蛋白质表达纯化概述
- 格式:ppt
- 大小:287.50 KB
- 文档页数:20
蛋白质表达调控的研究方法及其应用蛋白质是生物体内最基础的功能性分子之一,对于维持生命活动起着至关重要的作用。
在研究和应用蛋白质功能过程中,对蛋白质表达的调控显得尤为重要。
本文将介绍一些常用的蛋白质表达调控的研究方法及其应用。
一、过表达过表达是指在某个生物体内大量产生目标蛋白质的方法。
常用的过表达技术包括质粒转染、病毒感染和转基因技术等。
其中,质粒转染是最常见的方法之一,它通过将目标基因克隆到适当的表达载体上,然后将其引入宿主细胞内,通过宿主细胞的生物合成系统来表达目标蛋白质。
这种方法简单易行,操作弹性大,可以应用于不同类型的细胞和生物体中。
二、RNA干扰RNA干扰是一种通过沉默特定基因来减少或抑制该基因表达的技术。
通过合成特定的小分子RNA(siRNA)或通过质粒转染引入siRNA表达,RNA干扰可以选择性地破坏目标蛋白质编码基因的mRNA,从而抑制该基因的表达。
这种技术广泛应用于研究特定蛋白质功能、筛选候选药物和治疗某些疾病等领域。
三、转基因技术转基因技术是指将外源基因导入到生物体内,使其在生物体内表达的过程中发生特定的功能。
转基因技术广泛应用于研究和改良生物体的基因组,以及生产各种重要的蛋白质。
通过转基因技术,可以实现蛋白质表达的定向调控,提高蛋白质的产量和纯度。
四、蛋白质纯化蛋白质纯化是将目标蛋白质从复杂的混合样品中分离出来并提取纯度较高的方法。
常用的纯化技术包括亲和层析、离子交换层析、凝胶过滤层析和逆流层析等。
通过这些技术的组合应用,可以有效地去除杂质,提高纯化效果。
五、表达调控的应用蛋白质表达调控研究的应用广泛。
在医学研究领域,可以利用表达调控技术来研究蛋白质功能和疾病的发生机制,为疾病的诊断和治疗提供新的思路。
同时,在农业和食品工业中,通过调控蛋白质表达可以改良作物品质、提高产量和抗性等,为农业生产带来巨大的潜力。
综上所述,蛋白质表达调控的研究方法及其应用在生物科学领域具有重要意义。
重组蛋白质的表达与纯化重组蛋白质是指通过基因工程技术将目标蛋白的基因导入到宿主细胞中,使其在宿主中表达并纯化得到的蛋白质。
这项技术应用广泛,被广泛用于生物制药、医学研究以及工业生产等领域。
下面将详细介绍重组蛋白质的表达与纯化过程。
一、重组蛋白质表达过程1. 选择表达宿主重组蛋白质表达宿主的选择十分重要。
常用的表达宿主包括大肠杆菌(E. coli)、酵母(yeast)、哺乳动物细胞等。
不同的表达宿主具有不同的特点和适用范围。
例如,大肠杆菌是最常用的表达宿主之一,具有高表达水平、易操作、成本低等特点。
2.构建表达载体表达载体是将目标基因导入宿主细胞的载体。
常用的表达载体有质粒、病毒载体等。
质粒是最常用的表达载体,它可轻松被细菌胞内扩增,并在细胞内产生大量目标蛋白。
3.转染和表达将构建好的表达载体导入到宿主细胞中,实现转染。
转染有多种方法,如电穿孔法、化学法、微粒子轰击法等。
转染后,宿主细胞会开始表达目标基因,合成目标蛋白。
4.优化表达条件为了提高重组蛋白质的产量和纯度,需要对表达条件进行优化。
常见的优化方法包括调节培养基成分、改变培养条件、优化诱导剂浓度等。
二、重组蛋白质的纯化过程1.细胞破碎与分离表达宿主中产生的重组蛋白质往往与其他细胞组分混合在一起,需要通过细胞破碎与分离来获取目标蛋白。
细胞破碎方法包括机械法、超声法、高压法等。
分离方法包括离心、电泳、柱层析等。
2.柱层析柱层析是常用的蛋白质纯化方法之一,它基于蛋白质在柱中不同吸附剂上的亲和力差异来实现分离纯化。
常用的柱层析方法有离子交换层析、亲和层析、凝胶过滤层析等。
3.其他纯化方法除了柱层析外,还有许多其他的纯化方法可供选择。
例如,凝胶电泳、过滤、冷冻干燥等。
这些方法通常用于进一步提纯和去除杂质,以获得纯度更高的重组蛋白质。
三、重组蛋白质应用与挑战重组蛋白质的应用广泛,涉及到生物制药、医学研究、农业等领域。
例如,通过重组蛋白质技术,可以生产用于治疗疾病的药物,如人胰岛素、白介素等。
质粒亲和纯化-概述说明以及解释1. 引言1.1 概述质粒亲和纯化是一种重要的生物技术方法,用于从混合物中纯化含有特定亲和标签的质粒。
质粒是一种DNA分子,常常被用来在细菌中进行基因工程。
在质粒亲和纯化过程中,利用质粒与亲和基质之间的特定亲和作用,将含有目标质粒的混合物与其他杂质分离出来,最终得到纯净的目标质粒。
质粒亲和纯化具有高效、特异性强和操作简单等特点,已经广泛应用于分子生物学、基因工程等领域。
本文将详细介绍质粒亲和纯化的原理、步骤和应用,希望能为读者提供一些有益的信息和参考。
1.2 文章结构本文主要分为三个部分:引言、正文和结论。
在引言部分,将介绍质粒亲和纯化的概念和背景,说明文章的意义和重要性,以及本文的目的和意图。
在正文部分,将详细讲解质粒亲和纯化的原理、步骤和应用。
其中,质粒亲和纯化原理部分将介绍质粒和亲和纯化的关系,解释其基本原理。
质粒亲和纯化步骤部分将详细描述进行质粒亲和纯化的具体步骤和操作流程。
质粒亲和纯化应用部分将列举一些质粒亲和纯化在生物技术和研究领域的应用例子。
在结论部分,将对本文的内容进行总结,展望质粒亲和纯化的未来发展方向和可能的应用领域,最后以一些结束语来结束全文,强调质粒亲和纯化在科研和生产中的重要性和价值。
1.3 目的:质粒亲和纯化作为一种常用的蛋白表达和纯化技术,在生物医药领域具有广泛的应用。
本文旨在介绍质粒亲和纯化的原理、步骤以及应用,帮助读者了解该技术的基本概念和操作流程,以及在生物研究和生产中的重要作用。
通过深入了解质粒亲和纯化的相关知识,读者可以更加全面地掌握这项技术,为自己的研究工作提供有力的支持和指导。
希望本文能够帮助读者加深对质粒亲和纯化技术的理解,促进科研工作的进展和创新。
2. 正文2.1 质粒亲和纯化原理质粒亲和纯化是一种常用的蛋白质纯化技术,其原理基于蛋白质或肽链与金属离子或其他亲和配体之间的特异性结合。
在这种技术中,常用的亲和配体包括金属离子如Ni2+、Cu2+等,亲和配体与负载在固定相上的树脂特异性结合,从而可以有效地将目标蛋白质分离纯化出来。
生物医药中的蛋白质表达与纯化蛋白质是生命体中最重要的有机物之一,它们参与了几乎所有的生命相关过程,包括代谢、细胞信号转导、免疫防御等。
因此,在许多生物医药研究领域中,研究蛋白质表达和纯化已经成为当今的热门研究方向之一。
一、蛋白质表达技术蛋白质表达是指在细胞中合成蛋白质的过程,其主要方法是利用表达载体将目标蛋白质基因导入宿主细胞中,使其能够大规模表达出来。
其中最常用的表达系统是大肠杆菌表达系统和哺乳动物细胞表达系统。
1、大肠杆菌表达系统大肠杆菌通常被用作表达外源蛋白质的宿主细胞,因为其细胞生长快速且易于操作。
该表达系统通常利用大肠杆菌基因组的一部分来连接目标蛋白质基因并实现蛋白质表达。
遗憾的是,大肠杆菌常常会形成蛋白质的不溶性体,这是由于你的质量比较大,难以被合适地折叠成稳定的构象。
因此,提取可溶性蛋白质是这一表达系统的主要问题之一。
2、哺乳动物细胞表达系统与大肠杆菌表达系统不同,哺乳动物细胞表达系统可用于表达复杂的蛋白质,如具有复杂糖基化模式的蛋白质。
这种表达系统通常是通过将目标蛋白质基因导入哺乳动物细胞中,使其在细胞内表达目标蛋白质。
二、蛋白质纯化技术蛋白质纯化是指将目标蛋白质从复杂的生物混合物中分离出来的过程。
该过程是一系列分离和纯化步骤的组合,其中包括固定化金属离子亲和层析、凝胶过滤层析和离子交换层析等技术。
1、固定化金属离子亲和层析固定化金属离子亲和层析(IMAC)是目前蛋白质纯化的一种最常用技术。
该技术利用一种含有带有金属离子配体分子的树脂(如Ni2+或Zn2+),并利用这些金属离子与蛋白质中暴露的组氨酸或半胱氨酸结合的特性来实现目标蛋白质的分离纯化。
2、凝胶过滤层析凝胶过滤层析(gel filtration chromatography)也称为大小排除层析,将会把分子根据大小过滤排除,这是一种基于分子大小差异原理的蛋白质纯化技术。
通过大小排除层析,低分子量目标蛋白质可以快速流过呈大小孔隙的树脂颗粒,而高分子量物质则在树脂颗粒中保留更长时间,以实现目标蛋白质与其他分子的分离。
蛋白纯化概述疫苗生产中,一个重要的工业流程便是蛋白质的纯化,而有关蛋白质纯化的研究,众多科学家从来没有间断过。
在搜集了很多的资料后,现将有关蛋白质纯化的基本知识概括介绍一下。
本综述介绍了蛋白纯化的常用方法,对每种纯化方法的原理以及蛋白质的分离原则等进行了分析。
蛋白质纯化的依据蛋白质纯化主要利用各种蛋白间的相似性来除去非蛋白物质的污染,利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。
每种蛋白间的性质都会有差异,利用这些差异可将蛋白从混合物提取出来得到目的蛋白。
具体说来,蛋白质的以下性质均可以作为纯化的依据:大小蛋白质的大小各不相同,从只含几个氨基酸的小肽(分子量只有几百道尔顿)至含有10000多个氨基酸的巨大蛋白质(分子量超过1000000 Da)不等。
多数蛋白质的分子量在10000~150000Da之间。
形状蛋白质的形状有近似球状的,也有很不对称的。
蛋白质在离心通过溶液运动时,或通过膜、凝放过滤境料颗粒或电泳凝胶中的小孔运动时,都会受到它的形状的影响。
例如,考虑两种质量相同的单体蛋白质,一种是球状的,另一种是雪茄状的。
在甘油梯度离心时,球状蛋白质具有较小的有效半径(斯托克斯半径),因而通过溶液沉降时遇到的摩擦力较小。
这样,它就会沉降得较快而显得比雪茄状蛋白质大。
反之,在大小排阻层析时,上述斯托克斯半径较小的球状蛋白质更容易扩散入凝胶过滤填料颗粒的小孔内,较迟洗脱出来,因面显得比雪茄状蛋白质要小。
电荷蛋白质的净电荷取决于氨基酸残基所带正、负电荷的总和。
一种蛋白质中,若天冬氨酸和谷氨酸残基占优势,在pH 7.0时带净负电荷,则称之为酸性蛋白质;若赖氨酸和精氨酸残基占优势,则认为是碱性蛋白质。
等电点等电点(pI)是蛋白质上净电荷为零时的pH值,由蛋白质上带正、负电荷的氨残基数目和滴定曲线所决定。
电荷分布带电荷的氨基酸残基可均匀地分布于蛋白质的表面,亦可成簇地分布,使某一区域带强正电荷而另一区域带强负电荷。
蛋白质的表达和纯化技术概述蛋白质是生命体内最基本的组成部分之一,它们扮演着各种不同的角色,如催化酶、参与信号转导等。
了解蛋白质的结构和功能,能够帮助科学家研究生命过程和疾病发生的机制。
因此,蛋白质表达和纯化技术是现代生物学研究中的重要环节。
蛋白质表达技术蛋白质表达技术是指将目标蛋白质基因导入到宿主细胞中,使其能够在细胞内大量表达目标蛋白质的过程。
根据目标蛋白质的性质和功能需求,可以选择不同的表达系统,如大肠杆菌、酵母、哺乳动物细胞等。
大肠杆菌是最常用的表达系统之一。
其具有成本低、表达量高等优点,同时易于培养和操作。
但是,大肠杆菌的表达系统在表达复杂蛋白质时存在很多问题,如蛋白毒性、折叠错误等。
因此,针对不同类型的目标蛋白质,需要选择不同的表达系统,并优化其表达条件。
蛋白质纯化技术蛋白质纯化技术是指从混合物中纯化目标蛋白质的过程,包括初级纯化、中级纯化和高级纯化等步骤。
初级纯化包括离心、过滤和电泳等方法,主要是为了去除大分子和杂质。
中级纯化主要使用柱层析和凝胶电泳等技术,分离目标蛋白质和杂质。
最后,高级纯化主要通过高效液相色谱(HPLC)等手段,获得高纯度的目标蛋白质。
在进行蛋白质纯化时,需要考虑目标蛋白质的性质,如分子量、电荷性、亲和力等。
根据这些属性,可以选择合适的纯化方法,并进行优化。
同时,需要注意纯化过程的选择和条件设置,以确保目标蛋白质的活性和稳定性。
结论蛋白质表达和纯化技术对于生物学研究和生物制药等领域具有重要的意义。
在不同的研究领域中,选择合适的表达和纯化技术是确保研究成功的关键之一。
因此,对蛋白质表达和纯化技术的理解和掌握,有助于推动生物科技的发展。
分子生物学实验中的蛋白质表达与纯化技术分享在分子生物学研究中,蛋白质表达与纯化是非常重要的实验技术。
蛋白质是生物体内最基本的功能分子,对于理解细胞生物学、疾病发生机制以及药物研发等方面都具有重要意义。
本文将分享一些常用的蛋白质表达与纯化技术,希望对读者在分子生物学实验中有所帮助。
一、蛋白质表达技术蛋白质表达是指在外源宿主中大量合成目标蛋白质的过程。
常用的蛋白质表达系统包括大肠杆菌、酵母、昆虫细胞和哺乳动物细胞等。
其中,大肠杆菌是最常用的宿主菌,其表达系统简单、成本低,适用于大规模蛋白质表达。
酵母表达系统具有高度的翻译后修饰能力,适用于复杂蛋白质的表达。
昆虫细胞和哺乳动物细胞表达系统适用于复杂蛋白质的表达,并能够实现正确的翻译后修饰。
在蛋白质表达过程中,关键的一步是选择适当的表达载体。
表达载体是将目标基因导入宿主细胞中进行表达的工具,常见的表达载体有质粒、病毒和细胞系等。
质粒是最常用的表达载体,可以通过转染、电穿孔或热激转化等方法导入宿主细胞中。
病毒载体则通过感染宿主细胞实现基因的表达,适用于高效表达大规模蛋白质。
细胞系则是将目标基因整合到宿主细胞染色体中进行表达,适用于稳定长期表达的需求。
二、蛋白质纯化技术蛋白质纯化是从复杂的混合物中分离出目标蛋白质的过程。
常用的蛋白质纯化技术包括亲和纯化、离子交换层析、凝胶过滤层析和透析等。
亲和纯化是利用目标蛋白质与亲和基质之间的特异性相互作用进行纯化的方法。
常见的亲和基质有金属螯合树脂、抗体亲和树脂和亲和标签等。
金属螯合树脂利用金属离子与亲和标签之间的配位作用实现纯化,适用于带有亲和标签的蛋白质。
抗体亲和树脂则利用抗体与目标蛋白质之间的特异性结合实现纯化,适用于已有特异抗体的蛋白质。
亲和标签是将特定序列或蛋白质结构引入目标蛋白质中,通过与亲和基质之间的特异性结合实现纯化。
离子交换层析是利用目标蛋白质与离子交换基质之间的电荷相互作用进行纯化的方法。
离子交换基质通常是带有正或负电荷的树脂,通过调节缓冲液的离子浓度和pH值,实现目标蛋白质与基质的选择性结合和洗脱。
蛋白纯化技术简介课件CATALOGUE目录•蛋白纯化技术概述•蛋白纯化技术方法•蛋白纯化步骤与流程•蛋白纯化技术挑战与解决方案•蛋白纯化技术展望与发展趋势•蛋白纯化技术案例分析CATALOGUE蛋白纯化技术概述蛋白纯化目的蛋白纯化的定义与目的各种方法基于不同的物理或化学原理,如电荷分布、分子大小、特异性结合等,实现对蛋白质的分离与纯化。
蛋白纯化技术的分类与原理原理分类蛋白纯化技术的应用领域01020304生物化学研究临床诊断制药工业食品工业CATALOGUE蛋白纯化技术方法应用盐析法在蛋白纯化中应用广泛,适用于大多数蛋白质的纯化。
原理盐析法主要是利用蛋白质在低盐浓度时溶解度降低,高盐浓度时溶解度升高的特性,通过在中间盐浓度时加热或静置,使溶解度降低的蛋白质析出。
优缺点盐析法操作简单,成本低,但有时会造成蛋白质的变性,影响其生物活性。
盐析法原理凝胶色谱法主要用于蛋白质分子量的分离和纯化。
应用优缺点原理应用优缺点030201原理应用优缺点电泳法原理应用优缺点膜分离法CATALOGUE蛋白纯化步骤与流程初步分离缓冲液置换细胞破碎粗分离阶段03疏水相互作用色谱01亲和色谱02离子交换色谱精细分离阶段质谱分析HPLC分析SDS-PAGE电泳纯度检测与鉴定阶段CATALOGUE蛋白纯化技术挑战与解决方案1 2 3亲和色谱法离子交换色谱法凝胶过滤色谱法杂蛋白的去除选择合适的纯化方法根据蛋白的性质和纯化要求,选择适合的纯化方法,以尽可能提高目标蛋白的回收率。
优化实验条件对实验条件进行优化,如pH值、温度、离子强度等,以提高目标蛋白的回收率。
多次纯化将纯化过程分为多个步骤,每个步骤针对不同的杂质进行去除,从而提高目标蛋白的回收率。
目标蛋白的回收率添加保护剂避免剧烈操作低温操作蛋白的稳定性与活性保持CATALOGUE蛋白纯化技术展望与发展趋势纳米材料新型介质新材料与技术的发展集成化自动化集成化与自动化技术进步生物药物研发蛋白纯化技术在生物药物研发中具有重要作用。
蛋白质表达和纯化技术的研究与应用近年来,蛋白质表达和纯化技术日益成熟和受到重视,其在生物医药、工业化学等领域的应用也越来越广泛。
本文将从蛋白质表达和纯化的基本概念入手,论述其研究和应用,并探讨其未来发展趋势。
一、蛋白质表达和纯化的基本概念蛋白质表达是指通过基因工程手段使目标蛋白在细胞内或细胞外进行表达的过程。
一般来说,蛋白质表达可以分为原核细胞和真核细胞表达两种方式。
其中,原核细胞表达利用大肠杆菌等细菌作为表达宿主,而真核细胞表达则通常采用哺乳动物细胞或酵母细胞。
蛋白质纯化则是指通过一系列化学、物理等方法将目标蛋白从混合样品中分离出来的过程。
纯化的方法包括离子交换、亲和层析、凝胶过滤等。
其中,亲和层析是一种常用的手段,其利用蛋白质与配体之间的非共价相互作用,如亲和性,选择性地将目标蛋白从混合物中分离出来。
二、蛋白质表达和纯化的研究和应用蛋白质表达和纯化技术的研究和应用已经广泛地涉及到生物医药、食品加工、饲料添加剂等多个领域。
下面会分别从三个方面来介绍其应用。
1、生物医药领域在生物医药领域中,蛋白质表达和纯化技术在制备重组蛋白、生产多肽类激素等方面发挥着重要的作用。
例如,通过表达重组人胰岛素,可以生产出纯化的胰岛素产品,治疗糖尿病等疾病。
此外,利用这种技术可制备重组人影响素和重组人乙肝疫苗等生物制品,广泛地应用于临床治疗。
2、食品加工领域蛋白质在食品加工领域中也有很大的应用。
采用蛋白质表达和纯化技术,可以制备豆腐、酱油等大豆制品,以及某些膳食营养补充剂等。
通过提高食品加工中的蛋白质含量和纯度,可以改善食品的质量和味道,增加其营养价值。
3、饲料添加剂领域蛋白质表达和纯化技术在饲料添加剂领域的应用也比较广泛。
通过制备高纯度的饲料添加剂,可以提高家禽、水产养殖等养殖业的生产效率,降低养殖成本。
同时,蛋白质在饲料添加剂中也起到了相当重要的营养作用,能够有效地提高动物的生长速度和肉质质量。
三、蛋白质表达和纯化技术的未来发展趋势目前,蛋白质表达和纯化技术还存在一些不足,例如表达效率不高、蛋白质结构易受到环境的影响等问题。
蛋白质表达与纯化技术研究近年来,随着基因工程和蛋白质领域的快速发展,蛋白质表达与纯化技术成为了研究人员经常使用的技术手段。
可以说,蛋白质表达和纯化是蛋白质学领域中最关键的环节之一。
在本文中,我将就蛋白质表达与纯化技术的研究进展进行阐述。
一、蛋白质表达技术蛋白质表达技术是指利用重组DNA技术将DNA重组体转移到表达宿主细胞中,进而通过该宿主细胞"工厂"产生目标重组蛋白的过程。
一般来说,蛋白质表达技术可以分为两种:原核表达和真核表达。
1. 原核表达原核表达是利用大肠杆菌(E. coli)等非真核生物,来表达人工制造出的外源蛋白。
大肠杆菌是一种常见的原核生物,因其便于培养和操作,被广泛应用于生物学、医学和工业等领域。
但此类细胞通常只能产生简单的蛋白质,复杂蛋白质则难以表达成功。
比如,人体内的重组蛋白质包含多个高级别的结构和翻译后修饰,这些都很难在外源宿主里表达出来。
2. 真核表达与原核表达不同,真核表达利用真核生物或真核细胞表达重组蛋白质。
常用的真核生物宿主主要有哺乳动物细胞、昆虫细胞和真菌细胞等。
与原核表达相比,真核表达的宿主细胞是高度复杂的,蛋白质表达的过程也需要考虑多个酶和底物的协同作用。
在实际应用中,对于两种表达方式,需要考虑多个因素,如表达载体、菌株和宿主细胞等。
此外,还需要合理的表达调节和蛋白结构优化等方面的计划。
二、蛋白质纯化技术蛋白质纯化是从复杂混合物中提取纯化目标蛋白的过程。
其主要作用是从经过表达的生物物质中分离出目的蛋白质,以便进行更深入的研究和应用。
一般来说,蛋白质纯化可以分为几个步骤:固定、溶解、层析、凝胶过滤和电泳等。
1. 溶解溶解是将生物物质中的蛋白质迅速分解为水溶液的过程。
这个过程最终会产生蛋白质,但这些蛋白质会成为含有多种其他杂质的复杂混合物。
2. 声明声明是通过加入化学物质或温度应力等方法将蛋白质释放出来,并使其与溶液中的其他组分分开。
声明的方法包括力学声明(如超声波或高压),化学声明和生物声明等。
2.3.2.2 蛋白质表达、纯化(1)初始种子培养:挑取阳性克隆到10 mL的含有Amp抗生素的液体LB培养基中,在37℃过夜振荡培养。
(2)扩大培养:将初始种子接入1 L含抗生素的液体培养基中,37℃振荡培养至菌浓OD600为0.6-0.8时,降温至15℃或20℃;一个小时后加入终浓度为0.6 mM的IPTG,并诱导表达过夜。
(3)收集菌体:于4200 rpm,4℃下离心15 min,弃去上清,收获菌体;加入重悬溶液(25 mM Tris-HCl pH8.0,100 mM NaCl),悬浮菌体细胞;细胞破碎前加入终浓度为2 mM的蛋白酶抑制剂PMSF(Phenylmethyl sulfonyl fluoride,苯甲酸磺酰氟)。
(4)超声破碎细胞:400W下,超声3s,间隔6s,工作60次。
(5)超速离心:细胞裂解液于14000 rpm,4℃下离心50 min,收集上清液,进行下一步的分离纯化。
(6)Ni-NTA亲和层析:将上清液体倒入Ni-NTA柱中。
流净后,用wash buffer (25 mM Tris-HCl pH8.0,100 mM NaCl,15 mM imidazole)冲洗10个柱体积,除去杂蛋白;最后使用elution buffer(25 mM Tris-HCl pH8.0,100 mM NaCl,250 mM imidazole)将目的蛋白洗脱下来。
使用SDS-PAGE检测蛋白的可溶性、挂柱效率及蛋白的浓度。
由于本实验中YdiV等蛋白都是连接到pGl01载体中,带有可以用PPase切除的6×His标签。
为了获得更纯净的、不带标签的蛋白,我们在有那个wash buffer冲洗去除杂蛋白以后,每根镍柱中加入5 ml的重悬缓冲液然后加入100-200 μL的PPase,3-5 h后,用5 ml重选冲洗柱子,电泳检测酶切效率。
(7)阴离子交换层析纯化:先平衡离子交换柱。
然后将上一步洗脱下的蛋白用溶液A(25 mM Tris-HCl, pH8.0)稀释4-6倍,上样到离子交换柱Source Q上,使用溶液A与溶液B(25mM Tris-HCl pH8.0,1M NaCl)进行线性梯度洗脱。
生物化学中的蛋白质表达和纯化蛋白质是细胞中最基本的生物大分子之一,具有重要的结构和功能作用。
在生化实验研究中,常常需要大量的蛋白质作为实验材料。
蛋白质表达和纯化技术是生物化学研究中的关键技术之一。
本文将简要介绍蛋白质表达和纯化的原理和方法。
一、蛋白质表达技术蛋白质表达是将目的基因转录成RNA后再翻译成蛋白质的过程。
蛋白质表达主要有原核细胞和真核细胞两种方法。
原核细胞表达系统主要利用大肠杆菌,真核细胞表达系统则使用哺乳动物细胞,其主要的表达技术有以下几种:(一)重组蛋白质大规模表达重组蛋白质是指人为构建的同源或异源蛋白序列,利用基因工程技术将其导入到表达宿主中进行高效表达的蛋白质。
大肠杆菌是目前最常用的宿主。
一般来说,要将目的基因插入到选择性表达载体中,选用合适的启动子和终止子,将目的蛋白质与标签结合。
表达宿主随后被转化,蛋白质在生长过程中表达出来,随后进行纯化和鉴定。
(二)GST融合蛋白表达GST融合蛋白是利用GST (glutathione S-transferase)标签的蛋白质,将GST和目的蛋白质融合在一起表达,然后通过Glutathione 亲和层析纯化方法纯化目的蛋白质。
GST融合蛋白可以提高目的蛋白质的稳定性和可溶性,使得其在细胞内表达更加稳定。
(三)His标签蛋白表达His标签是一种聚组氨酸标签,可以与Ni2+螯合,因此可采用Ni2+亲和层析的方法纯化。
His标签融合蛋白表达时选择了较少的氨基酸标签,对目标蛋白的生物学性质和功能影响较小。
二、蛋白质纯化技术蛋白质表达和纯化是蛋白质生物化学研究的关键。
通常情况下,表达宿主细胞中的蛋白质必须经过纯化才能得到纯净的蛋白质,获得足够高纯度的蛋白质可用于测定其结构和功能。
(一)离子交换层析法离子交换层析法是利用蛋白质负荷(或正荷)的离子性质与相应的离子交换质团之间进行选择性结合的纯化方法。
离子交换层析法分为阴离子交换层析和阳离子交换层析两种。