电流计算程序表
- 格式:xls
- 大小:25.00 KB
- 文档页数:1
PSD-SCCP 电力系统短路电流程序用户手册PSD-SCCP 电力系统短路电流程序用户手册中国电力科学研究院二○○五年九月·i·中国电力科学研究院系统所PSD-SCCP 电力系统短路电流程序用户手册工作单位:中国电力科学研究院系统所工作人员:陈珍珍肖静张学成报告编写:肖静陈珍珍报告审核:卜广全报告批准:汤涌2005 年 9 月·ii·中国电力科学研究院系统所PSD-SCCP 电力系统短路电流程序用户手册目录1 前言...................................................................... . (1)2 短路电流计算程序的功能和特点...................................................................... . (2)2.1 程序的主要功能和特点 ..................................................................... .. (2)2.2 短路电流计算的前提条件 ..................................................................... . (4)2.3 短路电流计算程序的规模 ..................................................................... . (5)2.4 短路电流计算程序的结构 ..................................................................... . (5)3 短路电流计算程序的输入和输出文件...................................................................... .. (7)3.1 程序的输入数据文件 ..................................................................... (7)3.2 输入文件的有关格式说明 ..................................................................... . (8)3.2.1 DAT 数据文件格式说明...................................................................... .. (8)3.2.2 SWI 数据文件格式说明...................................................................... (9)3.2.3 DBR 数据文件格式说明...................................................................... .. (9)3.3 输入文件有关的缺省参数说明 ..................................................................... .. (9)3.4 程序的输出结果数据文件 ..................................................................... .. (11)4 短路电流计算程序的运行...................................................................... .. (11)4.1 启动运行环境及输入文件选择 ..................................................................... (12)4.1.1 启动短路电流计算程序运行环境 ..................................................................... .. (12)4.1.2 输入数据文件选择 ..................................................................... .. (13)4.2 短路电流程序计算与结果输出显示 ..................................................................... . (15)4.2.1 系统短路电流水平扫描计算 ..................................................................... . (16)4.2.2 单母线短路故障计算 ..................................................................... . (21)4.2.3 单线路短路故障计算 ..................................................................... . (24)4.2.4 系统多端点等值阻抗计算 ..................................................................... .. (28)4.3 短路电流计算结果单线图显示 ..................................................................... (30)5 计算示例 ..................................................................... . (31)附录 A 输入数据文件的格式...................................................................... .. (46)附录 A.1 DAT 输入数据文件卡片格式 ..................................................................... .. (46)附录 A.2 SWI 输入数据文件卡片格式 ..................................................................... (48)附录 A.3 DBR 数据文件卡片格式 ..................................................................... . (49)附录 B 错误信息汇总 ..................................................................... (51)2005 年 9 月·iii·中国电力科学研究院系统所1 前言PSD-SCCP 电力系统短路电流程序用户手册短路电流计算程序是电力系统生产、设计和运行等部门所必备的系统分析工具之一。
低压断路器的选择与低压短路电流计算低压断路器分断能⼒的选择和低压短路电流计算赵庆贤鞍⼭冶⾦设计研究院摘要:通过对影响低压主母线上短路电流的各种因素的分析与具体计算,找出影响短路电流的主要因素,进⽽得出简化计算办法。
同时根据计算得出的三相短路电流周期分量和短路冲击电流值,合理选择断路器的分断能⼒。
关键字:短路电流;分断能⼒;电⼒系统的短路电流计算是电⽓设计中的主要⽂件之⼀。
通过计算,获取系统的短路数据,为⾼压电⽓设备的选择:如,⾼压断路器、⾼压隔离开关、电流互感器选择等提供了依据。
同时,也是继电保护整定的主要依据。
⽽上述主要针对⾼压系统的短路计算书,因为对低压系统的特殊性质没有全⾯包含,因⽽不能直接⽤来选择低压断路器。
本⽂结合国外某矿⼭项⽬的设计,阐述低压短路电流计算在低压断路器选型上的应⽤。
1 低压短路电流的计算1.1依据某矿⼭项⽬的设计,截取其中⼀段线路的计算结果 (见表1)及计算⽤线路图(见图1),两者都表明,上述计算中对于415V的计算,指的是6.6KV/0.415KV 变压器的⼆次出⼝,⽽不是低压主母线。
换⾔之,影响低压主母线上短路电流的许多因素,上述计算中没有予以考虑。
例如:变压器⼆次出线电缆(或母线)阻抗,低压受电断路器的阻抗,低压隔离开关的阻抗、低压主母线阻抗,等。
图1: 计算电路图1.2 另外,在电⼒系统的⾼压短路电流计算中,通常不计及各种元件的电阻。
⽽在低压短路计算时,元件电阻的影响,不能忽略。
1.3 根据规范:验算电器在短路条件下的通断能⼒,应采⽤安装处预期短路电流周期分量的有效值,当短路点附近所接电动机额定电流之和超过短路电流的1%时,应计⼊电动机反馈电流的影响。
在⾼压短路电流计算中,⼀般没有考虑低压电动机反馈电流的影响。
1.4 低压短路电流的计算: 1)系统阻抗:Xx = Ue *Ue *1000/Sdx =1.12m Ω Xx=系统阻抗;Ue=0.433Kv ;Sdx=系统短路容量或变压器⾼压侧短路容量; Sdx =168MVA(根据短路电流计算结果)。
附录1短路电流的计算及程序说明短路电流的计算依照设计任务书中的“拟建一个110KV终端变电所。
该变电所要紧对本地域用户供电,同时和其他地域变电所组成环网,提高本地供电质量和靠得住性”,和《35kV~110kV无人值班变电所设计规程》.选取基准值基准容量S B =100MVA基准电压UB1=115KV,UB2=基准电流IB1= S B/3U B1=IB2= S B/3U B2=图附系统等效电路X L= Ω/KMX1=X G1(B)*=×100/1000=X L1=X L1(B)*=×16×100/1152=X L2=X L2(B)*=X L6=X L6(B)*=×17×100/1152= X L3=X L3(B)*=×3×100/1152=X L4=X L4(B)*=×26×100/1152=X L5=X L5(B)*=×10×100/1152=图附系统等值电路图转移阻抗X11=+=X12=+=变压器阻抗标幺值:X3=X4= X t* = %×(100/= 当110KV侧发生短路时即在d-1发生短路时:图附 d-1点短路时系统等值电路图计算电抗:Xjs1=×1000/100=归算到短路点电压级各等值机的额定电流为:IN1=1000/(3×115)=短路电抗标幺值:X8= X3332’3(11333导体载流量综合校正系数为具体计算如下:①关于110KV 线路,其最大持续工作电流应不大于当一台主变过负荷的工作电流,因此最大持续电流:Igmax=×31500×/(3×115)=(A )依照《电力系统电气设备选择与利用计算》能够明白: 经济电流密度J=(A/mm 2)S j =Igmax/J== (mm 2) S j 为裸导体的载流截面依照以上计算及设计任务要求,可选择LGJQ-185型钢芯铝绞线,其集肤效应K f =1,最高许诺温度为80℃,长期许诺载流量为505A ,进行综合校正,可知为,半径为,直流电阻为Ω/KM即I y (θ0)=836A ,基准环境温度为+25℃,S=392 mm 2②考虑环境的修正系数K θ=[(θy -θ)/(θy -θb )]-1/2θy 为导体最高许诺温度,θ为实际环境温度,θb 为基准环境温度,25℃K θ=)2580/()3980(--=I y (θ)=K θI y (θ0)=×=>Igmax③运行时导体最高温度θ.: θ.= θ+( θy -θ )(Igmax/Iy )2=39+(80-39)×()2 =℃④查表能够知热稳固系数C 为96,知足短路时发烧的最小导体截面 Smin=Qd /C β= mm 2 Qd 为短路电流的热效应,KA 2s.Qd=+Q f=(I ’’Z 2+10I zt/22+I zt 2)×/2+× I ’’Z 2=1212 KA 2sβ为钢芯附加热系数, 知足要求⑤按电晕电压校验:Ug ≤Uo Uo=[84m 1m 2k δ2/3nr o (1+ro δ×lg a jj/r d ] /k oδ=×10-3/(273+t)=××105×10-3/(273+25)=ko=1+[2ro(n-1)sinπ/n]/d=1+[2××(1-1)×sinπ/1]/1=1Uo=[84××××3×1×(1+8.1)×lg×200/]/1=151×lg137=(KV)即知足Ug≤UoUo为电晕临界电压线电压有效值,KVk为三相导线平行排列时,考虑中间相导线线电容比平均电容打的不均匀系数,一样取n为割裂导线根数,对单导线为1d为割裂间距,cmm1为导线表面粗糙系数,一样取m2为天气系数,晴天取,阴天取ro为导线半径,ro=ko为导线电场强度附加阻碍系数rd为割裂导线等效半径a jj为导线几何间距a为相间距离δ为相对空气密度P为大气气压t为空气温度,t=,℃H为海拔高度,m⑥动稳固校验:取N5为,L取单位长度1m,a取即F=×10-2×li sh2×N5/a=(N/M)由以上数听说明选择LGJQ-185/25型钢芯铝绞线知足要求,10KV母线侧的选择10KV侧母线其最大持续工作电流应不大于当以台主变过负荷的工作电流,因此母线最大持续电流:Imax=×31500/(3×=1821(A)依照《电力系统电气设备选择与利用计算》能够明白:=Imax/J=1821/=2639 (mm2)经济电流密度J=(A/mm2) SjS为裸导体的载流截面j依照以上计算及设计任务要求,可选择三条矩型铝母线,进行平放,=,导体宽度h为100mm,导体厚度为10mm,最高许诺温度其集肤效应Kf为70℃,长期许诺载流量为3284A.即I y(θ0)=3284A,基准环境温度为+25℃,S=3000mm2②考虑环境的修正系数Kθ=)7039(--=/(2570)I y(θ)=KθI y(θ0)=×3284=>Igmax 因此知足要求技术参数如下所示:表附矩型铝母线参数表高压熔断器的选择熔断器是最简单的爱惜电器,它用来爱惜电气设备免受过载和短路电流的损害,屋内型高压熔断器在变电所中经常使用于爱惜电力电器,配电线路和配电变压器,而在电厂中多用于爱惜电压互感器。
7.5kW 2极高效三相异步电机计算程序
设计高效三相感应电动机,型号是HMS132S2-2 7.5kW。
给定数据:输出额定功率P N=7.5kW,额定电压U N=400V(∆接法),额定频率为50HZ,极数P是2,相数m1=3.
表4-1三相异步电动机HMS132S2-2 7.5kW手算步骤与结果
4.2电磁方案的调整
判断电磁方案是否可行的话得看它的电磁性能能否满足设计任务书的要求,还要看它是否能够节约材料,节约加工时间和效率等因素,既要符合技术要求又要经济性能。
因此,设计异步电机时,1、好的优化设计并不够。
2、研究一下先进的技术和工艺,采用更加优良的材料。
经过这些处理,才能够设计并且造就出性能好的异步电机。
前面几章,重点介绍了电磁设计的原理与计算,参数计算以及启动性能的各方面计算,并且确定了三相异步电动机的转子、定子、铁心、端环等各种尺寸和数据。
如果经过核算得到设计的三相异步电动机的一些性能,这些性能并不能使得电机能够高效率的运行,那就得找出原因并且对电磁方案进行调整。
因为三相异步电机的各参数和性能是分不开的,所以采取某些措施来提高三相异步电机的各方面性能,必然会使其他的性能参数发生一些改变。
调整方案的过程中要系统
的分析与安排,并且有步骤的进行调整。
该过程可能比较复杂,所以得细心,要多次调整直到达到满意的结果。
对于提高电磁方案有许多方面。
我们可以调高效率η、提高功率因数cos α或者降低启动电流st I 以及提高启动转矩st T 都可以优化电机的电磁性能并使得电机能够高效的运行。
电机计算与磁场分析1.1 计算程序及算例注:计算采用手算和MathCAD 计算结合使用的方法所以计算结果保留到小数点后三位。
一、 额定数据1.额定功率 5KW N P =2.相数 3m =3.额定电压 直流输出电压 40V d U =额定相电压 217.949V 2.34d N U U +== 三相桥整流考虑二极管压降4.功率因数 cos 0.8ϕ= sin 0.6ϕ=5.额定相电流 310116.071A cos N N N P I m U ϕ⨯==⋅⋅ 6.效率 0.9N η=7.额定转速 100000rpm N n = 8.预取极对数 2p =9.频率 3333Hz 60N pnf ==10.冷却方式 空气冷却 11.转子结构 径向套环12.电压调整率 20%N U ∆≤二、永磁材料选择13.材料牌号 NSC27G 烧结钐钴材料,主要考虑到高温工作环境 该材料高温下退磁小。
14.预计温度 T= 250C 15.剩余磁通密度 20 1.0T r B =0.03%B r rB α=----的温度系数 0r I L B =---的不可逆损失率工作温度下 201(20)(1)0.931T100100Br r r IL B t B α⎡⎤=+--=⎢⎥⎣⎦ 16.计算矫顽力 20760kA/m c H =工作温度下 201(20)(1)707.56KA/m 100100Br C r IL H t H α⎡⎤=+--=⎢⎥⎣⎦17.相对回复磁导率 3010 1.047rr C B H μμ-=⨯=式中 70410H /m μπ-=⨯ 三、永磁体尺寸18.永磁体磁化方向长度 0.35cm M h =19.永磁体宽度 1.56cm M b =20.永磁体轴向长度 5.35cm M L = 21.永磁体段数 1W =22.永磁体每极截面积 28.346cm M M M A L b == 23.永磁体每对极磁化方向长度 20.7cm MP M h h == 24.永磁体体积 311.684cm m M MP V PA h == 25.永磁体质量 31095.812g m m m V ρ-=⨯= 稀土钴材料密度 38.2g/cm ρ=四、转子结构尺寸26.气隙长度 10.19cm δδ=∆+= 均匀气隙空气隙长度10.03cm δ= 非磁性套环长度 0.16cm ∆=27.转子外径 2 3.0cm D = 28.轴孔直径 2 1.0cm i D =29.转子铁心长度 2 5.35cm M L L ==30.衬套厚度 222()0.49cm 2i M h D D h h --∆+==31.极距 2(2)2.105cm 2D pπτ-∆== 径向瓦片形32.极弧系数 0.74p α=33.极间宽度 2(1)0.547cm p b ατ=-= 五、定子绕组和定子冲片34.定子外径 1 4.8cm D =35.定子内径 1212 3.06cm i D D δ=+= 36. 定子铁心长度 1 5.35cm M L L ==长径比λ=1.7537.每极每相槽数 1q =38. 定子槽数 212Q mpq ==39.绕组节距 3y = 整距绕组,影响下面一些系数40. 短距系数 180sin 12p K β==41. 分布因数 1d K = 42.斜槽因数 1sk K =43.绕组因数 1dp d p sk K K K K ==波形系数 sin()20.91.024i iK φαπα⋅==44.预估永磁体空载工作点 '00.67m b = 工作点范围在0.55-0.75Br 内但高速电机应取小一些。