第五章 模拟调制系统总结
- 格式:pdf
- 大小:114.14 KB
- 文档页数:5
第5章 模拟调制系统学习目标通过对本章的学习,应该掌握以下要点: 调制的定义、功能和分类;线性调制(AM 、DSB 、SSB 和VSB )原理(表达式、频谱、带宽、产生与解调); 线性调制系统的抗噪声性能,门限效应; 调频(FM )、调相(PM )的基本概念; 单频调制时宽带调频信号时域表示; 调频信号频带宽度的——卡森公式; 调频信号的产生与解调方法; 预加重和去加重的概念;FM 、DSB 、SSB 、VSB 和AM 的性能比较; 频分复用、复合调制和多级调制的概念。
5.1 内容提要5.1.1 调制的定义、目的和分类1. 定义调制——用调制信号(基带信号)去控制载波的参数的过程,即使载波的参数按照调制信号的规律而变化。
从调频角度上说,就是把基带信号的频谱搬移到较高的载频附近的过程。
解调(也称检波)则是调制的逆过程,其作用是将已调信号中的调制信号恢复出来。
2. 目的(1)把基带信号转换成适合在信道中传输的已调信号(即实现有效传输、配置信道、减小天线尺寸);(2)实现信道的多路复用,以提高信道利用率, (3)改善系统抗噪声性能(与制式有关)。
3. 分类根据不用种类的调制信号、载波和调制器等,调制的分类如表5-1所列。
4.模拟(连续波)调制调制信号——模拟基带信号m (t );载波——连续正弦波)cos()(0ϕω+=c A t c ,其中A 、c ω、0ϕ为常数(常设定0ϕ为0)。
已调信号)(t s m 有两种分类:(1) 幅度调制(线性调制):调幅(AM )、双边带(DSB )、单边带(SSB )、残留边带(VSB ); (2) 角度调制(非线性调制):调频(FM )和调相(PM )。
5.1.2 幅度调制的原理幅度调制是高频正弦波的幅度随调制信号做线性变化的过程。
从频谱上看,已调信号的频谱仅仅是基带信号频谱的搬移,故也称线性调制。
幅度调制器的一般模型如图5-1所示。
它由相乘器(用于实现调制——频谱搬移)和冲激响应为)(t h 的形成滤波器组成。
第五章 模拟调制系统一、基本概念1、调制:把信号转换成适合在信道中传输的形式的一种过程。
2、载波调制:用调制信号去控制载波的参数的过程,使载波的某一个或几个参数随着调制信号的规律而变化。
3、调制的作用:(1)提高无线通信时的天线辐射效率。
(2)把多个基带信号分别搬移到不同的载频处,以实现信道的多路复用,提高信道利用率。
(3)扩展信号带宽,提高系统抗干扰性能。
二、幅度调制(AM 、DSB 、SSB 、VSB )1、AM模型 频谱t w t m A t S c AM cos )]([)(0+=(1) 带宽 B AM =2f H(2) 不发生过载的条件:|m (t )| ≤ A 0(3)调制度增益 G 32≤ 100%调制 即满调幅的时候,取最大值32 (4) 效率 =η312、DSB(1) 时域、频域表达式(2) 带宽 B DSB =2f H(3) 调制度增益 G=2(4) 效率 %100=η3、SSB(1) 时域、频域表达式(3) 带宽 B SSB =f H(3) 调制度增益 G=1(4) 效率 %100=η4、VSB滤波器的传输函数应满足:C H H C C =++-)()(ωωωω H ωω≤ 01()[()()][()()]2AM c c c c A M M ωπδωωδωωωωωω=++-+++-三、幅度调制的解调方式1、相干解调使用 AM DSB SSB VSB包络检波 AM2、相干解调 需要本地载波:与发送载波同频同相的高频正弦信号相干解调 N 0=i N 41 包络检波 N 0=i N3、大信躁比 AM 包络检波与相干解调性能一致小信躁比 AM 包络检波会产生门限效应。
门限效应是由包络检波器的非线性解调作用引起的。
门限效应:当输入信噪比低于一定数值时,解调器的输出信噪比急剧恶化,称为FM 的门限效应。
四、角度调制1、基本概念(1)角度调制:频率调制和相位调制的总称。
(2)载波的幅度都保持恒定,载波瞬时相位随调制信号规律而变化。
第5章 模拟调制系统由消息变换过来的原始信号具有频率较低的频谱分量,这种信号大多不适宜在信道中直接传输。
必须先经过在发送端调制才能在信道中传输。
而在接收端解调。
调制的作用:将基带信号频谱搬移到载频附近,便于发送接收;实现信道复用,即在一个信道中同时传输多路信息信号;利用信号带宽和信噪比的互换性,提高通信系统的抗干扰性。
所谓调制,就是按原始信号(也称为基带信号或调制信号)的变化规律去改变载波某些参数的过程。
载波信号是指未经调制的周期性振荡信号,通常是正弦波。
5.1 幅度调制(线性调制)的原理幅度调制是高频正弦载波的幅度随调制信号作线性变化的过程。
常见的模拟信号幅度调制方式有调幅、双边带、单边带、残留边带。
设调制信号(基带信号)为m(t),载波信号为,则调制后的信号(已调信号)为:设基带信号的频谱为M(ω),则由此推得已调信号的频谱:即从频域分析,已调信号幅度随基带信号的规律呈正比地变化,而频谱是基带频谱在频域内的简单搬移。
由于上述关系,幅度调制也称为线性调制。
傅里叶变换一些数学关系:1. 调幅(AM)调幅(常规双边带调制):是指m(t)的均值等于0,但将其叠加一个直流分量A 0后与载波相乘后的信号。
()()cos m S c t Am t tw =()()m t M w Û()()j tM m t e dtw w ¥--=ò()()m m S s t w Û()()()12m c c S M M w w w w w 轾=++-臌()()()()()()cos sin c c c c c c F t F t j w p d w w d w w w p d w w d w w 轾=++-臌轾=++-臌()()()cos 1 2c c c F m t t M M w w w w w 轾轾=++-臌臌()()c j tc f t e F w w w ?()*()()()().()f tg t f g t d F G t t t w w ¥-=-ò的傅氏变换为如果信号m(t)为确知信号,则AM 信号的频谱:从调制信号的波形图(时域)和频谱图(频域)分析可知,AM 波的包络与m(t)信号的形状完全一样。
基本概念调制 - 把信号转换成适合在信道中传输的形式的一种过程。
广义调制 - 分为基带调制和带通调制(也称载波调制)。
狭义调制 - 仅指带通调制。
在无线通信和其他大多数场合,调制一词均指载波调制。
调制信号 - 指来自信源的基带信号。
载波调制 - 用调制信号去控制载波的参数的过程。
载波 - 未受调制的周期性振荡信号,它可以是正弦波,也可以是非正弦波。
已调信号 - 载波受调制后称为已调信号。
解调(检波) - 调制的逆过程,其作用是将已调信号中的调制信号恢复出来。
解调器输入信噪比定义i iS N =解调器输入信号的平均功率解调器输入噪声的平均功率解调器输出信噪比定义2o o 2oo ()()S m t N n t ==解调器输出有用信号的平均功率解调器输出噪声的平均功率输出信噪比反映了解调器的抗噪声性能。
制度增益定义00//i iS N G S N =门限效应输出信噪比不是按比例地随着输入信噪比下降,而是急剧恶化的现象称为门限效应。
同步解调器不存在门限效应。
2. 调制的目的提高无线通信时的天线辐射效率。
把多个基带信号分别搬移到不同的载频处,以实现信道的多路复用,提高信道利用率。
扩展信号带宽,提高系统抗干扰、抗衰落能力,还可实现传输带宽与信噪比之间的互换。
3.基本规律和技巧第一部分线性调制前提:信道和滤波器都是理想的,幅频特性是常数1,所有的载波振幅也为1。
1、一般情况下,一个基带信号(或低通信号)乘以高频正弦或余弦载波后,平均功率减半,若再通过单边带滤波器,平均功率又减半,这是由于上下边带所携带功率相等的缘故。
2、具有窄带噪声形式(例如单边带调制信号)的已调信号通过相干解调器后,平均功率减为四分之一,这是由于其正交分量被滤除的缘故。
其余形式的已调信号通过相干解调器后,平均功率减半。
3、包络检波器输出有用信号等同原调制信号,故其平均功率与调制信号平均功率一致;输出噪声与输入噪声平均功率一致。
4、包络检波器的输出有用信号的平均功率等于调制信号()m t的平均功率,输出噪声功率等于输入噪声功率。