三极管的特性曲线
- 格式:ppt
- 大小:1.24 MB
- 文档页数:13
三极管的共射特性曲线作者:佚名来源:本站整理发布时间:2009-9-23 8:27:51 [收藏] [评论]三极管的共射特性曲线三极管的特性曲线是描述三极管各个电极之间电压与电流关系的曲线,它们是三极管内部载流子运动规律在管子外部的表现。
三极管的特性曲线反映了管子的技术性能,是分析放大电路技术指标的重要依据。
三极管特性曲线可在晶体管图示仪上直观地显示出来,也可从手册上查到某一型号三极管的典型曲线。
三极管共发射极放大电路的特性曲线有输入特性曲线和输出特性曲线,下面以NPN型三极管为例,来讨论三极管共射电路的特性曲线。
1、输入特性曲线输入特性曲线是描述三极管在管压降UCE保持不变的前提下,基极电流iB和发射结压降uBE之间的函数关系,即(5-3)三极管的输入特性曲线如图5-6所示。
由图5-6可见NPN 型三极管共射极输入持性曲线的特点是: BE虽己大于零,但i B几乎仍为零,只有当u BE的值大于开启电压后,i B的值与二极管一样随u BE的增加按指数规律增大。
硅晶体管的开启电压约为0.5V,发射结导通电压V on约为0.6~0.7V;锗晶体管的开启电压约为0.2V,发射结导通电压约为0.2~0.3V。
CE=0V,U CE=0.5V和U CE=1V的情况。
当U CE=0V时,相当于集电极和发射极短路,即集电结和发射结并联,输入特性曲线和PN结的正向特性曲线相类似。
当U CE=1V,集电结已处在反向偏置,管子工作在放大区,集电极收集基区扩散过来的电子,使在相同u BE值的情况下,流向基极的电流i B减小,输入特性随着U CE的增大而右移。
当U CE>1V以后,输入特性几乎与U CE=1V时的特性曲线重合,这是因为Vcc>lV后,集电极已将发射区发射过来的电子几乎全部收集走,对基区电子与空穴的复合影响不大,i B的改变也不明显。
CE必须大于l伏,所以,只要给出U CE=1V时的输入特性就可以了。
电工学━
知识点
1
半导体三极管输入输出特性曲线
1、基本概念
(1)三极管输入特性曲线指当集电极与发射极之间的电压U CE
为常数时,输入电路基极电流I B 与基极-发射极电压U BE 之间的关系曲线。
(2)三极管输出特性曲线是指在基极电流I B 为常数时,三极管的输出电路中集电极电流I C 和集射极电压U CE 之间的关系曲线。
(3)三极管工作状态。
三极管除放大作用外,还可工作在饱和和截止两种工作状态,后两种状态其实是指三极管的开关作用。
三种工作状态如表1所示。
表1三极管工作状态条件与特点
工作状态截止
放大
饱和
条
件
B ≤I β
Csat
B 0I I <
<β
Csat
B I I >
特点(NPN )
电压与
电流关系
CC CE BE 0U U U ≈≤,0
CEO C ≈=I I 0
B ≈I V
7.0~6.0BE =U BE
CE CC U U U >>B
C I I β≈V
7.0~6.0BE =U V
3.0~2.0CE ≈U CS C I I =β
CS
BS B I I I =
≥偏置
发射结反偏集电结反偏
发射结正偏集电结反偏
发射结正偏集电结正偏
表中,C
CC
Csat
R U I ≈为集电极饱和电流。
用示波器演示三极管输出特性曲线-设计应用一、系统框图及测量原理三极管输出特性曲线描述的是在基极电流IB不变情况下,UCE与lC之间的关系曲线。
由于示波器是一种电压测量仪器,集电极电流只有转化为电压才能由示波器显示。
CH2通道测量采样电阻上的压降作为示波器的Y轴输入(IC),CHl通道测量集电极电压作为X 轴输入(UCE),示波器工作在X-Y模式可测得三极管的特性曲线。
当基极电流IB为某一恒流时(本设计将实现步进电流源为:25、50、75、100、125、150、175、200uA共八个步进值),在集电极施加同步的锯齿波,即可观测到晶体管的输出特性曲线。
图1为系统框图,主要由同步信号、步进电流源电路、锯齿波电路等组成;图2为用示波器扩展为晶体管特性图示仪的原理示意图。
图1系统框图图2晶体管特性图示仪二、系统电路原理图1.同步信号产生电路图3中的ICl(555)及外围器件组成多谐振荡电路。
设RWl 及R10的等效电阻为R10.则ICl的Q输出端高电平时间为t1=0.7R10×C1(因为此时的充电回路是:+5V→RWl→R10→D1→C1→GND)。
其宽度约为几十微秒,Q 输出端低电平时间为t2=0.7R11×C1≈1mS(因为此时的放电回路是:C1→R11→D2→555的7脚内部三极管→GND)。
该多谐振荡电路作为步进电流源电路和锯齿波电路的同步信号。
图3系统电路原理图2.锯齿波电路的设计图3中的T1、T2、T3、ICl及外围器件组成锯齿波电路。
设RW2及R17的等效电阻为R17,流过T1发射极电流i1=0.7V,R17是一恒电流,当T2截止时,这一恒电流对电容C1充电,使得电容两端的电压线性增加。
通过同步信号产生电路输出同步脉冲控制三极管T2的开关状态,当三极管T2截止时。
恒流源对电容C1充电;当T2导通时,电容C1对三极管T2快速放电;从而产生线性锯齿波。
为了提高电路的带载能力。
三极管的特性曲线
三极管外部各极电压和电流的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。
它不仅能反映三极管的质量与特性,还能用来定量地估算出三极管的某些参数,是分析和设计三极管电路的重要依据。
对于三极管的不同连接方式,有着不同的特性曲线。
应用最广泛的是共发射极电路,其基本测试电路如图Z0118所示,共发射极特性曲线可以用描点法绘出,也可以由晶体管特性图示仪直接显示出来。
一、输入特性曲线
在三极管共射极连接的情况下,当集电极与发射极之间的电压UBE 维持不同的定值时,
UBE和IB之间的一簇关系曲线,称为共射极输入特性曲线,如图Z0119所示。
输入特性曲线的数学表达式为:
IB=f(UBE)| UBE = 常数 GS0120
由图Z0119 可以看出这簇曲线,有下面几个特点:。
三极管特性曲线是衡量三极管工作性能的有效方法。
它由四种基本特性曲线构成,分别为正向电压降-电流特性曲线,反向电压降-电流特性曲线,正向电压降势垒曲线和反向电压降势垒曲线。
首先来看正向电压降-电流特性曲线,它会反映出三极管在正向电压降下的电流特性。
随着正向电压的增加,电流也会随之增加,当正向电压达到一定程度时,电流开始减少,而且最终会趋向于一个极限值。
接下来是反向电压降-电流特性曲线,它会反映出三极管在反向电压降下的电流特性。
当反向电压增加时,电流会随之减小,并最终趋向于一个极小值。
正向电压降势垒曲线反映了三极管在正向电压降下的势垒特性。
当正向电压增加时,势垒会随之增加,当正向电压达到一定程度时,势垒开始减少,最终会趋向于一个极限值。
最后是反向电压降势垒曲线,它反映了三极管在反向电压降下的势垒特性。
当反向电压增加时,势垒也会随之减少,最终会趋向于一个极小值。
以上就是三极管特性曲线的基本介绍,由四种基本特性曲线构成,反映了三极管在正反向电压降下的电流和势垒特性。
通过分析三极管特性曲线,可以更清楚地理解三极管的工作原理,并可以更好地掌握其工作性能。
半导体三极管的特性曲线在设计半导体三极管电路时,往往需要了解半导体三极管各极电流与电压之间的关系。
半导体三极管的特性曲线就是用来描述这种关系的曲线。
下面仍以常见的NPN 三极管共发射极电路来说明半导体三极管的输入特性曲线和输出特性曲线。
测绘半导体三极管特性曲线的电路如图15-4 所示。
图中的电源EC用来供给发射结正向偏庄,而电源EC则用来供给集电结反向偏压。
EB和EC都是可以调整的,以便可以得到从零到所需值的不同电压。
1.输入特性曲线当半导体三极管的集电极与发射极之间的电压VCE为某一固定值时,基极电压VBE与基极电流IB间的关系曲线称为半导体三极管的特性曲线,即如果将VCE 固定在不同电压值条件下.然后在调节EB的同时测量不同IB值对应的UBE值,便可绘出半导体三极管的输入特性曲线。
图15-5 所示为3DG4管子的输入特性曲线。
从输入特性曲线上可以看出,UCE越大,曲线越往右移,而实际上,当UCE > 1V 后,输入特性曲线彼此靠得很近,因此一般只作一条UCE > I V 的输入特性曲线,就可以代替不同UCE 的输入特性曲线。
2. 输出特性曲线当半导体三极管的基极电流IB为某一固定值时,集电极电压UCE 与集电极电流IC之间的关系曲线,称为半导体三极管的输出特性曲线,即对应IB取不同定值时,改变UCE 并测量对应的IC,则可得到半导体三极管的输出特性曲线组。
图15-6 所示为3DG4管子的输出特性曲线。
通常把输出特性曲线分为三个区域,即放大区、饱和区及截止区。
(1)放大区在IB=0 的那条特性曲线上,各条特性曲线起始的陡斜部分右侧的区域为放大区。
只有在放大区, IB的微小变化才会引起IC有很大的变化。
同时IC的变化基本上与UCE无关,它只受lB的控制。
可见,半导体三极管只有工作在这个区域才具有电流放大作用。
(2) 饱和区图15-6 左边的阴影区所示的区域为饱和区。
管子产生饱和区的原因是:在集电极回路中,电源EC固定,通常总接人负载RL。
晶体三极管的输入、输出特性曲线三极管的特性曲线是指三极管各极上的电压和电流之间的关系曲线,是三极管内部性能的外部表现。
从使用三极管的角度来说,了解它的特性曲线是重要的。
由于三极管有两个PN结,因此它的特性曲线不像二极管那样简单。
最常用的有输入特性和输出特性曲线两种,在实际应用中,通常利用晶体管特性图示仪直接观察,也可用图1的电路开展测试逐点描绘。
(一)输入特性曲线输入特性是指,当三极管的集电极与发射极之间电压UCE保持为某一固定值时,加在三极管基极与发射极之间的电压UBE与基极电流IB之间的关系。
以3DG130C为例,按图1实验电路测试。
当UCE分别固定在O和1伏两种情况下,调整RPl测得的IB和UBE的值,列于表1。
它的输入特性曲线,如图2所示。
为了说明输入特性,图中画出两种曲线,表示UCE不同的两种情况。
但两条线不会同时存在。
图1晶体三极管输入、输出特性实验电路图2晶体三极管输入特性曲线表1三极管输入特性数据1.当UCE = O伏时,也就是将三极管的集电极与发射极短接,如图3所示,相当于正向接法的两个并联二极管。
图2中曲线A的形状跟二极管的正向伏安特性曲线非常相似,IB和UBE 也是非线性关系。
2.当UCE=I伏时,集电结反偏,产生集电极电流IC, 在一样的UBE条件下,基极电流IB就要减小。
(图2中a点降到b 点),因此曲线B相对曲线A右移一段距离。
可见,UCE 对IB有一定影响。
当UCE>1伏以后,IB与UCE几乎无关,其特性曲线和UCE = I优那条曲线非常接近,通常按UCE = I 伏的输出特性曲线分析。
图3 UCE=O时的等效电路图4 3AX52B的输入特性曲线图4是3AX52B错三极管的输入特性,注意横坐标是一UBE,这是指PNP型错管的基极电位低于发射极电位。
可见,错管和硅管它们的输入特性曲线都是非线性的,都有“死区”, 错管和硅管相比,错管在较小的UBE值下,就可使发射结正偏导通。
三极管的特性曲线三极管外部各极电压和电流的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。
它不仅能反映三极管的质量与特性,还能用来定量地估算出三极管的某些参数,是分析和设计三极管电路的重要依据。
对于三极管的不同连接方式,有着不同的特性曲线。
应用最广泛的是共发射极电路,其基本测试电路如图Z0118所示,共发射极特性曲线可以用描点法绘出,也可以由晶体管特性图示仪直接显示出来。
一、输入特性曲线在三极管共射极连接的情况下,当集电极与发射极之间的电压UBE 维持不同的定值时,UBE和IB之间的一簇关系曲线,称为共射极输入特性曲线,如图Z0119所示。
输入特性曲线的数学表达式为:IB=f(UBE)| UBE = 常数GS0120由图Z0119 可以看出这簇曲线,有下面几个特点:(1)UBE = 0的一条曲线与二极管的正向特性相似。
这是因为UCE = 0时,集电极与发射极短路,相当于两个二极管并联,这样IB与UCE 的关系就成了两个并联二极管的伏安特性。
(2)UCE由零开始逐渐增大时输入特性曲线右移,而且当UCE的数值增至较大时(如UCE>1V),各曲线几乎重合。
这是因为UCE由零逐渐增大时,使集电结宽度逐渐增大,基区宽度相应地减小,使存贮于基区的注入载流子的数量减小,复合减小,因而IB减小。
如保持IB为定值,就必须加大UBE ,故使曲线右移。
当UCE 较大时(如UCE >1V),集电结所加反向电压,已足能把注入基区的非平衡载流子绝大部分都拉向集电极去,以致UCE再增加,IB 也不再明显地减小,这样,就形成了各曲线几乎重合的现象。
(3)和二极管一样,三极管也有一个门限电压Vγ,通常硅管约为0.5~0. 6V,锗管约为0.1~0.2V。
二、输出特性曲线输出特性曲线如图Z0120所示。
测试电路如图Z0117。
输出特性曲线的数学表达式为:由图还可以看出,输出特性曲线可分为三个区域:(1)截止区:指IB=0的那条特性曲线以下的区域。
晶体三极管的输入、输出特性曲线三极管的特性曲线是指三极管各极上的电压和电流之间的联络曲线,是三极管内部功用的外部体现。
从运用三极管的视点来说,了解它的特性曲线是首要的。
因为三极管有两个PN结,因而它的特性曲线不像二极管那样简略。
最常用的有输入特性和输出特性曲线两种,在实习运用中,通常运用晶体管特性图示仪直接查询,也可用图1的电路进行查验逐点描写。
(一)输入特性曲线输入特性是指,当三极管的集电极与发射极之间电压UCE坚持为某一固定值时,加在三极管基极与发射极之间的电压UBE与基极电流IB之间的联络。
以3DG130C为例,按图1试验电路查验。
当UCE别离固定在0和1伏两种状况下,调整RP1测得的IB和UBE的值,列于表1。
它的输入特性曲线,如图2所示。
为了阐明输入特性,图中画出两种曲线,标明UCE纷歧样的两种状况。
但两条线不会一起存在。
图1晶体三极管输入、输出特性试验电路图2晶体三极管输入特性曲线表1三极管输入特性数据1.当UCE=0伏时,也即是将三极管的集电极与发射极短接,如图3所示,恰当于正向接法的两个并联二极管。
图2中曲线A的形状跟二极管的正向伏安特性曲线非常类似,IB和UBE也对错线性联络。
2.当UCE=1伏时,集电结反偏,发作集电极电流IC,在相同的UBE条件下,基极电流IB就要减小。
(图2中a点降到b点),因而曲线B相对曲线A右移一段间隔。
可见,UCE对IB 有必定影响。
当UCE>1伏往后,IB与UCE几乎无关,其特性曲线和UCE=1伏那条曲线非常挨近,通常按UCE=1伏的输出特性曲线剖析。
图3UCE=0时的等效电路图43AX52B的输入特性曲线图4是3AX52B锗三极管的输入特性,留神横坐标是-UBE,这是指PNP型锗管的基极电位低于发射极电位。
可见,锗管和硅管它们的输入特性曲线都对错线性的,都有“死区”,锗管和硅管比照,锗管在较小的UBE值下,就可使发射结正偏导通。
当三极管在正常拓宽状况时,以发射极作为公共端,则NPN型硅管UBE约为0.7伏,PNP锗管UBE约为-0.3伏。