第七讲 矩阵的微分与积分
- 格式:pdf
- 大小:176.58 KB
- 文档页数:3
矩阵微积分规则
矩阵微积分是对矩阵进行微积分运算的一种方法,它包括了一系列的规则和定理。
以下是一些常见的矩阵微积分规则:
1. 矩阵加法规则:对于两个相同维度的矩阵A和B,它们的
和用A + B表示,其中每个对应位置上的元素相加。
2. 矩阵标量乘法规则:给定一个矩阵A和一个实数k,矩阵A 乘以k表示每个元素都乘以k。
3. 矩阵乘法规则:对于两个矩阵A和B,它们的乘积用A × B
表示,其中结果矩阵的每个元素都是A的对应行与B的对应
列的乘积之和。
4. 转置规则:给定一个矩阵A,它的转置用A^T表示,即将
A的行和列互换。
5. 矩阵求导规则:对于一个矩阵函数f(X)(其中X是一个矩阵),它的导数用∂f(X)/∂X表示,是一个与X相同维度的矩阵,其中每个元素都是f关于X中对应元素的导数。
6. 行列式规则:对于一个n×n的矩阵A,它的行列式用|A|表示,表示一个数字,它的计算涉及矩阵的元素和它们的代数运算。
7. 逆矩阵规则:对于一个n×n的可逆矩阵A,它的逆矩阵用
A^(-1)表示,满足AA^(-1) = A^(-1)A = I,其中I是单位矩阵。
这些规则是矩阵微积分中常用的一些基本规则,可以用于求导、解方程、计算行列式等各种问题。
微积分学(Calculus,拉丁语意为用来计数的小石头)是研究极限、微分学、积分学和无穷级数等的一个数学分支,并成为了现代大学教育的重要组成部分。
微积分学基本定理指出,微分和积分互为逆运算,这也是两种理论被统一成微积分学的原因。
我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中一般会先引入微分学。
在更深的数学领域中,高等微积分学通常被称为分析学,并被定义为研究函数的科学,是现代数学的主要分支之一。
早在古代,人们就会积分思想,如阿基米德用积分法算出了球的表面积,中国古代数学家刘微运用割元法求出圆周率3.1416,这也是用正多边形逼近圆,任何求出近似圆周率。
割圆法也是积分思想。
我们最伟大的古代数学家(现在是华罗庚)祖冲之也是利用积分算出了圆周率后7位数。
和球的体积。
但是正正系统提出微积分的是牛顿和莱布尼茨,他们为谁先发明微积分挣得头破血流。
牛顿是三大数学家之一,也是第一位划时代的物理学家,晚年从事神学和炼金学,它创立了整个经典力学体系和几何光学,这几乎成为了整个中学的必修部分,初中的力学和光学默认为几何光学,力学默认为简单的经典力学。
高中开始正式学习经典力学。
这里有一个非常之大的错误就是初中里为了方便或简单,用平均速率来代替平均速度,也就是速度公式v=x/t在初中里用速率公式v=s/t代替。
速度和速率一个是矢量,一个是标量,这里差距巨大,不知道编写初中课本(人教版是这样)的编者是学历太低,还是别有用心?这里我们讲微积分,之所以提起这个事情,就是为了突出一个名词——平均速度。
牛顿发明微积分(暂且认为是他和莱布尼茨共同发明的)的目的是为了研究物理学,因为微积分能解决很多普通数学不能解决的物体,如求曲边梯形面积。
实际上,我们初中是速度公式是速率公式,即v=s/t高中的速度公式实际上是平均速度公式,即v=△x/△t这里的△念德耳塔,表示变化率,这里当然不是用△去乘x了,△x是一个整体,就像汉字一样。
矩阵微积分本文摘译自 Wikipedia。
在数学中,矩阵微积分是多元微积分的一种特殊表达形式。
它以向量或矩阵的形式将单个函数表示为多个变量,或将一个多元函数表示为单个变量,从而可以作为一个整体来处理,大大简化了多元函数极值、微分方程等问题的求解过程。
表示法在本文中,将采用如下所示的表示方法:•$ \mathbf A, \mathbf X, \mathbf Y $ 等:粗体的大写字母,表示一个矩阵;•$ \mathbf a, \mathbf x, \mathbf y $ 等:粗体的小写字母,表示一个向量;•$ a, x, y $ 等:斜体的小写字母,表示一个标量;•$ \mathbf X^T $:表示矩阵 $ \mathbf X $ 的转置;•$ \mathbf X^H $:表示矩阵 $ \mathbf X $ 的共轭转置;•$ | \mathbf X | $:表示方阵 $ \mathbf X $ 的行列式;•$ || \mathbf x || $:表示向量 $ \mathbf x $ 的范数;•$ \mathbf I $:表示单位矩阵。
向量微分向量-标量列向量函数 $ \mathbf y = \begin{bmatrix} y_1 & y_2 & \cdots & y_m \end{bmatrix}^T $ 对标量 $ x $ 的导数称为$ \mathbf y $ 的切向量,可以以分子记法表示为$ \frac{\partial \mathbf y}{\partial x} =\begin{bmatrix}\frac{\partial y_1}{\partial x}\newline \frac{\partial y_2}{\partial x} \newline\vdots \newline \frac{\partial y_m}{\partialx}\end{bmatrix}_{m \times 1} $若以分母记法则可以表示为$ \frac{\partial \mathbf y}{\partial x} =\begin{bmatrix}\frac{\partial y_1}{\partial x} &\frac{\partial y_2}{\partial x} & \cdots &\frac{\partial y_m}{\partial x}\end{bmatrix}_{1 \times m} $标量-向量标量函数 $ y $ 对列向量 $ \mathbf x = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T $ 的导数可以以分子记法表示为$ \frac{\partial y}{\partial \mathbf x} =\begin{bmatrix}\frac{\partial y}{\partial x_1} &\frac{\partial y}{\partial x_2} & \cdots &\frac{\partial y}{\partial x_n}\end{bmatrix}_{1 \times n} $若以分母记法则可以表示为$ \frac{\partial y}{\partial \mathbf x} =\begin{bmatrix}\frac{\partial y}{\partial x_1}\newline \frac{\partial y}{\partial x_2} \newline\vdots \newline \frac{\partial y}{\partialx_n}\end{bmatrix}_{n \times 1} $向量-向量列向量函数 $ \mathbf y = \begin{bmatrix} y_1 & y_2 & \cdots & y_m \end{bmatrix}^T $ 对列向量 $ \mathbf x = \begin{bmatrix} x_1 & x_2 & \cdots & x_n\end{bmatrix}^T $ 的导数可以以分子记法表示为$ \frac{\partial \mathbf y}{\partial \mathbf x} =\begin{bmatrix}\frac{\partial y_1}{\partial x_1} &\frac{\partial y_1}{\partial x_2} & \cdots &\frac{\partial y_1}{\partial x_n}\newline\frac{\partial y_2}{\partial x_1} &\frac{\partial y_2}{\partial x_2} & \cdots &\frac{\partial y_2}{\partial x_n} \newline\vdots &\vdots & \ddots & \vdots \newline\frac{\partialy_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_n}\newline\end{bmatrix}_{m \times n} $若以分母记法则可以表示为$ \frac{\partial \mathbf y}{\partial \mathbf x} =\begin{bmatrix}\frac{\partial y_1}{\partial x_1} &\frac{\partial y_2}{\partial x_1} & \cdots &\frac{\partial y_m}{\partial x_1}\newline\frac{\partial y_1}{\partial x_1} &\frac{\partial y_2}{\partial x_1} & \cdots &\frac{\partial y_m}{\partial x_1} \newline\vdots &\vdots & \ddots & \vdots \newline\frac{\partialy_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_1}\newline\end{bmatrix}_{n \times m} $矩阵微分矩阵-标量形状为 $ m \times n $ 的矩阵函数 $ \mathbf Y $ 对标量$ x $ 的导数称为 $ \mathbf Y $ 的切矩阵,可以以分子记法表示为$ \frac{\partial \mathbf Y}{\partial x} =\begin{bmatrix}\frac{\partial y_{11}}{\partial x} &\frac{\partial y_{12}}{\partial x} & \cdots &\frac{\partial y_{1n}}{\partial x}\newline\frac{\partial y_{21}}{\partial x} &\frac{\partial y_{22}}{\partial x} & \cdots &\frac{\partial y_{2n}}{\partial x} \newline\vdots &\vdots & \ddots & \vdots \newline\frac{\partialy_{m1}}{\partial x} & \frac{\partial y_{m2}}{\partial x} & \cdots & \frac{\partial y_{mn}}{\partial x}\newline\end{bmatrix}_{m \times n} $标量-矩阵标量函数 $ y $ 对形状为 $ p \times q $ 的矩阵$ \mathbf X $ 的导数可以分子记法表示为$ \frac{\partial y}{\partial \mathbf X} =\begin{bmatrix}\frac{\partial y}{\partial x_{11}} &\frac{\partial y}{\partial x_{21}} & \cdots &\frac{\partial y}{\partial x_{p1}}\newline\frac{\partial y}{\partial x_{12}} &\frac{\partial y}{\partial x_{22}} & \cdots &\frac{\partial y}{\partial x_{p2}} \newline\vdots &\vdots & \ddots & \vdots \newline\frac{\partialy}{\partial x_{1q}} & \frac{\partial y}{\partialx_{2q}} & \cdots & \frac{\partial y}{\partial x_{pq}} \newline\end{bmatrix}_{q \times p} $若以分母记法则可以表示为$ \frac{\partial y}{\partial \mathbf X} =\begin{bmatrix}\frac{\partial y}{\partial x_{11}} &\frac{\partial y}{\partial x_{12}} & \cdots &\frac{\partial y}{\partial x_{1q}}\newline\frac{\partial y}{\partial x_{21}} &\frac{\partial y}{\partial x_{22}} & \cdots &\frac{\partial y}{\partial x_{2q}} \newline\vdots &\vdots & \ddots & \vdots \newline\frac{\partialy}{\partial x_{p1}} & \frac{\partial y}{\partialx_{p2}} & \cdots & \frac{\partial y}{\partial x_{pq}} \newline\end{bmatrix}_{p \times q} $恒等式在下面的公式中,除非另有说明,默认要导出的复合函数的所有因子都不是导数变量的函数。
§3.矩阵的微分与积分 一、矩阵的微分1.Def 1.若n m ij x a x A ⨯=))(()(,且)(x a ij 可导。
则称A (x )可导,记为n m ijx a x A ⨯'='))(()( 的为A (x )导数。
2.性质:①)()(])()([x B x A x B x A '+'='+②)()()()(])()([x B x A x B x A x B x A '+'='⋅注意:)(),(x B x A 的位置不可变换,特别地)(])([x A c x A c '⋅='⋅)(x f u =是可微函数)④若A (x )与)(1x A -均可导(m =n 方阵)Proof : ④由I x A x A =⋅-)()(10])([)()()(11='⋅+⋅'⇒--x A x A x A x A )()(])([)(11x A x A x A x A --⋅'-='⋅⇒)()]([)()]([111x A x A dxdx A x A dx d ---⋅⋅-=⇒注:性质④不同于反函数的导数,)(1])([1x f x f '='- 另:)()(2?])([2x A x A x A '='事实上)()()()(])()([])([2x A x A x A x A x A x A x A '+'='⋅='eg 1.求⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=3201sin cos sin )(x x e xx x x x x A x 的导数,及)(2x A 的导数解:⎪⎪⎪⎪⎪⎭⎫⎝⎛--='223002sin cos 1sin cos )(x x e x xx x x x x A x)()()()(])([2x A x A x A x A x A '+'='⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+-+++++-+-++-+-+-+-+=52242222232261sin 3cos )2(5cos 22sin 2cos 22sin )cos (sin sin 2sin 4sin )1(cos 32sin 2cos 122sin 2cos 22sin x x x x e x x x x e x x x x x e x x x x x x x x x x x x x x x x x x x x xx xeg2.设⎪⎪⎭⎫⎝⎛-=x xx xx A sin cos cos sin )( 求)]([1x A dx d -,)]([2x A dx d 解:⎪⎪⎭⎫⎝⎛-=-x x x x x A sin cos cos sin )(1 ⎪⎪⎭⎫ ⎝⎛-=-x x x x x A dx d cos sin sin cos )]([1)()(22sin 2cos 2cos 2sin 22cos 2sin 2sin 2cos )]([2x A x A x x x x x x x x dx d x A dx d '⋅=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛---= Df 2.设),,,()(21n x x x f X f =为可微函数,),,(21n x x x X =为变向量,称),,,(21n x f x f x f ∂∂∂∂∂∂ 为函数)(X f 对X 的导数,记作:dXdf(注:这事实上是多元函数的梯度,即},,,{21nx fx f x f gradf ∂∂∂∂∂∂= ) Df 3.设n m ij z Z ⨯=)(,q p kl x X ⨯=)(且ij z 是),,2,1,,,2,1(q l p k x kl ==的可微函数,eg 3.设Tm n Tnn x x x X y y y Y ⨯⨯==121121),,(),,(其中i y 是i x 的可微函数,求dXdY 解:),,,(21mdx dYdx dY dx dY dX dY = mn m n n n m m dx dy dx dy dx dy dx dy dx dy dx dy dx dy dx dy dx dy ⨯⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=212221212111eg 4.设⎪⎪⎭⎫ ⎝⎛=x e xy xyz xyzZ 2)()sin( ),,(z y x X = 求dX dZ ⎪⎪⎭⎫⎝⎛=00022)cos()cos()cos(22xy e xyxyz xy xy xyz xz xz xyz yz yzdX dZ xeg 5.设⎪⎪⎭⎫ ⎝⎛++=z x xyt xt xyz x Z 222 ⎪⎪⎭⎫ ⎝⎛=t z y x X 求dX dZ 解:⎪⎪⎪⎪⎪⎭⎫⎝⎛+=⎪⎪⎪⎪⎭⎫⎝⎛=⨯01020002024244xy x xy xt x ytxy t y x dt dZ dzdZdy dZ dxdZdX dZ二、矩阵的积分1.Df 4..设函数矩阵n m ij x a x A ⨯=)]([)(,若)(x a ij 在[a ,b ]上可积,称n m baij dx x a ⨯⎰])([为)(x A 在[a ,b ]上的定积分,记为⎰badx x A )(。
矩阵微积分中的微分与积分矩阵微积分是微积分在矩阵领域的推广和应用,它将微积分中的微分和积分概念扩展到矩阵和向量上。
在矩阵微积分中,微分与积分是非常重要的概念,它们有着广泛的应用和深远的理论背景。
本文将介绍矩阵微积分中的微分和积分,探讨它们的定义、性质和应用。
一、矩阵微分在矩阵微积分中,微分是研究函数变化率的工具。
与传统微积分类似,矩阵微分也涉及到导数和偏导数的概念。
对于一个矩阵函数F(X),其微分可以表示为dF(X)。
矩阵微分的计算可以通过求导数的方式进行,即通过求偏导数来计算微分。
具体来说,对于一个矩阵函数F(X),其微分dF(X)可以通过以下公式计算:dF(X) = ∇F(X) · dX其中,∇F(X)表示F(X)的梯度,dX表示X的微小变化量。
这个公式表明,微分dF(X)可以看作是F(X)对X的梯度∇F(X)与X的微小变化量dX的乘积。
这种计算微分的方法在矩阵微积分中被广泛应用,可以用来求解矩阵函数的导数和对函数进行近似。
矩阵微分具有许多重要的性质和规则,与传统微积分中的微分类似。
例如,矩阵微分满足线性性质、乘法规则和链式法则等性质。
这些性质使得矩阵微分成为了研究矩阵函数变化率的有力工具。
二、矩阵积分矩阵微积分中的积分是研究曲线面积和函数累积量的工具。
在矩阵微积分中,矩阵积分可以表示为∫F(X)dX的形式,其中F(X)表示要积分的矩阵函数,dX表示积分变量。
与矩阵微分类似,矩阵积分的计算也可以通过求原函数的方式进行。
对于一个矩阵函数F(X),如果存在一个矩阵函数G(X),使得dG(X)/dX = F(X),那么G(X)就是F(X)的原函数。
在矩阵微积分中,原函数的概念可以用来计算矩阵积分。
具体来说,矩阵积分的计算可以通过以下公式进行:∫F(X)dX = G(X) + C其中,G(X)表示F(X)的原函数,C为常数。
这个公式表明,矩阵积分可以通过求原函数来计算,得到的结果再加上一个常数C。