他系统提供所需的电力。
推力控制系统用于调节推进器的推力和方向,以满足不同的飞行任务需求。
外壳则用于保护霍尔推进器的内部结构,同时也起到降低空气阻力和维持外观美观的作用。
霍尔推进器的工作原理是基于霍尔效应和离子推进原理的。
霍尔效应是当导电体在磁场作用下通过电流时,产生的电场使电荷在导体内堆积,从而形成的电势差。
利用霍尔效应可以将气体或液体推进剂离子化,并通过电场加速和排出,产生高效的推力。
离子推进原理则是通过加速离子的方式产生推力,由于离子质量小且速度高,因此可以获得比传统火箭推进器更高的比冲和推进效率。
霍尔推进器的优点明显,主要体现在推力稳定、推进效率高、寿命长、噪音小等方面。
相比于化学火箭推进器,霍尔推进器具有更高的比冲、更低的推进剂消耗率和更长的运行寿命,适用于长期航天任务和深空探测任务。
霍尔推进器还可以通过调节推力来实现姿态控制和轨道调整,适用于各种不同的航天任务需求。
霍尔推进器也存在一些局限性,如推力较小、加速时间较长、对宇宙尘埃和空气轰击敏感等。
在实际应用中需要根据具体任务需求选择合适的推进器类型,并结合其他推进系统进行综合设计和优化。
第二篇示例:霍尔推进器是一种利用霍尔效应来加速离子并产生推力的推进器。
它是一种高效的推进器,常被用于航天器的推进系统中。
霍尔推进器的结构是其关键部分,下面我们将详细介绍霍尔推进器的结构。
新型火箭推进系统研究随着科技的不断进步,人类探索宇宙的步伐也在不断加快。
在这个过程中,火箭发挥了不可替代的作用。
然而,传统火箭推进系统存在一系列问题,如燃料成本高、环境污染严重等。
因此,研究新型火箭推进系统已经成为了火箭领域研究的热点之一。
一、离子发动机离子发动机是一种基于离子推进的发动机系统。
它的工作原理是通过电场作用将气体离子加速并排放,此时气体离子的反冲力可以推动火箭。
相比于传统火箭推进系统,在燃料效率、速度、稳定性和环境保护等方面都有明显优势。
离子发动机最大的优势是燃料效率高,理论上可以达到传统火箭推进系统的数倍,因此被广泛应用于宇宙探索中。
二、核聚变推进系统核聚变推进系统是一种利用核聚变能源推进火箭的系统。
该技术的基础是核聚变反应,即将氢原子核融合成氦原子核放出能量。
该技术具有无污染、低成本燃料、储能量大等优点,可以极大地改变传统火箭推进系统存在的问题。
但是,目前该技术还处于研究与开发阶段,面临的技术难度和安全问题也比较高,需要更多人的投入和研究。
三、太阳风帆推进系统太阳风帆推进系统是一种利用太阳能进行推进的系统。
太阳能帆板由与太阳光线接触的可折叠薄膜制成。
太阳风帆具有空气动力学、热力学和力学等多种特殊性质,该技术被广泛应用于太空探索等领域。
太阳风帆最大的优势是无需使用燃料,具有环保、节能等诸多优点。
但是,在长时间的使用过程中,太阳能帆板可能会受到撞击和损坏,因此需要更完善的保护措施来解决这一问题。
四、超导磁推进系统超导磁推进系统是一种通过超导电极产生磁场驱动的推进系统。
该技术具有高效、低污染、成本效益等特点,在一些特殊的应用场合被广泛使用,如探索深空,建设空间站等。
该技术目前仍处于开发与研究阶段,其应用范围和推广效果还有待进一步研究评估。
总结新型火箭推进系统的研究是未来宇宙探索的重要领域。
离子发动机、核聚变推进系统、太阳风帆推进系统和超导磁推进系统等技术的研究和开发都具有重要意义。
虽然这些新技术具有广泛的应用前景,但是也需要解决相关技术和安全问题,未来的研究和开发也需要更多的人和资金的投入。
美国研制成功离子推进飞行器,噪音低、无排放!近日,据国外有关媒体报道,国外一名航空航天工程师史蒂文·巴雷特带领他的团队,成功测试飞行了第一架由离子风推进器驱动的飞机。
离子风推进器是什么东西,它是如何产生让飞机飞行的驱动力?在麻省理工学院室内实验室里,史蒂文·巴雷特对“离子风推进器飞机”做出了介绍。
巴雷特称,该飞机的飞行原理是:用两个不对称电极向空气施加恒定的高电势,高电势会引起大气自持放电产生离子。
大气中“释放”的离子通过库仑力加速向下游(低电势处)运动,在这个运动过程中大气释放的离子会与空气中的中性分子碰撞,这就会加速离子自身的动量与大量流体的动量耦合(是指能量从一个介质传播到另一种介质的过程),形成离子风,并产生与离子流方向相反的推力。
简言之,该飞行器就是通过多个分布跑道上的慢跑粒子产生和发射电荷为发动机提供动力,其原理其实就是作用与反作用力——航空动力引擎的基本原理。
据介绍,这款离子推进飞行器重2.45kg,翼展5m,设计输出电压40kV,可产生3N的持续推力,使用高压电源转换器架构进行三个阶段的升压,实现1.2kW/kg的比功率和23倍的总电压增益。
从飞行测试结果看,该飞行器在室内无风环境下能用离子推进动力自主飞行55m,平均飞行高度上升0.47m,持续时间12s。
那么,这位航空航天工程师史蒂文·巴雷特是如何想到用该原理设计、研制一款飞机的呢?据巴雷特描述,用该原理驱动飞机一直以来都存在于科幻小说或一些人的幻想当中,他希望自己能够进行尝试,将这种科幻的飞机变成现实。
他说到:“在茫茫宇宙中,驾驶着一辆静音滑翔机,悄无声息的滑过该是一件多么令人惬意的事情啊!那么,我们为什么不试着去研制这么一架静音飞机呢?”经过与团队的深度研究,他意识到离子风推进技术可能符合这一要求。
于是,他与他的团队共耗费八年时间,潜心研究这项技术,努力尝试着去制造一架仿真微型飞机;后来他们成功了,即便这架飞机的外形看起来并不怎么美观。
远行星号离子脉冲远行星号离子脉冲是一种高级推进系统,被广泛应用于太空船和探测器中。
它利用离子推进技术来提供持续且高效的推力,以便在长时间的太空任务中实现高速飞行。
离子脉冲推进是通过将离子加速并排出推进器来产生推力的过程。
这里的离子通常是氙或氩等惰性气体,它们会被电离为正离子,并在电场中加速。
当这些离子被排出推进器时,它们的反向动量将会产生一个相反的推力,从而推动航天器前进。
远行星号离子脉冲系统具有几个关键部分:1. 离子发生器:离子发生器负责将惰性气体电离为离子。
这通常是通过引入电子束或使用放电等方式来实现的。
2. 加速器:加速器是离子脉冲系统中的关键组件之一。
它利用电场或磁场来加速离子,使其达到高速。
3. 推进器:推进器是将离子排出航天器的设备。
它们通常采用网格结构,通过引入电场来控制离子的排放方向和速度。
4. 供能系统:由于离子脉冲系统需要持续的电力来维持离子发生器和加速器的运行,因此必须配备相应的供能系统。
这可能包括太阳能电池板、核能源或其他可靠的能源来源。
远行星号离子脉冲系统的主要优势在于其高效性和长时间推进能力。
尽管它产生的推力相对较小,但由于离子的速度非常高,其喷出的动量可以累积,并在长期飞行中提供足够的推力。
与传统的火箭发动机相比,离子脉冲系统的燃料效率更高,从而显著降低了航天器所需的燃料负载。
然而,离子脉冲系统也存在一些限制。
其中之一是它的推力较小,因此需要较长的时间来加速和减速。
此外,离子脉冲系统通常比传统的火箭发动机更复杂,需要更多的能源和设备来实现。
总体而言,远行星号离子脉冲是一种先进的推进系统,为太空探索提供了持续且高效的推进能力。
随着技术的不断发展,离子脉冲系统有望在未来的太空任务中扮演更重要的角色。
Ion thrusterAn ion thruster is a form of electric propulsion used for spacecraft propulsion that creates thrust by accelerating ions. The term is strictly used to refer to gridded electrostatic ion thrusters, but may often more loosely be applied to all electric propulsion systems that accelerate plasma, since plasma consists of ions.Ion thrusters are categorized by how they accelerate the ions, using either electrostatic or electromagnetic force. Electrostatic ion thrusters use the Coulomb force and accelerate the ions in the direction of the electric field. Electromagnetic ion thrusters use the Lorentz force to accelerate the ions. In either case, when an ion passes through an electrostatic grid engine, the potential difference of the electric field converts to the ion's kinetic energy.Ion thrusters have an input power spanning 1–7 kilowatts, exhaust velocity 20–50 kilometers per second, thrust 20–250 millinewtons and efficiency 60–80%.The Deep Space 1 spacecraft, powered by an ion thruster, changed velocity by 4.3 km/s while consuming less than 74 kilograms of xenon. The Dawn spacecraft broke the record, reaching 10 km/s.Applications include control of the orientation and position of orbiting satellites (some satellites have dozens of low-power ion thrusters) and use as a main propulsion engine for low-mass robotic space vehicles (for example Deep Space 1 and Dawn).Ion thrusters are not the most promising type of electrically powered spacecraft propulsion (although in practice they have been more successful than others).The ion drive is comparable to a car that takes two days to accelerate from zero to 60 miles per hour; a real ion engine's technical characteristics, and especially its thrust, are considerably inferior to its literary prototypes.Technical capabilities of the ion engine are limited by the space charge created by ions. This limits the thrust density (force per cross-sectional area of the engine). Ion thrusters create small thrust levels (for example the thrust of Deep Space 1's engine approximately equals the weight of one sheet of paper) compared to conventional chemical rockets, but achieve very high specific impulse, or propellant mass efficiency, by accelerating their exhaust to high speed. However, ion thrusters carry a fundamental price: the power imparted to the exhaust increases with the square of its velocity while thrust increases linearly. Chemical rockets, on the other hand, can provide high thrust, but are limited in total impulse by the small amount of energy that can be stored chemically in the propellants.Given the practical weight of suitable power sources, the accelerations given by ion thrusters are frequently less than one thousandth of standard gravity. However, since they operate as electric (or electrostatic) motors, a greater fraction of the input power is converted into kinetic exhaust power than in a chemical rocket. Chemical rockets operate as heat engines, hence Carnot's theorem bounds their possible exhaust velocity.Due to their relatively high power needs, given the specific power of power supplies and the requirement of an environment void of other ionized particles, ion thrust propulsion is currently only practical on spacecraft that have already reached space, and is unable to take vehicles from Earth to space. Spacecraft rely on conventional chemical rockets to initially reach orbit.OriginsThe first person to publish mention of the idea was Konstantin Tsiolkovsky in 1911.However, the first documented instance where the possibility of electric propulsion was considered is found in Robert H. Goddard's handwritten notebook in an entry dated September 6, 1906.The first experiments with ion thrusters were carried out by Goddard at Clark University from 1916–1917. Thetechnique was recommended for near-vacuum conditions at high altitude, but thrust was demonstrated with ionized air streams at atmospheric pressure. The idea appeared again in Hermann Oberth's "Wege zur Raumschiffahrt” (W ays to Spaceflight), published in 1923, where he explained his thoughts on the mass savings of electric propulsion, predicted its use in spacecraft propulsion and attitude control, and advocated electrostatic acceleration of charged gases.A working ion thruster was built by Harold R. Kaufman in 1959 at the NASA Glenn Research Center facilities. It was similar to the general design of a gridded electrostatic ion thruster with mercury as its fuel. Suborbital tests of the engine followed during the 1960s and in 1964 the engine was sent into a suborbital flight aboard the Space Electric Rocket Test 1 (SERT 1).It successfully operated for the planned 31 minutes before falling back to Earth. This test was followed by an orbital test, SERT-2, in 1970.An alternate form of electric propulsion, the Hall effect thruster was studied independently in the U.S. and the Soviet Union in the 1950s and 1960s. Hall effect thrusters had operated on Soviet satellites since 1972. Until the 1990s they were mainly used for satellite stabilization in North-South and in East-West directions. Some 100–200 engines completed their mission on Soviet and Russian satellites until the late 1990s.Soviet thruster design was introduced to the West in 1992 after a team of electric propulsion specialists, under the support of the Ballistic Missile Defense Organization, visited Soviet laboratories.General descriptionIon thrusters use beams of ions (electrically charged atoms or molecules) to create thrust in accordance with momentum conservation. The method of accelerating the ions varies, but all designs take advantage of the charge/mass ratio of the ions. This ratio means that relatively small potential differences can create very high exhaust velocities. This reduces the amount of reaction mass or fuel required, but increases the amount of specific power required compared to chemical rockets. Ion thrusters are therefore able to achieve extremely high specific impulses. The drawback of the low thrust is low spacecraft acceleration, because the mass of current electric power units is directly correlated with the amount of power given. This low thrust makes ion thrusters unsuited for launching spacecraft into orbit, but they are ideal for in-space propulsion applications.Various ion thrusters have been designed and they all generally fit under two categories. The thrusters are categorized as either electrostatic orelectromagnetic. The main difference is how the ions are accelerated.Electrostatic ion thrusters use the Coulomb force and are categorized as accelerating the ions in the direction of the electric field.Electromagnetic ion thrusters use the Lorentz force to accelerate the ions.Electric power supplies for ion thrusters are usually solar panels but, at sufficiently large distances from the Sun, nuclear power is used. In each case the power supply mass is essentially proportional to the peak power that can be supplied, and they both essentially give, for this application, no limit to the energy.Electric thrusters tend to produce low thrust, which results in low acceleration. Using 1 g is 9.81 m/s2; F = m a ⇒ a = F/m. An NSTAR thruster producing a thrust (force) of 92 mN will accelerate a satellite with a mass of 1,000 kg by 0.092 N / 1,000 kg = 0.000092 m/s2 (or 9.38×10−6 g).thrust = 2*η*power/(g * Isp)Wherethrust is the force in Nη is the efficiency, a dimensionless value between 0 and 1 (70% efficiency is 0.7) power is the electrical energy going into the thruster in Wg is a constant, the acceleration due to gravity 9.81 m/s2Isp is the Specific impulse in sElectrostatic ion thrustersGridded electrostatic ion thrustersSee also: electrostatic ion thrusterGridded electrostatic ion thrusters commonly utilize xenon gas. This gas has no charge and is ionized by bombarding it with energetic electrons. These electrons can be provided from a hot cathode filament and when accelerated in the electrical field of the cathode, fall to the anode. Alternatively, the electrons can be accelerated by the oscillating electric field induced by an alternating magnetic field of a coil, which results in a self-sustaining discharge and omits any cathode (radio frequency ion thruster).The positively charged ions are extracted by an extraction system consisting of 2 or 3 multi-aperture grids. After entering the grid system via the plasma sheath the ions are accelerated due to the potential difference between the first and second grid (named screen and accelerator grid) to the final ion energy of typically 1–2 keV, thereby generating the thrust.Ion thrusters emit a beam of positive charged xenon ions only. To avoid charging up the spacecraft, another cathode is placed near the engine, which emits electrons (basically the electron current is the same as the ion current) into the ion beam. This also prevents the beam of ions from returning to the spacecraftand cancelling the thrust.Gridded electrostatic ion thruster research (past/present):NASA Solar Technology Application Readiness (NSTAR) - 2.3 kW, used on two successful missionsNASA’s Evolutionary Xenon Thruster (NEXT) - 6.9 kW, flight qualification hardware builtNuclear Electric Xenon Ion System (NEXIS)High Power Electric Propulsion (HiPEP) - 25 kW, test example built and run briefly on the groundEADS Radio-Frequency Ion Thruster (RIT)Dual-Stage 4-Grid (DS4G)Hall effect thrustersSee also: Hall effect thrusterHall effect thrusters accelerate ions with the use of an electric potential maintained between a cylindrical anode and a negatively charged plasma that forms the cathode. The bulk of the propellant (typically xenon gas) is introduced near the anode, where it becomes ionized, and the ions are attracted towards the cathode; they accelerate towards and through it, picking up electrons as they leave to neutralize the beam and leave the thruster at high velocity.The anode is at one end of a cylindrical tube, and in the center is a spike that is wound to produce a radial magnetic field between it and the surrounding tube. The ions are largely unaffected by the magnetic field, since they are too massive. However, the electrons produced near the end of the spike to create the cathode are far more affected and are trapped by the magnetic field, and held in place by their attraction to the anode. Some of the electrons spiral down towards the anode, circulating around the spike in a Hall current. When they reach the anode they impact the uncharged propellant and cause it to be ionized, before finally reaching the anode and closing the circuit.Field-emission electric propulsionField-emission electric propulsion (FEEP) thrusters use a very simple system of accelerating ions to create thrust. Most designs use either caesium or indium as the propellant. The design comprises a small propellant reservoir that stores the liquid metal, a narrow tube or a system of parallel plates that the liquid flows through, and an accelerator (a ring or an elongated aperture in a metallic plate) about a millimeter past the tube end. Caesium and indium are used due to their high atomic weights, low ionization potentials, and low melting points. Once the liquid metal reaches the end of the tube, an electric field applied between the emitter and the accelerator causes the liquid surface to deform into a series of protruding cusps ("Taylor cones"). At a sufficiently high applied voltage, positive ions are extracted from the tips of the cones.The electric field created by the emitter and the accelerator then accelerates the ions. An external source of electrons neutralizes the positively charged ion stream to prevent charging of the spacecraft.Electromagnetic thrustersPulsed inductive thrustersPulsed inductive thrusters (PIT) use pulses of thrust instead of one continuousthrust, and have the ability to run on power levels in the order of Megawatts (MW). PITs consist of a large coil encircling a cone shaped tube that emits the propellant gas. Ammonia is the gas commonly used in PIT engines. For each pulse of thrust the PIT gives, a large charge first builds up in a group of capacitors behind the coil and is then released. This creates a current that moves circularly in the direction of jθ. The current then creates a magnetic field in the outward radial direction (Br), which then creates a current in the ammonia gas that has just been released in the opposite direction of the original current. This opposite current ionizes the ammonia and these positively charged ions are accelerated away from the PIT engine due to the electric field jθ crossing with the magnetic field Br, which is due to the Lorentz Force.Magnetoplasmadynamic (MPD) / lithium Lorentz force accelerator (LiLFA)Magnetoplasmadynamic (MPD) thrusters and lithium Lorentz force accelerator (LiLFA) thrusters use roughly the same idea with the LiLFA thruster building off of the MPD thruster. Hydrogen, argon, ammonia, and nitrogen gas can be used as propellant. In a certain configuration, the ambient gas in Low Earth Orbit (LEO) can be used as a propellant. The gas first enters the main chamber where it is ionized into plasma by the electric field between the anode and the cathode. This plasma then conducts electricity between the anode and the cathode. This new current creates a magnetic field around the cathode, which crosses with the electric field, thereby accelerating the plasma due to the Lorentz force. The LiLFA thruster uses the same general idea as the MPD thruster, except for two main differences. The first difference is that the LiLFA uses lithium vapor, which has the advantage of being able to be stored as a solid. The other difference is that the cathode is replaced by multiple smaller cathode rods packed into a hollow cathode tube. The cathode in the MPD thruster is easily corroded due to constant contact with the plasma. In the LiLFA thruster the lithium vapor is injected into the hollow cathode and is not ionized to its plasma form/corrode the cathode rods until it exits the tube. The plasma is then accelerated using the same Lorentz Force.Electrodeless plasma thrustersElectrodeless plasma thrusters have two unique features: the removal of the anode and cathode electrodes and the ability to throttle the engine. The removal of the electrodes takes away the factor of erosion, which limits lifetime on other ion engines. Neutral gas is first ionized by electromagnetic waves and then transferred to another chamber where it is accelerated by an oscillating electricand magnetic field, also known as the ponderomotive force. This separation of the ionization and acceleration stage give the engine the ability to throttle the speed of propellant flow, which then changes the thrust magnitude and specific impulse values.Helicon double layer thrusterA helicon double layer thruster is a type of plasma thruster, which ejects high velocity ionized gas to provide thrust to a spacecraft. In this thruster design, gas is injected into a tubular chamber (the source tube) with one open end. Radio frequency AC power (at 13.56 MHz in the prototype design) is coupled into a specially shaped antenna wrapped around the chamber. The electromagnetic wave emitted by the antenna causes the gas to break down and form a plasma. The antenna then excites a helicon wave in the plasma, which further heats the plasma. The device has a roughly constant magnetic field in the source tube (supplied by solenoids in the prototype), but the magnetic field diverges and rapidly decreases in magnitude away from the source region, and might be thought of as a kind of magnetic nozzle. In operation, there is a sharp boundary between the high density plasma inside the source region, and the low density plasma in the exhaust, which is associated with a sharp change in electrical potential. The plasma properties change rapidly across this boundary, which is known as a current-free electric double layer. The electrical potential is much higher inside the source region than in the exhaust, and this serves both to confine most of the electrons, and to accelerate the ions away from the source region. Enough electrons escape the source region to ensure that the plasma in the exhaust is neutral overall.ComparisonsThe following table compares actual test data of some ion thrusters:The following thrusters are highly experimental and have been tested only in pulse mode.LifetimeA major limiting factor of ion thrusters is their small thrust; however, it is generated at a high propellant efficiency (mass utilisation, specific impulse). The efficiency comes from the high exhaust velocity, which in turn demands highenergy, and the performance is ultimately limited by the available spacecraft power.The low thrust requires ion thrusters to provide continuous thrust for a long time to achieve the needed change in velocity (delta-v) for a particular mission. To cause enough change in momentum, ion thrusters are designed to last for periods of weeks to years.In practice the lifetime of electrostatic ion thrusters is limited by several processes:In electrostatic gridded ion thruster design, charge-exchange ions produced by the beam ions with the neutral gas flow can be accelerated towards the negatively biased accelerator grid and cause grid erosion. End-of-life is reached when either a structural failure of the grid occurs or the holes in the accelerator grid become so large that the ion extraction is largely affected; e.g., by the occurrence of electron backstreaming. Grid erosion cannot be avoided and is the major lifetime-limiting factor. By a thorough grid design and material selection, lifetimes of 20,000 hours and far beyond are reached, which is sufficient to fulfill current space missions.A test of the NASA Solar Technology Application Readiness (NSTAR) electrostatic ion thruster resulted in 30,472 hours (roughly 3.5 years) of continuous thrust at maximum power. The test was concluded prior to any failure and examination indicated the engine was not approaching failure either.More recently, the NASA Evolutionary Xenon Thruster (NEXT) Project, conducted at NASA's Glenn Research Center in Cleveland, Ohio, operated continuously for more than 48,000 hours.The test was conducted in a high vacuum test chamber at Glenn Research Center. Over the course of the 5 1/2 + year test, the engine consumed approximately 870 kilograms of xenon propellant. The total impulse provided by the engine would require over 10,000 kilograms of conventional rocket propellant for similar application. The engine was designed by Aerojet Rocketdyne of Sacramento, California.Hall thrusters suffer from very strong erosion of the ceramic discharge chamber by impact of energetic ions: a test reported in 2010 showed erosion of around 1 mm per hundred hours of operation, though this is inconsistent with observed on-orbit lifetimes of a few thousand hours.NASA's Jet Propulsion Laboratory has created ion drives with a time of continuous operation of more than 3 years.PropellantsIonization energy represents a very large percentage of the energy needed to run ion drives. The ideal propellant for ion drives is thus a propellant molecule or atom that is easy to ionize, that has a high mass/ionization energy ratio. In addition, the propellant should not cause erosion of the thruster to any great degree to permit long life; and should not contaminate the vehicle.Many current designs use xenon gas, as it is easy to ionize, has a reasonably high atomic number, its inert nature, and low erosion. However, xenon is globally in short supply and very expensive.Older designs used mercury, but this is toxic and expensive, tended to contaminate the vehicle with the metal and was difficult to feed accurately.Other propellants, such as bismuth, show promise and are areas of research, particularly for gridless designs, such as Hall effect thrusters.VASIMR design (and other plasma-based engines) are theoretically able to use practically any material for propellant. However, in current tests the most practical propellant is argon, which is a relatively abundant and inexpensive gas.Energy efficiency(Plot of instantaneous propulsive efficiency (blue) and overall efficiency for a vehicle accelerating from rest (red) as percentages of the engine efficiency- note that peak vehicle efficiency occurs at about 1.6 times exhaust velocity.)Ion thrusters are frequently quoted with an efficiency metric. This efficiency is the kinetic energy of the exhaust jet emitted per second divided by the electrical power into the device.The actual overall system energy efficiency in use is determined by the propulsive efficiency, which depends on vehicle speed and exhaust speed. Some thrusters can vary exhaust speed in operation, but all can be designed with different exhaust speeds. At the lower end of Isps the overall efficiency drops, because the ionization takes up a larger percentage energy, and at the high end propulsive efficiency is reduced.Optimal efficiencies and exhaust velocities can thus be calculated for any given mission to give minimum overall cost.ApplicationsIon thrusters have many applications for in-space propulsion. The best applications of the thrusters make use of the long lifetime when significant thrust is not needed. Examples of this include orbit transfers, attitude adjustments, drag compensation for low Earth orbits, transporting cargo such as chemical fuels between propellant depots and ultra-fine adjustments for scientific missions. Ion thrusters can also be used for interplanetary and deep-space missions where time is not crucial. Continuous thrust over a very long time can build up a larger velocity than traditional chemical rockets.MissionsOf all the electric thrusters, ion thrusters have been the most seriously considered commercially and academically in the quest for interplanetary missions and orbit raising maneuvers. Ion thrusters are seen as the best solution for these missions, as they require very high change in velocity overall that can be built up over long periods of time.Pure demonstration vehiclesSERTIon propulsion systems were first demonstrated in space by the NASA Lewis (now Glenn Research Center) missions "Space Electric Rocket Test" (SERT) Itechnology operated as predicted in space. These were electrostatic ion thrusters using mercury and cesium as the reaction mass. The second test, SERT-II, launched on February 3, 1970, verified the operation of two mercury ion engines for thousands of running hours.Operational missionsIon thrusters are routinely used for station-keeping on commercial and military communication satellites in geosynchronous orbit, including satellites manufactured by Boeing and by Hughes Aerospace. The pioneers in this field were the Soviet Union, who used SPT thrusters on a variety of satellites starting in the early 1970s.Two geostationary satellites (ESA's Artemis in 2001–03 and the US military's AEHF-1 in 2010–12) have used the ion thruster for orbit raising after the failure of the chemical-propellant engine. Boeing have been using ion thrusters for station-keeping since 1997, and plan in 2013–14 to offer a variant on their 702 platform, which will have no chemical engine and use ion thrusters for orbit raising; this enables a significantly lower launch mass for a given satellite capability. AEHF-2 used a chemical engine to raise perigee to 10150 miles and is then proceeding to geosynchronous orbit using electric propulsion.In Earth orbitGOCEESA's Gravity Field and Steady-State Ocean Circulation Explorer was launched on March 16, 2009. It used ion propulsion throughout its twenty-month mission to combat the air-drag it experienced in its low orbit before intentionally deorbiting on November 11, 2013.In deep spaceDeep Space 1NASA developed the NSTAR ion engine for use in their interplanetary science missions beginning in the late-1990s. This xenon-propelled ion thruster was first space-tested in the highly successful space probe Deep Space 1, launched in 1998. This was the first use of electric propulsion as the interplanetaryHughes Research Labs, developed the XIPS (Xenon Ion Propulsion System) for performing station keeping on geosynchronous satellites. Hughes (EDD) manufactured the NSTAR thruster used on the spacecraft.HayabusaThe Japanese space agency's Hayabusa, which was launched in 2003 and successfully rendezvoused with the asteroid 25143 Itokawa and remained in close proximity for many months to collect samples and information, was powered by four xenon ion engines. It used xenon ions generated by microwave electron cyclotron resonance, and a carbon / carbon-composite material (which is resistant to erosion) for its acceleration grid. Although the ion engines on Hayabusa had some technical difficulties, in-flight reconfiguration allowed one of the four engines to be repaired, and allowed the mission to successfully return to Earth.Smart 1The European Space Agency's satellite SMART-1, launched in 2003, used a Snecma PPS-1350-G Hall thruster to get from GTO to lunar orbit. This satellite completed its mission on September 3, 2006, in a controlled collision on the Moon's surface, after a trajectory deviation so scientists could see the 3 meter crater the impact created on the visible side of the moon.DawnDawn was launched on September 27, 2007, to explore the asteroid Vesta and the dwarf planet Ceres. To cruise from Earth to its targets it uses three Deep Space 1 heritage xenon ion thrusters (firing only one at a time) to take it in a long outward spiral. An extended mission in which Dawn explores other asteroids after Ceres is also possible. Dawn's ion drive is capable of accelerating from 0 to 60 mph (97 km/h) in 4 days, firing continuously.Planned missionsIn addition, several missions are planned to use ion thrusters in the next few years.BepiColomboESA will launch the BepiColombo mission to Mercury in 2016. It uses ion thrusters in combination with swing-bys to get to Mercury, where a chemical rocket will be fired for orbit insertion.LISA PathfinderLISA Pathfinder is an ESA spacecraft to be launched in 2015. It will not use ion thrusters as its primary propulsion system, but will use both colloid thrusters and FEEP for very precise attitude control -— the low thrusts of these propulsion devices make it possible to move the spacecraft incremental distances very accurately. It is a test for the possible LISA mission.International Space StationAs of March 2011, a future launch of an Ad Astra VF-200 200 kW VASIMR electromagnetic thruster was being considered for placement and testing on the International Space Station.The VF-200 is a flight version of the VX-200.Since the available power from the ISS is less than 200 kW, the ISS VASIMR will include a trickle-charged battery system allowing for 15 min pulses of thrust. Testing of the engine on ISS is valuable, because ISS orbits at a relatively low altitude and experiences fairly high levels of atmospheric drag, making periodic boosts of altitude necessary. Currently, altitude reboosting by chemical rockets fulfills this requirement. If the tests of VASIMR reboosting of the ISS goes according to plan, the increase in specific impulse could mean that the cost of fuel for altitude reboosting will be one-twentieth of the current $210 million annual cost.Hydrogen is generated by the ISS as a by-product, which is currently vented into space.NASA high-power SEP system demonstration missionIn June 2011, NASA launched a request-for-proposals for a test mission (from context probably using the NEXT engine) capable of being extended to 300 kW electrical power; this was awarded to Northrop Grumman in February 2012.ProposalGeoffrey A. Landis proposed for interstellar travel future-technology project interstellar probe with supplying the energy from an external source (laser of base station) and ion thruster.。