基带传输常用码型及基带信号频谱实验
- 格式:doc
- 大小:149.50 KB
- 文档页数:9
数字基带信号的码型设计一、前言近年来,随着大规模集成电路的出现,数字系统的设备复杂程度和技术难度降低,数字通信系统的主要缺点逐渐得到解决,因此数字传输方式日益受到欢迎。
数字传输系统中,传输对象通常是二元数字信息,而设计数字传输系统的基本考虑是选择一组有限的离散的波形来表示数字信息。
这些取值离散的波形可以是未经调制的电信号,也可以是调制后的信号。
未经调制的数字信号所占据的频谱是从零域或很低频率开始,称为数字基带信号。
不经载波调制而直接传输数字基带信号的系统,称为数字基带传输系统。
数字基带传输系统方框图如图一所示。
图一数字基带传输系统方框图目前,虽然数字基带传输的应用不是很广泛,但对于基带传输系统的研究仍然十分有意义,主要是因为:1、在利用对称电缆构成的近程数据通信系统中广泛采用了这种传输方式;2、随着数字通信技术的发展,基带传输方式也有迅速发展的趋势;3、基带传输中包含带通传输的许多基本问题;4、任何一个采用线性调制的带通传输系统,可以等效为一个基带传输系统。
二、基带码型的设计原则在实际的基带传输系统中,并不是所有的基带波形都适合在信道中传输。
比如远距离传输时高频分量衰减随距离的增大而增大等,所以原始消息代码必须编成适合于传输用的码型。
传输码的结构将取决于实际信道特性和系统工作的条件,在选择传输码型时,一般应考虑以下几点原则:1、不含直流,且低频分量尽量少;2、应含有丰富的定时信息,以便于从接收码流中提取定时信号;3、功率谱主瓣宽度窄,以节省传输频带;4、不受信息源统计特性的影响,即能适应于信息源的变化;5、具有内在检错能力,即码型应具有一定规律性,以便利用这一规律性进行宏观监测;6、编译码简单,以降低通信延时和成本。
三、常用的传输码型1、单极性非归零码:(如图二(a)所示)编码规则:信号脉冲的低电平和高电平分别表示二进制代码“0”和“1”。
优点:电脉冲之间无间隔,极性单一,易于用TTL、CMOS电路产生。
上海工程技术大学通信原理综合实验报告学院电子电气工程学院专业电子信息工程班级学号022211117学生沈文杰指导教师赵晓丽一.验证性实验1.模拟信号源实验一、实验目的1、熟悉各种模拟信号的产生方法及其用途2、观察分析各种模拟信号波形的特点。
二、实验内容1、测量并分析各测量点波形及数据。
2、熟悉几种模拟信号的产生方法、来源及去处,了解信号流程。
三、设计思想利用信号源模块和20M 双踪示波器进行模拟信号源实验。
主要测试点和可调器件说明如下:1、测试点2K同步正弦波:2K的正弦波信号输出端口,幅度由W1调节。
64K同步正弦波:64K的正弦波信号输出端口,幅度由W2调节。
128K同步正弦波:64K的正弦波信号输出端口,幅度由W3调节。
非同步信号源:输出频率范围100Hz~16KHz的正弦波、三角波、方波信号,通过JP2选择波形,可调电阻W4改变输出频率,W5改变输出幅度。
音乐输出:音乐片输出信号。
音频信号输入:音频功放输入点(调节W6改变功放输出信号幅度)。
2、可调器件K1:音频输出控制端。
K2:扬声器控制端。
W1:调节2K同步正弦波幅度。
W2:调节64K同步正弦波幅度。
W3:调节128K同步正弦波幅度。
W4:调节非同步正弦波频率。
W5:调节非同步正弦波幅度。
W6:调节扬声器音量大小。
四、实验方法1、用示波器测量“2K同步正弦波”、“64K同步正弦波”、“128K同步正弦波”各点输出的正弦波波形,对应的电位器W1,W2,W3可分别改变各正弦波的幅度。
参考波形如下:2、用示波器测量“非同步信号源”输出波形。
1)将跳线开关JP2选择为“正弦波”,改变W5,调节信号幅度(调节范围为0~4V),用示波器观察输出波形。
2)保持信号幅度为3V,改变W4,调节信号频率(调节范围为0~16KHz),用示波器观察输出波形。
3)将波形分别选择为三角波,方波,重复上面两个步骤。
3、将控制开关K1设为“ON”,令音乐片加上控制信号,产生音乐信号输出,用示波器在“音乐输出”端口观察音乐信号输出波形。
数字基带信号1.1 基带信号的基本概念数字基带信号可以来字计算机、电传机等终端数据的各种数字代码,也可以来自模拟信号经数字化处理后的脉冲编码(PCM)信号等,是未经载波信号调制而直接传输的信号,所占据的频谱从零频或很低频开始。
1.2 几种数字基带信号的基本波形1.2.1 单极性波形这是一种最简单的基带信号波形,用正电平和零电平分别表示对应二进制“1”和“0”,极性单一,易于用TTL和CMOS电路产生。
缺点是有直流分量,要求传输线路具有直流传输能力,因而不适用有交流耦合的远距离传输,只适用于计算机内部或者极进距离的传输,信号波形图如图1-1所示。
图1-1 单极性波1.2.2 双极性波形这种波形用正、负电平的脉冲分别表示二进制代码“1”和“0”,其正负电平的幅度相等、极性相反,当“1”和“0”等概率出现时无直流分量,有利于在信道中传输,并且在接受端恢复信号的判决电平为零,因而不熟信道特性的变化的影响,扛干扰能力也叫强,信号波形图如图1-2所示。
图1-2 双极性波1.2.3 单极性归零波形这种波形是指它的有电脉冲宽度τ小于码元Ts,即信号电压在一个码元终止时刻前总要回到零电平,通常归零波使用半占空码,即占空比(τ/Ts)为50%,从单极性波可以直接提取定时信息,是其他码型提取位同步信息时常采用的一种过渡波形。
图1-3 单极性归零波1.2.4 双极性归零波形这种波形兼有双极性和归零波形的特点,由于其相邻脉冲之间存在零电位的间隔,是的接受端很容易识别出每个码元的起止时间,从而使收发双方能保持位的同步。
波形如图1-4所示。
图1-4 双极性归零波1.2.5 差分波形这种波形是用相邻码元的电平的跳变和不变来表示消息代码,而与码元本身的点位或极性无关,电平跳变表示“1”,电平的不变表示“0”,当然这种规定也可以反过来,也称为相对码波形,而相应地称前面的单极性或双极性波形为绝对码波形,这种波形传输代码可以消除设备初始状态的影响。
4.1.1 数字基带信号的码型设计原则所谓数字基带信号,就是消息代码的电脉冲表示――电波形。
在实际基带传输系统中,并非所有的原始数字基带信号都能在信道中传输,例如,含有丰富直流和低频成分的基带信号就不适宜在信道中传输,因为它有可能造成信号严重畸变;再例如,一般基带传输系统都是从接收到的基带信号中提取位同步信号,而位同步信号却又依赖于代码的码型,如果代码出现长时间的连“0” 符号,则基带信号可能会长时间出现0 电位,从而使位同步恢复系统难以保证位同步信号的准确性。
实际的基带传输系统还可能提出其它要求,从而导致对基带信号也存在各种可能的要求。
归纳起来,对传输用的基带信号的要求主要有两点:(1 )对各种代码的要求,期望将原始信息符号编制成适合于传输用的码型;(2 )对所选的码型的电波形的要求,期望电波形适宜于在信道中传输。
前一问题称为传输码型的选择,后一问题称为基带脉冲的选择。
这是两个既彼此独立又相互联系的问题,也是基带传输原理中十分重要的两个问题。
本节讨论前一问题,后一问题将在下面几节中讨论。
传输码(常称为线路码)的结构将取决于实际信道的特性和系统工作的条件。
概括起来,在设计数字基带信号码型时应考虑以下原则:(1)码型中应不含直流分量,低频分量尽量少。
(2)码型中高频分量尽量少。
这样既可以节省传输频带,提高信道的频带利用率,还可以减少串扰。
串扰是指同一电缆内不同线对之间的相互干扰,基带信号的高频分量越大,则对邻近线对产生的干扰就越严重。
(3)码型中应包含定时信息。
(4)码型具有一定检错能力。
若传输码型有一定的规律性,则就可根据这一规律性来检测传输质量,以便做到自动监测。
(5)编码方案对发送消息类型不应有任何限制,即能适用于信源变化。
这种与信源的统计特性无关的性质称为对信源具有透明性。
(6)低误码增殖。
对于某些基带传输码型,信道中产生的单个误码会扰乱一段译码过程,从而导致译码输出信息中出现多个错误,这种现象称为误码增殖。
实验1 基带信号的常用码型变换实验一、实验目的1.熟悉RZ 、BNRZ 、BRZ 、CMI 、曼彻斯特、密勒码型变换原理及工作过程;2.观察数字基带信号的码型变换测量点波形;二、实验仪器1.AMI/HDB3编译码模块,位号:F (实物图片如下)2.时钟与基带数据发生模块,位号:G3.20M 双踪示波器1台4.信号连接线3根三、实验工作原理(一)基带信号及其常用码型变换在实际的基带传输系统中,传输码的结构应具有下列主要特性:1) 相应的基带信号无直流分量,且低频分量少;2) 便于从信号中提取定时信息;3) 信号中高频分量尽量少,以节省传输频带并减少码间串扰;4) 不受信息源统计特性的影响,即能适应于信息源的变化;5) 编译码设备要尽可能简单。
1.1 单极性不归零码(NRZ 码)单极性不归零码中,二进制代码“1”用幅度为E 的正电平表示,“0”用零电平表示,单极性码中含有直流成分,而且不能直接提取同步信号。
0000E +1111 图1-1 单极性不归零码1.2 双极性不归零码(BNRZ 码)二进制代码“1”、“0”分别用幅度相等的正负电平表示,当二进制代码“1”和“0”等概出现时无直流分量。
10111000E +E-0图 1-2 双极性不归零码1.3 单极性归零码(RZ 码)单极性归零码与单极性不归零码的区别是码元宽度小于码元间隔,每个码元脉冲在下一个码元到来之前回到零电平。
单极性码可以直接提取定时信息,仍然含有直流成分。
00001111E +0图 1-3 单极性归零码1.4 双极性归零码(BRZ 码)它是双极性码的归零形式,每个码元脉冲在下一个码元到来之前回到零电平。
00001111E +0E-图 1-4 双极性归零 1.5 曼彻斯特码曼彻斯特码又称为数字双相码,它用一个周期的正负对称方波表示“0”,而用其反相波形表示“1”。
编码规则之一是:“0”码用“01”两位码表示,“1”码用“10”两位码表示。
基带传输常用码型及基带信号频谱实验一、实验目的1、熟悉通信基带信号功率谱基本原理2、熟悉SYSTEMVIEW软件的信号谱分析应用3、掌握使用SYSTEMVIEW软件生成最常用基带信号与数字双相传输码的基本方法二、实验原理:1、数字基带信号的频谱特性数字基带信号是随机的脉冲序列,只能用功率谱来描述它的频谱特性。
研究好数字基带信号的功率谱,就可以了解信号带宽,有无直流分量,有无定时分量。
这样才能选择匹配的信道,确定是否可提取定时信号。
经过合理假设下的严格数学推导,可以得到以下主要结论:(1)随机脉冲序列功率谱包括连续谱和离散谱;(2)单极性信号中有无离散谱取决于矩形脉冲的占空比,归零信号中有定时分量。
不归零信号中无定时分量。
0、1等概的双极性信号没有离散谱,即同时没有直流分量和定时分量。
(3)随机序列的带宽主要依赖单个码元波形的频谱函数G1(f)或G2(f),通常以谱的第一个零点作为矩形脉冲的近似带宽,它等于脉宽τ的倒数。
2、传输系统发射与信道部分的基本结构如图2—1所示。
如果系统直接传送基带信号,称之为基带传输系统。
图2—1在基带传输系统中,系统的输入是数字基带信号,它不一定适合直接在信道中传输。
信道信号形成器的作用就是把原始基带信号变换成适合于信道传输的基带信号,这种变换主要是通过码型变换和波形变换来实现的,其目的是与信道匹配,便于传输,减小码间串扰,利于同步提取和抽样判决。
称此信号形成器为数字基带调制器;与此对应的,在接收端将信道基带信号变换成原始数字基带信号,称之为基带解调器。
3、数字基带调制器中的波形变换与码型变换在数字基带调制器中,波形变换后传输电波形常见的有矩形脉冲、三角波、高斯脉冲和升余弦脉冲波形等。
最常用的是矩形脉冲波形,正如我们在前面通原软件实验一中介绍的几种波形。
上述各种波形在传输中都得到了实际应用。
在数字基带调制器中,码形变换后的传输码结构应具有下列主要特性:无直流分量,且低频分量少;便于提取定时信息;高频分量尽量少,以节省传输频带并减少码间串扰;不受信息源统计特性的影响,即能适应于信息源的变化;具有内在的检错能力;编译码设备要尽可能简单,等等。
多种数字基带信号码型的频谱分析作者:黄昌黄旭方张海龙来源:《中国科技纵横》2015年第12期【摘要】介绍四种常用数字基带信号传输码型的功率谱密度,即双极性非归零码、曼彻斯特码、AMI码和HDB3码,基于自相关函数和功率谱密度的傅立叶变换关系,重点推导AMI码的功率谱密度解析式。
最后基于我们开发的“通信原理教学仿真平台”,给出信号的功率谱密度,并与理想的谱包络进行比较,分析各码型的频域特性,指出它们的优缺点,及目前和将来可应用的一些领域。
【关键词】通信原理传输码型功率谱无论是基带传输系统,还是高频传输系统,基带信号的频谱分析都是十分必要的。
通过频谱分析,可以知道信号的带宽,信号谱中的直流分量、位定时分量、主瓣宽度和谱瓣衰减速度等信息。
我们可以针对信号频谱的特点来选择相匹配的信道,或根据信道的传输特性来设计适合的信号码型。
特别在无线通信复杂信道环境中,频带资源紧张,且干扰严重,设计一种高效的基带信号是很有意义的。
如磁悬浮列车的车地通信系统[1]、物联网的射频识别(RFID)技术[2],及一些高新技术的研究[3],都需要对基本知识有清楚正确的理解。
针对这样实际的需要,我们开发的“通信原理教学仿真平台”可以根据设定的码速率和码长画出对应码型的时域波形和功率谱密度,帮助学生或信号设计人员更好地理解和掌握数字基带信号传输码型的功率谱密度。
1 数字基带信号的功率谱密度在实际中遇到的基带信号s(t)是一个随机的脉冲序列,只能用功率谱来描述它的频谱特性,设s(t)的功率谱密度为[4]:(1)式中,为码元速率,是码元宽度,P是0、1出现的概率,和分别是0、1对应码波形和的傅里叶变换, m=(-∞,+ ∞)。
1.1双极性非归零码若设双极性波形,由公式(1)得到随机脉冲功率谱密度为:(2)当P=1/2,,若是高度为1的非归零矩形脉冲,则。
1.2 曼切斯特码曼切斯特码是每个码元用两个连续极性相反的脉冲来表示。
设曼切斯特码的幅度为 A,取“1”码的波形为:(3)可求得其功率谱:(4)1.3 AMI码和HDB3码的功率谱密度AMI 码的全称是传号交替反转码,HDB3码是AMI 码的一种改进型。
实验报告课程名称通信原理实验名称实验一:数字基带传输技术班级学号姓名指导教师实验完成时间: 2014年 10 月 28 日一、熟悉实验平台二、数字基带传输系统实验1. 实验目的1.了解几种常用的数字基带信号。
2.掌握常用的数字基带出书码型的编码规则。
3.掌握CPLD实现码型变换的方法。
2.实验内容1.观察NRZ码,RZ码,AMI码,HDB3码,CMI码,BPH码的波形。
2.观察全0码或全1码时各码型的波形。
3.观察HDB3,AMI码的正负极性波形。
4.观察AMI码,HDB3码,CMI码,BPH码经过码型反变换后的输出波形。
5.自行设计码型变换电路,下载并观察波形。
3.实验仪器各功能模块(实验箱)20M双踪示波器一台频率计(可选)一台连接线若干2.实验原理二进制码元的数字基带传输系统参考使用模块:信号源模块、码型变换模块、信道模拟模块、终端模块。
该通信系统的框图如图1所示。
图1 二进制码元的数字基带传输系统该结构由信道信号形成器、信道、接收滤波器以及抽样判决器组成。
这里信道信号形成器用来产生适合于信道传输的基带信号,信道可以是允许基带信号通过的媒质(例如能够通过从直流至高频的有线线路等);接收滤波器用来接收信号和尽可能排除信道噪声和其他干扰;抽样判决器则是在噪声背景下用来判定与再生基带信号。
基带信号是代码的一种电表示形式。
在实际的基带传输系统中,并不是所有的基带电波形都能在信道中传输。
例如,含有丰富直流和低频成分的基带信号就不适宜在信道中传输,因为它有可能造成信号严重畸变。
单极性基带波形就是一个典型例子。
再例如,一般基带传输系统都从接收到的基带信号流中提取定时信号,而收定时信号又依赖于代码的码型,如果代码出现长时间的连“0”符号,则基带信号可能会长时间出现0电位,而使收定时恢复系统难以保证收定时信号的准确性。
归纳起来,对传输用的基带信号的主要要求有两点:(1)对各种代码的要求,期望将原始信息符号编制成适合于传输用的码型;(2)对所选码型的电波形要求,期望电波形适宜于在信道中传输。
实验一码型变换实验一、实验目的1.了解几种常见的数字基带信号。
2.掌握常用数字基带传输码型的编码规则。
二、实验内容1.观察NRZ码、RZ码、BRZ码、BNRZ码、AMI码、CMI码、HDB3码、BPH码的波形。
2.观察全0码或全1码时各码型波形。
3.观察HDB3码、AMI码、BNRZ码正、负极性波形。
4.观察NRZ码、RZ码、BRZ码、BNRZ码、AMI码、CMI码、HDB3码、BPH码经过码型反变换后的输出波形。
三、实验器材1.信号源模块2.码型变换模块3.20M双踪示波器一台4.频率计(可选)一台5.连接线若干四、实验原理1.编码规则①NRZ码NRZ码的全称是单极性不归零码,在这种二元码中用高电平和低电平(这里为零电平)分别表示二进制信息“1”和“0”,在整个码元期间电平保持不变。
例如:②RZ码RZ码的全称是单极性归零码,与NRZ码不同的是,发送“1”时在整个码元期间高电平只持续一段时间,在码元的其余时间内则返回到零电平。
例如:③BNRZ码BNRZ码的全称是双极性不归零码,在这种二元码中用正电平和负电平分别表示“1”和“0”,与单极性不归零码相同的是整个码元期间电平保持不变,因而在这种码型中不存在零电平。
例如:④BRZ码BRZ码的全称是双极性归零码,与BNRZ码不同的是, 发送“1”和“0”时,在整个码元期间高电平或低电平只持续一段时间,在码元的其余时间内则返回到零电平。
例如:⑤AMI码AMI码的全称是信号交替反转码,其编码规则如下:信息码中的“0”仍变换为传输码的“0”:信息码中的“1”交替变换为传输码的“+1、-1、+1、-1、…”。
例如:代码:100 1 1000 1 1 1 …AMI码:+100 -1 +1000 -1 +1 -1 …AMI码的主要特点是无直流成分,接收端收到的码元极性与发送端完全相反也能正确判断。
译码时只需把AMI码经过全波整流就可以变为单极性码。
由于其具有上述优点,因此得到了广泛应用。
基带传输的常用码型有:
1. 双极性不归零码:“1”码和“0”码都有电流,“1”为正电流,“0”为负电流,正和负的幅度相等,判决门限为零电平。
其优点是抗噪能力强一些,缺点是生成电路需要正负双电源供电。
2. 单极性不归零码:无电压表示“0”,恒定正电压表示“1”,每个码元时间的中间点是采样时间,判决门限为半幅电平。
单极性的优点是可以采用单电源供电,缺点是具有直流分量,只能在直流耦合的电路中使用。
3. 双极性归零码:在每一码元时间间隔内,当发“1”时,发出正向窄脉冲;当发“0”时,则发出负向窄脉冲。
两个码元的时间间隔可以大于每一个窄脉冲的宽度,取样时间是对准脉冲的中心。
4. 单极性归零码:在每一码元时间间隔内,有一半的时间发出正电流,而另一半时间则不发出电流表示二进制数“1”。
整个码元时间间隔内无电流发出表示二进制数“0”。
5. 曼彻斯特编码:在曼彻斯特编码中,每个二进制位(码元)的中间都有电压跳变。
用电压的正跳变表示“0”,电压的负跳变表示“1”。
此外,还有差分码、密勒码、CMI码、AMI码、HDB3码等基带传输的常用码型。
您可以咨询专业人士获取详细信息。
实验三 AMI、HDB3编译码综合实验一、实验目的了解由二进制单极性码变换为AMI码HDB3码的编码译码规则,掌握它的工作原理和实验方法。
二、实验内容1.伪随机码基带信号实验2.AMI码实验① AMI码编码实验② AMI码译码实验③ AMI码位同步提取实验3.HDB3编码实验4.HDB3译码实验5.HDB3位同步提取实验6.AMI和HDB3位同步提取比较实验7.HDB3码频谱测量实验8.书本上的HDB3码变化和示波器观察的HDB3码变化差异实验三、基本原理:PCM信号基带传输线路码型PCM信号在电缆信道中传输时一般采用基带传输方式,尽管是采用基带传输方式,但也不是将PCM编码器输出的单极性码序列直接送入信道传输,因为单极性脉冲序列的功率谱中含有丰富的直流分量和较多的低频分量,不适于直接送人用变压器耦合的电缆信道传输,为了获得优质的传输特性,一般是将单数性脉冲序列进行码型变换,以适应传输信道的特性。
(一)传输码型的选择在选择传输码型时,要考虑信号的传输信道的特性以及对定时提取的要求等。
归结起来,传输码型的选择,要考虑以下几个原则:1.传输信道低频截止特性的影响在电缆信道传输时,要求传输码型的频谱中不应含有直流分量,同时低频分量要尽量少。
原因是PCM端机,再生中继器与电缆线路相连接时,需要安装变压器,以便实现远端供电(因设置无人站)以及平衡电路与不平衡电路的连接。
图3一1是表示具有远端供电时变压器隔离电源的作用,以保护局内设备。
由于变压器的接入,使信道具有低频截止特性,如果信码流中存在直流和低频成分,则无法通过变压器,否则将引起波形失真。
2.码型频谱中高频分量的影响一条电缆中包含有许多线对,线对间由于电磁辐射而引起的串话是随着频率的升高而加剧,因此要求频谱中高频分量尽量少,否则因串话会限制信号的传输距离或传播容量。
3.定时时钟的提取码型频谱中应含有定时时钟信息,以便再生中继器接收端提取必需的时钟信息。
武汉大学教学实验报告电子信息学院通信工程专业 2018 年 11 月 10 日实验名称基带传输实验指导教师姓名年级学号成绩(2)译码观测使用双踪示波器,同时观测编码前后数据2TP1和译码后数据2TP9,观测编码前数据是否相同。
尝试多次修改编码数据,观测译码数据是否相同。
BNRZ 码”,点击“基带设置”按钮,将基带数据编码开关的值。
用示波器通道 1 观测编码前基2TP4;尝试修改不同的编码开关组合,观测不同数64K”,观测编码前数据 2TP1 和编码数据 2TP4(2)译码观测使用双踪示波器,同时观测编码前数据 2TP1 和译码后数据 2TP9,观测编码前数据是否相同。
尝试多次修改编码数据,观测译码数据是否正确。
4.单极性归零码(RZ码)(2)译码观测使用双踪示波器,同时观测编码前数据 2TP1 和译码后数据 2TP9,观测编码前数据是否相同。
尝试多次修改编码数据,观测译码数据是否正确。
5.密勒码(1)编码观测通过鼠标在编码码型中选择“miller 码”,点击“基带设置”按钮,将基带数据设置为:16bit,64K,然后修改 16bit 编码开关的值。
用示波器通道 1 观测编码前基带数 2TP1,用通道2观测编码数据2TP4;尝试修改不同的编码开关组合,观测不同数据编码数据的变化。
将基带数据设置为:“15-PN”,“64K”,观测编码前数据 2TP1 和编码数据 2TP4并记录波形。
同时观测编码前数据 2TP1 和译码后数据 2TP9,观测编码前数据是否相同。
尝试多次修改编码数据,观测译码数据是否正确。
6.成对选择三进码(PST码)(1)编码观测通过鼠标在编码码型中选择“PST 码”,点击“基带设置”按钮,将基带数据设置为:16bit,64K,然后修改 16bit 编码开关的值。
用示波器通道 1 观测编码前基带数2TP1,用通道2观测编码数据2TP4;尝试修改不同的编码开关组合,观测不同数据编码数据的变化。
四种常用的基带传输码型matlab仿真的实验原理基带传输码型是数字信号传输中的重要概念,主要用于在信道中传输数字信号。
在基带传输中,信号的频谱很宽,为了有效地传输信号,通常需要将信号的频谱限制在一定的范围内。
常用的基带传输码型有矩形脉冲、升余弦脉冲、高斯脉冲和多相码等。
在四种常用的基带传输码型的 MATLAB 仿真实验中,实验原理如下:
1. 矩形脉冲:矩形脉冲是一种简单的基带传输码型,其频谱为无限宽。
为了限制信号的频谱,通常将矩形脉冲通过一个低通滤波器,以得到一个具有一定带宽的信号。
在 MATLAB 中,可以使用 `rectpuls` 函数生成矩形脉冲信号。
2. 升余弦脉冲:升余弦脉冲是一种常用的基带传输码型,其频谱具有一定的带宽。
在 MATLAB 中,可以使用 `rcosine` 函数生成升余弦脉冲信号。
3. 高斯脉冲:高斯脉冲是一种具有较窄带宽的基带传输码型,其频谱密度较低。
在 MATLAB 中,可以使用 `gausswin` 函数生成高斯脉冲信号。
4. 多相码:多相码是一种通过相位调制实现的基带传输码型。
在 MATLAB 中,可以使用 `square` 函数生成方波信号,然后通过调整方波的相位得到多相码信号。
在 MATLAB 仿真实验中,可以通过生成各种基带传输码型信号,并对其频谱进行分析,以了解不同码型对信号频谱的影响。
此外,还可以通过改变码型参数(如脉冲宽度、相位等),观察信号频谱的变化情况,从而深入理解基带传输码型的工作原理。
基带传输常用码型及基带信号频谱实验一、实验目的1、熟悉通信基带信号功率谱基本原理2、熟悉SYSTEMVIEW软件的信号谱分析应用3、掌握使用SYSTEMVIEW软件生成最常用基带信号与数字双相传输码的基本方法二、实验原理:1、数字基带信号的频谱特性数字基带信号是随机的脉冲序列,只能用功率谱来描述它的频谱特性。
研究好数字基带信号的功率谱,就可以了解信号带宽,有无直流分量,有无定时分量。
这样才能选择匹配的信道,确定是否可提取定时信号。
经过合理假设下的严格数学推导,可以得到以下主要结论:(1)随机脉冲序列功率谱包括连续谱和离散谱;(2)单极性信号中有无离散谱取决于矩形脉冲的占空比,归零信号中有定时分量。
不归零信号中无定时分量。
0、1等概的双极性信号没有离散谱,即同时没有直流分量和定时分量。
(3)随机序列的带宽主要依赖单个码元波形的频谱函数G1(f)或G2(f),通常以谱的第一个零点作为矩形脉冲的近似带宽,它等于脉宽τ的倒数。
2、传输系统发射与信道部分的基本结构如图2—1所示。
如果系统直接传送基带信号,称之为基带传输系统。
图2—1在基带传输系统中,系统的输入是数字基带信号,它不一定适合直接在信道中传输。
信道信号形成器的作用就是把原始基带信号变换成适合于信道传输的基带信号,这种变换主要是通过码型变换和波形变换来实现的,其目的是与信道匹配,便于传输,减小码间串扰,利于同步提取和抽样判决。
称此信号形成器为数字基带调制器;与此对应的,在接收端将信道基带信号变换成原始数字基带信号,称之为基带解调器。
3、数字基带调制器中的波形变换与码型变换在数字基带调制器中,波形变换后传输电波形常见的有矩形脉冲、三角波、高斯脉冲和升余弦脉冲波形等。
最常用的是矩形脉冲波形,正如我们在前面通原软件实验一中介绍的几种波形。
上述各种波形在传输中都得到了实际应用。
在数字基带调制器中,码形变换后的传输码结构应具有下列主要特性:•无直流分量,且低频分量少;•便于提取定时信息;•高频分量尽量少,以节省传输频带并减少码间串扰;•不受信息源统计特性的影响,即能适应于信息源的变化;•具有内在的检错能力;•编译码设备要尽可能简单,等等。
理论书籍中经常介绍的传输码型有:AMI码——传号交替反转码、HDB3码——3阶高密度双极性码、PST码——成对选择三进码、数字双相码(曼彻斯特码)、密勒(Miller)码(延迟调制码)、CMI码、mBnB码等。
实际中的常见传输码型有:HDB3码、数字双相码(曼彻斯特码)、CMI码、mBnB码等。
本实验中重点介绍数字双相码(曼彻斯特码)。
该码的编码规则为:0码用01两位码表示,1码用10两位码表示。
曼彻斯特码的一个例子见图2—2:图2—2该码主要特点为:•每个码元周期的中心点都存在电平跳变,所以富含位定时信息。
•正、负电平各半,无直流分量,编码过程也简单。
但带宽比原信码大1倍•在接收识别时需要提供“分组”信息,即需要建立帧同步。
应用:在以太网中经常使用曼彻斯特码作为传输码。
4、数字基带信号在数字基带传输系统中,系统的输入是由终端设备或编码器产生的数字基带信号。
要对数字基带传输系统进行功能与性能测试,就必须产生相应的数字基带信号。
4.1 伪随机序列产生怎样的数字基带信号才能得到更好的测试结果呢?研究表明,当输入信号具有普遍随机性时,测试结果是令人信服的,此时的序列也称之为随机序列。
正态白噪声就具有普遍随机性。
如果我们对一个正态的白噪声进行采样,取样值为‘+’,则记为1,为‘-’记为0,则构成一个随机序列,该随机序列有如下主要统计特性:(1)序列中0、1个数出现概率相等(2)序列中长度为1的游程占1/2,长度为2的游程占1/4,…且长度为k 的游程中,0游程与1游程个数相同。
(3)该序列的自相关为冲激函数。
能直接使用上述的随机序列做系统测试吗?答案是不能。
因为如果发射序列是完全的随机序列,系统接收端就不能预知。
不可能通过对比发射序列与恢复序列进行功能与性能测试。
因此,作为随机序列的替代者,伪随机序列登场了。
伪随机序列的意思是:表面看起来很像随机,但它其实是确定的序列。
所谓“确定序列”是指:如果知道规则,可以准确写出后面的全部序列并且具有周期性。
而真正的随机序列,无论已经看到多少前面的数值,也不可能确定出下一个数是什么,而且它也不是周期序列。
总之,具有周期性的伪随机序列的产生方法不算复杂,而且它的统计特性如:均衡性、游程特性、相关函数等与随机序列很相像。
这样看来,实际上存在很多种伪随机序列。
通常,伪随机序列也被称为伪噪声序列(PN Seq )。
在系统测试中,使用最多的伪随机序列是m 序列。
它是行业标准的误码测试序列。
m 序列的主要统计特性与上述随机序列的非常相似。
随机序列的周期最大(无穷大),而m 序列是由带线性反馈的移位寄存器产生的周期最长的序列。
研究表明,一个n 级线性反馈移存器可能产生的最长周期为12-n ,因此m 序列的周期就是12-n 。
图2-3 (a) 图2-3 (b)不同反馈形式电路生成的序列周期是有差异的。
可以计算出图2-3 (a)的输出序列周期为15,而图2-3(b)的输出序列周期为7。
因此m 序列生成的关键在于线性反馈移位寄存器电路中的抽头位置。
实际上一个n 次本原多项式决定的反馈抽头位置,会产生一个n 级的m 序列。
在SYSTEMVIEW 软件中,图符PN GEN 的缺省抽头位置就满足本原多项式,因而可以产生m 序列。
m 序列生成时考虑的另外一个重要因素是避免移位寄存器输出进入全零状态,对此采取的措施是:设计反馈电路避免产生全零态;或者在移位寄存器设置非全零的初始态。
在SYSTEMVIEW 软件中,图符PN GEN 的一个初始参数SEED 值代表了移位寄存器设置的初始态。
如果SEED 值取-1表示移位寄存器各初始值设为全1。
4.2 固定序列有时为了更简明快捷观察系统特性,测试的数字基带信号也使用固定周期序列。
常用的如:全零、全1、时钟、占空比1:3,占空比7:1等周期信号。
三、实验步骤:1、进入SYSTEMVIEW软件系统窗口,设置系统运行时间为:采样频率=200k Hz,运行时间=2 ms,2、用Systemview 软件建立一个仿真电路,如图2-4所示:图2-43、图符参数配置:Token 3 Parameters:Source: Pulse TrainAmp = 1 vFreq = 10e+3 HzPulseW = 25e-6 secOffset = 0 vPhase = 0 deg4、运行系统:在Systemview 系统窗内运行该系统后,转到分析窗观察Token 4的波形,应显示1:3周期波形(其中1代表的时间宽度是码速为20K时对应的码元时宽)。
5、用Systemview 软件在图2-4旁建立一个仿真电路,该电路结构与图2-4完全相同。
6、请在分析原理和步骤3中参数基础上,对步骤5中电路图符参数进行定义,运行系统后,从步骤5中新建观察点上,显示相应的7:1周期波形(其中1代表的时间宽度是码速为20K时对应的码元时宽)。
7、根据数字双相码(曼彻斯特码)原理,用Systemview 软件建立一个仿真电路:图2-5如图2-5所示。
8、图符参数配置:Token 9 Parameters:Comm: PN GenReg Len = 4Taps = [1- 4]Seed = -1Threshold = 500e-3True = 1False = 0;(其中PN Gen生成的是m序列)Token 10 Parameters:Source: Pulse TrainAmp = 1 vFreq = 20e+3 HzPulseW = 25e-6 secOffset = 0 vPhase = 0 deg;Token 32 Parameters:Logic: InvertGate Delay = 0 secThreshold = 500e-3 vTrue Output = 1 vFalse Output = 0 vRise Time = 0 secFall Time = 0 sec;Token 38 Parameters:Logic: ORGate Delay = 0 secThreshold = 500e-3 vTrue Output = 1 vFalse Output = 0 vRise Time = 0 secFall Time = 0 sec9、在Systemview 系统窗内运行该系统后,转到分析窗观察Token13、36、35三个观察点的波形,应分别是相应的1码、0码及全码对应的曼彻斯特码的时域波形。
10、继续在Systemview分析窗口中,点击按钮 ,出现“SystemView信宿计算器”对话框,该对话框左上部共有11个分类设置开关按钮,单击分类设置开关按钮Spectrum,在右上角的“Select one or more Windows:”窗口内选择信号观测点Sink 13;接下来选择计算功率谱的条件,选中“Power Spectrum Density[dBm/Hz 50 ohms]”项,如图2-6所示,最后单击按钮OK 返回分析窗,等待功率谱显示活动窗口的出现。
图2-6结果会在功率谱显示活动窗口中看到单极性归零信号的功率谱;类似的步骤,选择在右上角的“Select one or more Windows:”窗口内选择信号观测点Sink 35计算功率谱,可以显示曼彻斯特码(实际上相当于一种特殊的单极性不归零信号)的功率谱。
(注意不要根据提示替换掉原有窗口)五、实验结果及分析1、本次SYSTEMVIEW软件实验中碰到的一些使用技巧及需要注意的问题。
A.当需要打开两个文件时,不能从已打开的软件中调入,系统会默认原来打开的文件,而不执行新调入的文件。
要实行来个文件的调入运行方法是:重新打开软件,出现两个systemview即可。
B.在布置信宿库,逻辑库等模块时要注意合理位置的摆放。
Systemview默认的连接线会区分颜色,这就防止操作者因为大意而连接错误。
C.要进行图像对比分析时可以利用systemview analysis中的图形层叠,并排比较等操作完成。
D.本实验在观察功率谱时,运用Systemview分析窗口中,点击按钮 ,出现“SystemView信宿计算器”对话框,然后选择信宿块编号,以方便分析。
2、通过整理的波形将实验得到结果与理论结果对比实验图如下图1:A.在步骤5新建仿真电路中,通过改变信号源的参数PulseW 使之从25e-6 改变为87.5-6,在Systemview 系统窗内运行该系统后,转到分析窗观察其波形,其显示结果为占空比为7:1的波形。