表达蛋白的分离与纯化
- 格式:pdf
- 大小:123.81 KB
- 文档页数:4
实验目的1.了解外源基因在大肠杆菌细胞中的诱导表达情况2.学会用SDS-PAGE电泳法分离不同分子量的蛋白质3.学习通过亲和层析法纯化目的蛋白4.学会考马斯亮蓝染色法和蛋白质杂交法检测蛋白质实验原理1.外源基因在大肠杆菌细胞中的诱导表达:将外源基因克隆在特殊的表达载体中,让其在E. coli中表达,该表达载体上含有lac操作子的启动子。
在不加诱导剂的条件下培养宿主菌,lacI基因表达的阻遏蛋白LacI与lac操作子结合,使外源基因不能表达;向培养基中加入诱导物IPTG后,LacI阻遏蛋白变构失活,不能与lac操作子结合,外源基因就表达。
2.蛋白质SDS-PAGE电泳分离:SDS-PAGE是最常用的定性分析蛋白质的电泳方式,特别是用于蛋白质纯度检测和测定蛋白质分子量。
其分离原理是根据蛋白质分子量的差异,因为SDS-PAGE的样品处理液及缓冲液的加入破坏了蛋白质的二级、三级、四级等结构,并使SDS与蛋白质充分结合形成SDS-蛋白质复合物,稳定地存在于均一的溶液中,SDS与蛋白质结合后使SDS-蛋白质复合物上带有大量的负电荷,远远超过其原来所带的电荷,从而使蛋白质原来所带的电荷可以忽略不计,消除了不同分子之间原有的电荷差别,其电泳迁移率主要取决于亚基分子质量的大小,这样分离出的谱带也为蛋白质的亚基。
3.考马斯亮蓝法检测蛋白质:考马斯亮蓝是一种蛋白质染料,主要有R-250和G-250两种类型。
考马斯亮蓝可以和蛋白肽链中碱性氨基酸残基或芳香族氨基酸残基(Arg,Trp,Tyr,His,Phe)结合。
考马斯亮蓝R250多用于聚丙烯酰胺凝胶电泳后蛋白质条带的染色;因为考马斯亮蓝R250中的R代表Red,偏红,红蓝色,与蛋白质结合虽然比较缓慢,但是染料可以穿透凝胶,染胶效果好,染色后为蓝色,且与胶的结合可以被洗脱下去,所以可以用来对电泳条带染色。
4.基因融合就是将两个或多个开放读码框按一定顺序连接在一起,融合阅读框架的表达产物是一个杂和蛋白。
蛋白质的分离纯化方法根据分子大小不同进行分离纯化蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白质和小分子物质分开,并使蛋白质混合物也得到分离。
根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。
透析和超滤是分离蛋白质时常用的方法。
透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。
超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。
这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。
它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。
由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。
所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。
当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。
例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有用物质与分解掉的杂质进行初步分离[3]。
使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。
常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。
可以根据所需密度和渗透压的范围选择合适的密度梯度。
密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。
蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。
凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。
凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。
蛋白质的表达、分离、纯化实验蛋白质表达、分离、纯化可以:(1)探索和研究基因的功能以及基因表达调控的机理;(2)供作结构与功能的研究;(3)作为催化剂、营养剂等。
实验方法原理携带有目标蛋白基因的质粒在大肠杆菌BL21中,在37℃,IPTG诱导下,超量表达携带有6个连续组氨酸残基的重组氯霉素酰基转移酶蛋白,该蛋白可用一种通过共价偶连的次氨基三乙酸(NTA)使镍离子(Ni2+)固相化的层析介质加以提纯,实为金属熬合亲和层析(MCAC)。
蛋白质的纯化程度可通过聚丙烯酰胺凝胶电泳进行分析。
实验材料:大肠杆菌BL21试剂、试剂盒:LB液体培养基、氨苄青霉素、Washing Buffer Elution Buffer IPTG、蒸馏水、胰蛋白胨、酵母粉、氯化钠仪器、耗材:摇床、离心机、层析柱、离心管、移液枪、枪头盒、烧杯、玻璃棒实验步骤一、试剂准备1. LB液体培养基:Trytone 10 g,yeast extract 5 g,NaCl 10 g,用蒸馏水配至1000 mL。
2. 氨苄青霉素:100 mg/mL。
3. 上样缓冲液:100 mM NaH2PO4,10 mM Tris,8M Urea,10 mM 2-ME,pH8.0。
4. Washing Buffer:100 mM NaH2PO4,10 mM Tris,8 M Urea,pH6.3。
5. Elution Buffer:100 mM NaH2PO4,10 mMTris,8M Urea,500 mM Imidazole,pH8.0。
6. IPTG:100mM IPTG(异丙基硫代-β-D-半乳糖苷):2.38g IPTG溶于100ml ddH2O 中,0.22μm滤膜抽滤,-20℃保存。
二、获得目的基因1. 通过PCR方法:以含目的基因的克隆质粒为模板,按基因序列设计一对引物(在上游和下游引物分别引入不同的酶切位点),PCR循环获得所需基因片段。
蛋白质纯化常用方法蛋白质纯化是一种分离高纯度蛋白质的过程,可用于研究物种的功能和结构。
蛋白质纯化可以是一个繁琐的过程,通常需要多步骤的分离和纯化。
以下是一些常见的蛋白质纯化方法。
一、离心分离离心分离是根据蛋白质的分子量和密度差异来分离不同的成分。
高速离心法可分离细胞质组分、胞器、膜蛋白和核酸等。
低速离心法可从混合物中净化纤维蛋白、酶、酰化酶等。
二、盐析盐析是将溶液中的蛋白质与一定饱和度的盐混合后,通过离子间作用而使蛋白质发生沉淀的过程。
盐的浓度、pH值、离子类型和温度等因素会影响到沉淀的生成和纯度。
盐析也可以通过凝胶过滤或离子交换等方法来提高效果和纯度。
三、凝胶柱层析凝胶柱层析是一种将混合物缓慢地通过一个由多种凝胶材料组成的列的过程。
该列可根据蛋白质大小、电荷、亲疏水性等特性进行选择。
通过这种方法,可以净化蛋白质并快速消除杂质、缓解蛋白结构等。
四、亲和层析亲和层析是一种利用配体与蛋白质间的特定的结合进行选择性分离的技术。
配体通常被共价结合在凝胶上, 一些常见的配体包括金属离子、抗体和亲和素等。
通过这种方法,可以高效且选择性地纯化蛋白质,并减少染料、盐和杂质的存在。
五、电泳电泳是根据蛋白质的电荷大小将充电的蛋白质分离开的过程。
根据电泳类型不同,可以区分不同细胞蛋白、酶、抗体等。
蛋白质电泳在生物化学实验室中广泛应用,是一种可视化分离的传统方法。
六、共沉淀共沉淀是基于化合物的亲和性,在溶液中同时存在的两种蛋白质之间发生非共价结合的过程。
通过共沉淀获得的纯化蛋白质收率较高但一般会伴随着蛋白质活性的损失。
总之,纯化蛋白质的过程需要结合样品的特性和分离纯化方式的优点和局限性,选择合适的技术来获得高纯度和活性的蛋白质。
四种蛋白纯化的有效方法四种蛋白纯化的有效方法在进行蛋白质研究和酶工程等领域的实验过程中,常常需要将目标蛋白从复杂的混合物中纯化出来。
蛋白纯化的目的是获取高纯度的目标蛋白样品,以便进一步进行结构和功能研究。
然而,由于蛋白质的复杂性以及其在混合物中的低浓度,蛋白纯化常常面临一系列的挑战。
为了克服这些挑战,科学家们开发了多种蛋白纯化的方法。
在本文中,我们将介绍四种常见而高效的蛋白纯化方法,并探讨其原理和适用性。
1. 亲和层析法:亲和层析法是一种利用目标蛋白与配体之间的特异性结合进行纯化的方法。
这种方法基于目标蛋白与配体之间的亲和力,通过设计具有高亲和性的配体来选择性地结合目标蛋白。
在实验中,我们可以将配体固定于固相材料上,例如琼脂糖或石蜡烃树脂,并将载有目标蛋白的混合物与这些固定化的亲和基质进行接触。
随后,非特异性蛋白质被洗脱,而目标蛋白则被保留下来。
目标蛋白可以通过改变条件(例如改变pH值或添加竞争性配体)来洗脱。
亲和层析法的优点在于具有高选择性和高纯度的优势。
然而,由于亲和剂的设计和合成需要具有相关专业知识,并且选择适当的配体是关键。
亲和层析法在不同的纯化过程中的适用性会有所不同。
2. 凝胶过滤层析法(Gel Filtration Chromatography):凝胶过滤层析法是通过分子量的差异将混合物中的蛋白质分离的一种方法。
凝胶过滤层析法是利用凝胶材料,例如琼脂糖或琼脂糖-聚丙烯酰胺凝胶,通过分子在凝胶孔隙中的渗透性而将蛋白分离开来。
较大的蛋白分子无法进入凝胶孔隙,因此会在凝胶的表面留下。
较小的蛋白分子则能够渗透进入凝胶孔隙中,因此会相对于较大的蛋白分子更早地溢出。
凝胶过滤层析法的优点在于操作简单、速度快,且可以对蛋白进行某种程度的分离。
然而,该方法的分离效果受到蛋白质在凝胶中的体积效应的限制,因此对于体积较大的蛋白分子,凝胶过滤层析可能无法实现理想的分离效果。
3. 离子交换层析法:离子交换层析法是一种基于蛋白与离子交换材料之间的电荷相互作用进行纯化的方法。
请举四种蛋白质类制品分离纯化方法,并说明一下其原理
以下是四种蛋白质类制品分离纯化方法及其原理的举例:
1. 盐析法:盐析法是利用蛋白质在不同盐浓度下溶解度的差异进行分离纯化。
具体来说,在蛋白质溶液中添加适量中性盐,使得蛋白质的溶解度降低并析出,从而达到分离纯化的目的。
这种方法的原理是蛋白质与盐离子形成复合物,且复合物的溶解度较低,因此在盐浓度较高时,蛋白质会沉淀出来。
2. 等电点沉淀法:等电点沉淀法是利用蛋白质在不同 pH 值下的等电点进行分离纯化。
具体来说,将蛋白质溶液调节至其等电点 pH 值,使得蛋白质失去电荷,形成稳定的沉淀,从而达到分离纯化的目的。
这种方法的原理是蛋白质在不同 pH 值下带电荷的数量不同,因此在等电点时,蛋白质会沉淀出来。
3. 低温有机溶剂沉淀法:低温有机溶剂沉淀法是利用蛋白质在低温下溶解度的差异进行分离纯化。
具体来说,将蛋白质溶液引入与水可混溶的有机溶剂中,使得蛋白质的溶解度降低并析出,从而达到分离纯化的目的。
这种方法的原理是蛋白质在水中的溶解度受温度和溶剂性质的影响,而在有机溶剂中,蛋白质的溶解度较低,因此可以分离纯化。
4. 亲和色谱法:亲和色谱法是利用蛋白质与配体之间的特异性结合进行分离纯化。
具体来说,利用具有特异性结合能力的载体,将待分离的蛋白质与载体结合,然后通过改变洗脱液 pH 值或离子强度等方法,将结合在载体上的蛋白质洗脱出来。
这种方法的原理是蛋白
质与配体之间的相互作用可以影响蛋白质的溶解度、电离性质等,从而进行分离纯化。
蛋白质分离纯化方法的研究进展一、本文概述蛋白质是生物体内最重要的一类大分子化合物,它们在生物体内发挥着多种关键功能,包括酶催化、信号转导、基因表达调控等。
因此,对蛋白质的研究一直是生物医学领域的热点之一。
蛋白质的分离纯化是蛋白质研究的基础,也是后续蛋白质功能研究、结构解析和药物研发等工作的前提。
随着科技的进步和方法的创新,蛋白质分离纯化技术也在不断发展。
本文旨在综述近年来蛋白质分离纯化方法的研究进展,包括传统的分离纯化方法以及新兴的技术,以期为蛋白质研究领域的同仁提供参考和启示。
我们将首先回顾传统的蛋白质分离纯化方法,如凝胶电泳、色谱分离、超速离心等,这些方法在过去几十年中得到了广泛应用,但其分辨率和效率仍有待提高。
接着,我们将重点介绍近年来新兴的蛋白质分离纯化技术,如亲和层析、离子交换层析、反向液相色谱等,这些技术具有更高的分辨率和更好的纯化效果,为蛋白质研究提供了新的有力工具。
我们还将讨论一些新兴的跨学科技术,如纳米技术、生物信息学等在蛋白质分离纯化中的应用,这些技术为蛋白质分离纯化带来了新的机遇和挑战。
我们将对蛋白质分离纯化方法的发展趋势进行展望,以期为未来蛋白质研究提供指导。
我们相信,随着科技的进步和方法的创新,蛋白质分离纯化技术将会更加完善,为蛋白质研究领域的深入发展奠定坚实基础。
二、传统蛋白质分离纯化方法传统蛋白质分离纯化方法主要依赖于蛋白质的理化性质差异,如溶解度、分子量、电荷、疏水性等。
这些方法虽然历史悠久,但在许多情况下仍然被广泛应用,因为它们通常操作简单、成本较低,并且对于某些特定类型的蛋白质具有良好的分离效果。
盐析法:这是最早使用的蛋白质纯化方法之一。
通过调整溶液中的盐浓度,可以降低蛋白质的溶解度,从而实现蛋白质的沉淀。
这种方法常用于蛋白质的初步分离,但纯度通常不高。
有机溶剂沉淀:某些有机溶剂可以降低溶液的介电常数,从而改变蛋白质表面的电荷分布,导致其溶解度降低。
这种方法常用于去除样品中的杂质。
生物化学中的蛋白质表达和纯化蛋白质是细胞中最基本的生物大分子之一,具有重要的结构和功能作用。
在生化实验研究中,常常需要大量的蛋白质作为实验材料。
蛋白质表达和纯化技术是生物化学研究中的关键技术之一。
本文将简要介绍蛋白质表达和纯化的原理和方法。
一、蛋白质表达技术蛋白质表达是将目的基因转录成RNA后再翻译成蛋白质的过程。
蛋白质表达主要有原核细胞和真核细胞两种方法。
原核细胞表达系统主要利用大肠杆菌,真核细胞表达系统则使用哺乳动物细胞,其主要的表达技术有以下几种:(一)重组蛋白质大规模表达重组蛋白质是指人为构建的同源或异源蛋白序列,利用基因工程技术将其导入到表达宿主中进行高效表达的蛋白质。
大肠杆菌是目前最常用的宿主。
一般来说,要将目的基因插入到选择性表达载体中,选用合适的启动子和终止子,将目的蛋白质与标签结合。
表达宿主随后被转化,蛋白质在生长过程中表达出来,随后进行纯化和鉴定。
(二)GST融合蛋白表达GST融合蛋白是利用GST (glutathione S-transferase)标签的蛋白质,将GST和目的蛋白质融合在一起表达,然后通过Glutathione 亲和层析纯化方法纯化目的蛋白质。
GST融合蛋白可以提高目的蛋白质的稳定性和可溶性,使得其在细胞内表达更加稳定。
(三)His标签蛋白表达His标签是一种聚组氨酸标签,可以与Ni2+螯合,因此可采用Ni2+亲和层析的方法纯化。
His标签融合蛋白表达时选择了较少的氨基酸标签,对目标蛋白的生物学性质和功能影响较小。
二、蛋白质纯化技术蛋白质表达和纯化是蛋白质生物化学研究的关键。
通常情况下,表达宿主细胞中的蛋白质必须经过纯化才能得到纯净的蛋白质,获得足够高纯度的蛋白质可用于测定其结构和功能。
(一)离子交换层析法离子交换层析法是利用蛋白质负荷(或正荷)的离子性质与相应的离子交换质团之间进行选择性结合的纯化方法。
离子交换层析法分为阴离子交换层析和阳离子交换层析两种。
表达蛋白的分离与纯化
大肠杆菌表达蛋白以可溶和不溶两种形式存在,需要不同的纯化策略。
现在,许多蛋白质正在被发现而事先并不知道它们的功能,这些自然需要将蛋白质分离出来后,进行进一步的研究来获得。
分析蛋白质的方法学现已极大的简化和改进。
必须承认,蛋白质纯化比起DNA克隆和操作来是更具有艺术性的,尽管DNA序列具有异乎寻常的多样性(因而它是唯一适合遗传物质的),但它却有标准的物理化学性质,而每一种蛋白质则有它自己的由氨基酸序列决定的物理化学性质(因而它具有执行众多生物学功能的用途)。
正是蛋白质间的这些物理性质上的差异使它们得以能进行纯化但这也意味着需要对每一种待纯化的蛋白质研发一套新的方法。
所幸的是,尽管存在这种固有的困难,但现已有多种方法可以利用,蛋白质纯化策略也已实际可行。
目前,待研究蛋白或酶的基因的获得已是相当普遍的事。
可诱导表达系统特别是Studier等发展的以噬菌体T7RNA聚合酶为基础的表达系统的出现使人们能近乎常规地获得过表达(overexpression),表达水平可达细胞蛋白的2%以上,有些甚至高达50%。
一、可溶性产物的纯化(融合T7·Tag的表达蛋白)
(一)试剂准备
采用T7· Tag Affinity Purification Kit
1.T7·Tag抗体琼脂。
2.B/W缓冲液:4.29mM Na2HPO4,1.47 mM KH2PO4,2.7 mM KCl,3.
0.137mM NaCl,1%吐温-20,pH7.3。
4. 洗脱缓冲液: 0.1M柠檬酸,pH2.2。
5. 中和缓冲液:2M Tris,pH10.4。
1.PEG 20000。
(二)操作步骤
1.100ml 含重组表达质粒的菌体诱导后,离心5000g×5min,弃上清,收获菌体,用10ml预冷的B/W缓冲液重悬。
2. 重悬液于冰上超声处理,直至样品不再粘稠,4℃离心14000g×30min,取上清液,0.45μm膜抽滤后作为样品液。
3. 将结合T7·Tag抗体的琼脂充分悬起,平衡至室温,装入层析柱中。
4. B/W缓冲液平衡后样品液过柱。
5. 10ml B/W缓冲液过柱,洗去未结合蛋白。
6. 用5ml洗脱缓冲液过柱,每次1ml,洗脱液用含150μl中和缓冲液的离心管收集,混匀后置于冰上,直接SDS-PAGE分析。
7. 将洗脱下来的蛋白放入透析袋中,双蒸水透析24hr,中间换液数次。
8.用PEG 20000浓缩蛋白。
(三)注意事项
蛋白在过层析柱前,要0.45μm膜抽滤,否则几次纯化后,柱子中会有不溶物。
二、包涵体的纯化
包涵体是外源基因在原核细胞中表达时,尤其在大肠杆菌中高效表达时,形成的由膜包裹的高密度、不溶性蛋白质颗粒,在显微镜下观察时为高折射区,与胞质中其他成分有明显区别。
包涵体形成是比较复杂的,与胞质内蛋白质生成速率有关,新生成的多肽浓度较高,无充足的时间进行折叠,从而形成非结晶、无定形的蛋白质的聚集体;此外,包涵体的形成还被认为与宿主菌的培养条件,如培养基成分、温度、pH 值、离子强度等因素有关。
细胞中的生物学活性蛋白质常以可融性或分子复合物的形式存在,功能性的蛋白质总是折叠成特定的三维结构型。
包涵体内的蛋白是非折叠状态的聚集体,不具有生物学活性,因此要获得具有生物学活性的蛋白质必须将包涵体溶解,释放出其中的蛋白质,并进行蛋白质的复性。
包涵体的主要成分就是表达产物,其可占据集体蛋白的40%~95%,此外,还含有宿主菌的外膜蛋白、RNA聚合酶、RNA、DNA、脂类及糖类物质,所以分离包涵体后,还要采用适当的方法(如色谱法)进行重组蛋白质的纯化。
(一)试剂配制
1.缓冲液A:50mM Tris-HCl(pH8.0),2mM EDTA,100mM NaCl。
2.缓冲液B:50mM Tris-HCl(pH8.0),1mM EDTA,100 mM NaCl,1%NP-40。
3.缓冲液Ⅰ:50mM Tris-HCl (pH8.0),2mM EDTA,100 mM NaCl,0.5%Triton X-100(V/V),4M脲素。
4.缓冲液Ⅱ:50M Tris-HCl(pH8.0),2mM EDTA,100 mM NaCl,3%
Triton X-100 。
1.缓冲液Ⅲ:50mM Tris-HCl(pH8.0),2mM EDTA,100 mM NaCl,0.5%Triton X-100,2M 盐酸胍。
5.缓冲液C:8M脲素,10mMβ-巯基乙醇,100 mM Tris-HCl(pH8.0),2mM EDTA及脱氧胆酸钠。
(二)操作步骤
1.用缓冲液A漂洗菌体细胞(10ml/g), 离心6000g×15min,收集菌体细胞,重复此步骤,将菌体细胞再在缓冲液A中洗涤一次。
2.将漂洗过的菌体细胞悬浮于缓冲液B中,超声破碎,镜检,破碎率高于95%,离心1500g×30min,收集包涵体沉淀。
3.将包涵体沉淀用缓冲液Ⅰ、缓冲液Ⅱ、缓冲液Ⅲ分别超声洗涤一次,1500g 离心收集包涵体沉淀。
4.包涵体的溶解:用含高浓度脲素的缓冲液室温放置30min,然后离心1500g×30min,留上清。
将溶解后的蛋白质适当稀释,磁力搅拌,透析过夜。
5.溶解后的包涵体蛋白可通过亲和层析进一步纯化。