18
为随机过程X(t)的二维概率密度。 医学资料
对于任意的时刻t1,t2,…, tn, X(t1),X(t2),…, X(tn)是一组随机变
量,定义这组随机变量的联合分布为随机过程 X(t) 的 n 维概率分 布,即定义
FX ( x1 , x2 ,, xn ; t1 , t2 ,, tn )
医学信号处理
医学资料
1
本课程主要内容
一、随机信号的特征和描述方法; 二、随机信号及线性时不变系统;
三、信号检测和信号的参数估计;
四、功率谱估计; 五、自适应滤波; 六、维纳滤波和卡尔曼滤波; 七、小波变换和小波滤波;
医学资料
2
第一章 绪论
一、生物医学信号处理的特点; 二、生物医学信号处理系统框图;
(t T ) ei S
eS
定 义 2 : 设 有 一 个 过 程 X(t) , 若 对 于 每 一 个 固 定 的 时 刻 tj(j=1,2,…),X(tj)是一个随机变量,则称X(t)为随机过程。
医学资料
7
2.1.1 随机过程的分类
1) 按照时间和状态是连续还是离散来分类: 连续型随机过程 随机过程 X(t) 对于任意时刻 , X(ti) 都是连续型 ti T 随机变量,即时间和状态都是连续的情况,称这类随机过程为 连续型随机过程。
为随机过程 n,维概率分布函数。 P{ X (t1X(t) ) 的 x1 X (t2 ) x2 ,, X (tn )
n
xn }
FX ( x1, x2 ,, xn ; t1, t2 ,, tn ) f X ( x1, x2 ,, xn ; t1, t2 ,, tn ) x1x2 xn
医学资料
9