初中数学-培优专题13-等腰三角形(含答案)(1)
- 格式:doc
- 大小:579.00 KB
- 文档页数:12
中考数学复习《等腰三角形》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题1. 如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32(B )33(C )34(D )362. 如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC=CDBC;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM ⊥DM;④BM=DM.正确结论的个数是( )(A )1个 (B )2个 (C )3个(D )4个MECA3. 如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°, 四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交CE 于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ; 一定正确的结论有(第1题)A BCD EA.1个 B.2个 C.3个 D.4个4. 如图,ΔABC中,以B 为圆心,BC长为半径画弧,分别交AC和AB于D、E两点,并连接BD、DE若∠A=30∘,AB=AC,则∠BDE的度数为何?A. 45 B. 52.5 C. 67.5 D. 755. 如图(1),有两全等的正三角形ABC、DEF,且D、A分别为△ABC、△DEF的重心.固定D点,将△DEF逆时针旋转,使得A落在DE上,如图(2)所示.求图(1)与图(2)中,两个三角形重迭区域的面积比为何?图1 图2A.2:1 B. 3:2 C. 4:3 D. 5:46. 如果一个等腰三角形的两边长分别是5cm和6cm,那么此三角形的周长是A.15cm B.16cmC.17cm D.16cm或17cm7. 如图,在ABC△中13AB AC==,10BC=点D为BC的中点DE DE AB⊥垂足为点E,则DE等于()A.1013B.1513C.6013D.7513 ABCDE FG8.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为 A .16 B .18 C .20 D .16或209.等腰三角形的顶角为80°,则它的底角是( ) A . 20° B . 50° C . 60° D . 80°10.把等腰△ABC 沿底边BC 翻折,得到△DBC ,那么四边形ABDC ( )11.如图,△ABC 是等边三角形,P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .若BF =2,则PE 的长为( )A . 2B .23C .3D .312.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM+CN=9,则线段MN 的长为( )A .6B .7C .8D .9第11题图AD E F PQC13.已知实数x ,y 满足,则以x ,y 的值为两边长的等腰三角形的周长是( )A . 20或16B . 20C . 16D .以上答案均不对14.如图,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC 交AC 于点D ,若AC =2,则AD 的长是( )A .512- B .512+ C .51- D .51+15.如图,△ABC 为等边三角形,点E 在BA 的延长线上,点D 在BC 边上,且ED=EC .若△ABC 的边长为4,AE=2,则BD 的长为( )A . 2B . 3C .D . +116.如图,在菱形ABCD 中,∠A =60°,E ,F 分别是AB ,AD 的中点,DE ,BF 相交于点G ,连接BD ,CG ,有下列结论:①∠BGD =120° ;②BG +DG =CG ;③△BDF ≌△CGB ;④234ABD S AB =△.其中正确的结论有( )A .1个B .2个C .3个D .4个 二.填空题1. 边长为6cm 的等边三角形中,其一边上高的长度为________.2. 等腰三角形的周长为14,其一边长为4,那么,它的底边为 .3. 在等腰Rt △ABC 中,∠C =90°,AC =1,过点C 作直线l ∥AB ,F 是l 上的一点,且AB =AF ,则点F 到直线BC 的距离为 .4. 已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊEB ˊ分别交边AC 于点F ,G ,若∠ADF=80º ,则∠EGC 的度数为5. 如图,在△ABC 中,AB =AC ,︒=∠40A 则△ABC 的外角∠BCD = °.6. 如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。
人教版2021-2022年八年级上册数学全等三角形、等腰三角形(培优卷1)1.如图,E、F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P.(1)求证:CE=BF;(2)求∠BPC的度数.2.如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD =DF.(1)求证:CF=EB.(2)若AB=12,AF=8,求CF的长.3.如图,在△ABC中,∠B=60°,延长BC到D,延长BA到E,使AE=BD,连接CE、DE,使EC=DE,求证:△ABC是等边三角形.4.(1)如图1,已知以△ABC的边AB、AC分别向外作等腰直角△ABD与等腰直角△ACE,∠BAD=∠CAE=90°,连接BE和CD相交于点O,AB交CD于点F,AC交BE于点G,求证:BE=DC,且BE⊥DC.(2)探究:若以△ABC的边AB、AC分别向外作等边△ABD与等边△ACE,连接BE和CD相交于点O,AB交CD于点F,AC交BE于G,如图2,则BE与DC还相等吗?若相等,请证明,若不相等,说明理由;并请求出∠BOD的度数?5.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC,点D,F为BC边上的两点,CF =DB,连接AD,过点C作CE⊥AD于点G,交AB于点E,连接EF.(1)若∠DAB=15°,AD=6,求线段GD的长度;(2)求证:∠EFB=∠CDA;(3)若∠FEB=75°,试找出AG,CE,EF之间的数量关系,直接写出结论.6.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC.以点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合).(1)如图1,DE与AC交于点P,观察并猜想BD与DP的数量关系:.(2)如图2,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明,如果不成立,请说明理由;(3)若DE与AC延长线交于点P,BD与DP是否相等?请画出图形并写出你的结论,无需证明.7.【阅读理解】已知:如图1,等腰直角三角形ABC中,∠B=90°,AD是角平分线,交BC边于点D.求证:AC=AB+BD证明:如图1,在AC上截取AE=AB,连接DE,则由已知条件易知:Rt△ADB≌Rt△ADE(AAS)∴∠AED=∠B=90°,DE=DB又∵∠C=45°,∴△DEC是等腰直角三角形.∴DE=EC.∴AC=AE+EC=AB+BD.【解决问题】已知,如图2,等腰直角三角形ABC中,∠B=90°,AD是∠BAC的平分线,交BC边于点D,DE⊥AC,垂足为E,若AB=2,则三角形DEC的周长为.【数学思考】:现将原题中的“AD是内角平分线,交BC边于点D”换成“AD是外角平分线,交BC边的延长线于点D如图3”,其他条件不变,请你猜想线段AC、AB、BD之间的数量关系,并证明你的猜想.【类比猜想】任意三角形ABC,∠ABC=2∠C,AD是∠BAC的外角平分线,交CB边的延长线于点D,如图4,请你写出线段AC、AB、BD之间的数量关系.8.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△ADC≌△AEB;(2)判断△EGM是什么三角形,并证明你的结论;(3)判断线段BG、AF与FG的数量关系并证明你的结论.9.如图,D是△ABC的边BC上的点,且CD=AB,∠ADB=∠BAD,AE是△ABD的中线.求证:AC=2AE.10.如图(1),△ABC是等边三角形,DE是中位线,F是线段BC延长线上一点,且CF =AE,连接BE,EF.(1)求证:BE=EF;(2)若将DE从中位线的位置向上平移,使点D,E分别在线段AB,AC上(点E与点A不重合),其他条件不变,如图(2),则(1)题中的结论是否成立?若成立,请证明;若不成立,请说明理由.11.如图,已知BC>AB,AD=DC,BD平分∠ABC,求证:∠A+∠C=180°.12.阅读下列材料:问题:如图(1),已知正方形ABCD中,E、F分别是BC、CD边上的点,且∠EAF=45°.判断线段BE、EF、FD之间的数量关系,并说明理由.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△DAF绕点A顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小明同学的思路,解决下列问题:(1)图(1)中线段BE、EF、FD之间的数量关系是;(2)如图(2),已知正方形ABCD边长为5,E、F分别是BC、CD边上的点,且∠EAF =45°,AG⊥EF于点G,则AG的长为,△EFC的周长为;(3)如图(3),已知△AEF中,∠EAF=45°,AG⊥EF于点G,且EG=2,GF=3,则△AEF的面积为.13.如图,在四边形ABCD中,AB=BC=AD,∠ADC=90°,AD∥BC.(1)求证:四边形ABCD是正方形;(2)如图,点E在BC上,连接AE,以AE为斜边作等腰Rt△AEF,点F在正方形ABCD 的内部,连接DF,求证:DF平分∠ADC;(3)在(2)的条件下,延长EF交CD的延长线于点H,延长DF交AE于点M,连接CM交EF于点N,过点E作EG∥AF交DC的延长线于点G,若∠BGE+2∠FEC=135°,DH=1,求线段MN的长.14.【问题提出】如图1,在四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积.【尝试解决】旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.(1)如图2,连接BD,由于AD=CD,所以可将△DCB绕点D顺时针方向旋转60°,得到△DAB',则△BDB′的形状是.(2)在(1)的基础上,求四边形ABCD的面积.【类比应用】(3)如图3,等边△ABC的边长为2,△BDC是顶角为∠BDC=120°的等腰三角形,以D为顶点作一个60°的角,角的两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.15.如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.16.截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE,易证△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而解决问题.根据上述解题思路,三条线段DA、DB、DC之间的等量关系是;(直接写出结果)(2)如图2,Rt△ABC中,∠BAC=90°,AB=AC.点D是边BC下方一点,∠BDC =90°,探索三条线段DA、DB、DC之间的等量关系,并证明你的结论.。
等腰三角形【知识精读】(-)等腰三角形的性质1. 有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;2. 定理及其推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。
等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。
(二)等腰三角形的判定1. 有关的定理及其推论定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
2. 定理及其推论的作用。
等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。
3. 等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。
【分类解析】例1. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。
初二数学等腰三角形的性质试题答案及解析1.如图,在△ABC中,已知∠B和∠C的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为().A.9B.8C.7D.6【答案】A【解析】根据△ABC中,∠ABC和∠ACB的平分线相交于点F,可得∠DBF=∠FBC,∠ECF=∠FCB,再根据两直线平行内错角相等,可得∠DFB=∠FBC,∠EFC=∠FCB,则有∠DBF=∠DFB,∠EFC=∠ECF,根据等角对等边可得BD=FD,EC=EF,然后利用等量代换即可求出线段DE的长.∵BF为∠ABC的平分线,CF为∠ACB的平分线,∴∠DBF=∠FBC,∠ECF=∠FCB,∵DE∥BC,∴∠DFB=∠FBC,∠EFC=∠FCB,∴∠DBF=∠DFB,∠EFC=∠ECF,∴BD=FD,EC=EF,则DE=DF+FE=BD+CE=9,故选A.【考点】本题主要考查角平分线的性质,平行线的性质,等腰三角形的性质点评:解答此类题关键是在复杂图形之中辨认出应用性质的基本图形,从而利用性质和已知条件计算.2.△ABC中,AB=AC,∠A=∠C,则∠B=_______.【答案】60°【解析】由AB=AC根据等边对等角可得∠B=∠C,即可得到∠A=∠B=∠C,再根据三角形的内角和180°即可求得结果。
∵AB=AC,∴∠B=∠C,∵∠A=∠C,∴∠A=∠B=∠C,∵∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°,故答案为60°.【考点】本题考查的是等腰三角形的性质,三角形的内角和定理点评:解答本题的关键是根据等边对等角得到∠A=∠B=∠C.3.等腰三角形的顶角的度数是底角的4倍,则它的顶角是________.【答案】120°【解析】设底角是x°,则顶角是4x°,根据三角形的内角和为180°,即可列出方程,解出即可。
中考数学复习----《等腰三角形》知识点总结与专项练习题(含答案解析)知识点总结1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。
其中相等的两边叫做腰,另一边叫做底。
两腰构成的夹角叫做顶角,腰与底构成的夹角叫做底角。
2.等腰三角形的性质:①等腰三角形的两腰相等。
②等腰三角形的两底角相等。
(简称“等边对等角”)③等腰三角形底边的中线、高线以及顶角平分线相互重合。
(简称底边上三线合一)3.等腰三角形的判定:①有两条边相等的三角形是等腰三角形。
②有两个底角相等的三角形是等腰三角形。
(等角对等边)③若一个三角形某一边上存在“三线合一”,则三角形是等腰三角形。
练习题1、(2022•黑龙江)如图,△ABC中,AB=AC,AD平分∠BAC与BC相交于点D,点E是AB的中点,点F是DC的中点,连接EF交AD于点P.若△ABC的面积是24,PD=1.5,则PE的长是()A.2.5 B.2 C.3.5 D.3【分析】如图,过点E作EG⊥AD于G,证明△EGP≌△FDP,得PG=PD=1.5,由三角形中位线定理可得AD的长,由三角形ABC的面积是24,得BC的长,最后由勾股定理可得结论.【解答】解:如图,过点E作EG⊥AD于G,∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD,∴∠PDF=∠EGP=90°,EG∥BC,∵点E是AB的中点,∴G是AD的中点,∴EG=BD,∵F是CD的中点,∴DF=CD,∴EG=DF,∵∠EPG=∠DPF,∴△EGP≌△FDP(AAS),∴PG=PD=1.5,∴AD=2DG=6,∵△ABC的面积是24,∴•BC•AD=24,∴BC=48÷6=8,∴DF=BC=2,∴EG=DF=2,由勾股定理得:PE==2.5.故选:A.2、(2022•淄博)某城市几条道路的位置关系如图所示,道路AB∥CD,道路AB与AE的夹角∠BAE=50°.城市规划部门想新修一条道路CE,要求CF=EF,则∠E的度数为()A.23°B.25°C.27°D.30°【分析】先根据平行线的性质,由AB∥CD得到∠DFE=∠BAE=50°,根据等腰三角形的性质得出∠C=∠E,再根据三角形外角性质计算∠E的度数.【解答】解:∵AB∥CD,∴∠DFE=∠BAE=50°,∵CF=EF,∴∠C=∠E,∵∠DFE=∠C+∠E,∴∠C=∠DFE=×50°=25°,故选:B.3、(2022•鞍山)如图,在△ABC中,AB=AC,∠BAC=24°,延长BC到点D,使CD=AC,连接AD,则∠D的度数为()A.39°B.40°C.49°D.51°【分析】利用等边对等角求得∠B=∠ACB=78°,然后利用三角形外角的性质求得答案即可.【解答】解:∵AB=AC,∠BAC=24°,∴∠B=∠ACB=78°.∵CD=AC,∠ACB=78°,∠ACB=∠D+∠CAD,∴∠D=∠CAD=∠ACB=39°.故选:A.4、(2022•荆州)如图,直线l1∥l2,AB=AC,∠BAC=40°,则∠1+∠2的度数是()A.60°B.70°C.80°D.90°【分析】过点C作CD∥l1,利用平行线的性质可得∠1+∠2=∠ACB,再由等腰三角形的性质可得∠ACB=∠ABC,从而可求解.【解答】解:过点C作CD∥l1,如图,∵l1∥l2,∴l1∥l2∥CD,∴∠1=∠BCD,∠2=∠ACD,∴∠1+∠2=∠BCD+∠ACD=∠ACB,∵AB=AC,∴∠ACB=∠ABC,∵∠BAC=40°,∴∠ACB=(180°﹣∠BAC)=70°,∴∠1+∠2=70°.故选:B.5、(2022•台湾)如图,△ABC中,D点在AB上,E点在BC上,DE为AB的中垂线.若∠B=∠C,且∠EAC>90°,则根据图中标示的角,判断下列叙述何者正确?()A.∠1=∠2,∠1<∠3 B.∠1=∠2,∠1>∠3C.∠1≠∠2,∠1<∠3 D.∠1≠∠2,∠1>∠3【分析】根据线段垂直平分线的性质,等腰三角形的性质解答即可.【解答】解:∵DE为AB的中垂线,∴∠BDE=∠ADE,BE=AE,∴∠B=∠BAE,∴∠1=∠2,∵∠EAC>90°,∴∠3+∠C<90°,∵∠B+∠1=90°,∠B=∠C,∴∠1>∠3,∴∠1=∠2,∠1>∠3,故选:B.6、(2022•宜宾)如图,在△ABC中,AB=AC=5,D是BC上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AEDF的周长是()A.5 B.10 C.15 D.20【分析】由于DE∥AB,DF∥AC,则可以推出四边形AFDE是平行四边形,然后利用平行四边形的性质可以证明▱AFDE的周长等于AB+AC.【解答】解:∵DE∥AB,DF∥AC,∴四边形AFDE是平行四边形,∠B=∠EDC,∠FDB=∠C∵AB=AC,∴∠B=∠C,∴∠B=∠FDB,∠C=∠EDC,∴BF=FD,DE=EC,∴▱AFDE的周长=AB+AC=5+5=10.故选:B.7、(2022•宿迁)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是()A.8cm B.13cm C.8cm或13cm D.11cm或13cm 【分析】题目给出等腰三角形有两条边长为3cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当3cm是腰长时,3,3,5能组成三角形,当5cm是腰长时,5,5,3能够组成三角形.则三角形的周长为11cm或13cm.故选:D.8、(2022•天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB ⊥x轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【分析】根据等腰三角形的性质求出AC,根据勾股定理求出OC,根据坐标与图形性质写出点A的坐标.【解答】解:设AB与x轴交于点C,∵OA=OB,OC⊥AB,AB=6,∴AC=AB=3,由勾股定理得:OC===4,∴点A的坐标为(4,3),故选:D.9、(2022•泰安)如图,l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=25°,∠1=60°.则∠2的度数是()A.70°B.65°C.60°D.55°【分析】利用等腰三角形的性质得到∠C=∠BAC=25°,利用平行线的性质得到∠BEA=95°,再根据三角形外角的性质即可求解.【解答】解:如图,∵AB=BC,∠C=25°,∴∠C=∠BAC=25°,∵l1∥l2,∠1=60°,∴∠BEA=180°﹣60°﹣25°=95°,∵∠BEA=∠C+∠2,∴∠2=95°﹣25°=70°.故选:A.10、(2022•自贡)等腰三角形顶角度数比一个底角度数的2倍多20°,则这个底角的度数是()A.30°B.40°C.50°D.60°【分析】设底角的度数是x°,则顶角的度数为(2x+20)°,根据三角形内角和是180°列出方程,解方程即可得出答案.【解答】解:设底角的度数是x°,则顶角的度数为(2x+20)°,根据题意得:x+x+2x+20=180,解得:x=40,故选:B.11、(2022•广安)若(a﹣3)2+5−b=0,则以a、b为边长的等腰三角形的周长为.【分析】先求a,b.再求第三边c即可.【解答】解:∵(a﹣3)2+=0,(a﹣3)2≥0,≥0,∴a﹣3=0,b﹣5=0,∴a=3,b=5,设三角形的第三边为c,当a=c=3时,三角形的周长=a+b+c=3+5+3=11,当b=c=5时,三角形的周长=3+5+5=13,故答案为:11或13.12、.(2022•岳阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,若BC=6,则CD=.【分析】根据等腰三角形的性质可知D是BC的中点,即可求出CD的长.【解答】解:∵AB=AC,AD⊥BC,∴CD=BD,∵BC=6,∴CD=3,故答案为:3.13、(2022•苏州)定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为.【分析】由等腰△ABC是“倍长三角形”,可知AB=2BC或BC=2AB,若AB=2BC=6,可得AB的长为6;若BC=3=2AB,因1.5+1.5=3,故此时不能构成三角形,这种情况不存在;即可得答案.【解答】解:∵等腰△ABC是“倍长三角形”,∴AB=2BC或BC=2AB,若AB=2BC=6,则△ABC三边分别是6,6,3,符合题意,∴腰AB的长为6;若BC=3=2AB,则AB=1.5,△ABC三边分别是1.5,1.5,3,∵1.5+1.5=3,∴此时不能构成三角形,这种情况不存在;综上所述,腰AB的长是6,故答案为:6.14、(2022•云南)已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶角度数是.【分析】分∠A是顶角和底角两种情况讨论,即可解答.【解答】解:当∠A是顶角时,△ABC的顶角度数是40°;当∠A是底角时,则△ABC的顶角度数为180°﹣2×40°=100°;综上,△ABC的顶角度数是40°或100°.故答案为:40°或100°.15、(2022•滨州)如图,屋顶钢架外框是等腰三角形,其中AB=AC,立柱AD⊥BC,且顶角∠BAC=120°,则∠C的大小为.【分析】根据等腰三角形的性质和三角形内角和得到∠B=∠C=30°.【解答】解:∵AB=AC且∠BAC=120°,∴∠B=∠C=(180°﹣∠BAC)=×60°=30°.故答案为:30°.11。
初二数学等腰三角形试题答案及解析1.如图,已知在△ABC中,AB=AC=10cm,BC=12cm,点E、F都在中线AD上,连接EB、EC、FB、FC,则图中阴影部分的面积为.【答案】24cm2【解析】根据等腰三角形的性质求得△ABC底边上的高线AD的长度,然后求图中阴影部分,即三个等高三角形的面积和.解:∵在△ABC中,AB=AC=10cm,BC=12cm,AD是中线,∴AD⊥BC,BD=CD=BC=6cm,∴AD=8cm(勾股定理),∴S阴影=S△ABE+S△EFC+S△BDE=BD•(AE+EF+FD)=BD•AD=×6cm×8cm=24cm2.故答案是:24cm2.点评:本题考查了等腰三角形的性质、三角形的面积.解答此题时,可以发现图中阴影部分的面积实际上是由三个等高不等底的三角形的和,而这三个三角形的底边的和恰好是等腰△ABC的高线AD的长度.2.如图,在△ABC中,B是AC上一点,AD=BD=BC,若∠C=25°,则∠ADB= .【答案】80°【解析】首先利用等腰三角形的性质得到∠C=∠BDC,利用三角形的外角的性质得到∠A和∠ABD的度数,从而确定∠ADB的度数.解:∵BD=BC,∠C=25°,∴∠C=∠BDC=50°,∴∠ABD=∠C+∠BDC=50°,∵AD=BD,∴∠A=∠DBA=50°,∴∠ADB=180°﹣∠A﹣∠DBA=80°,答案为:80°.点评:本题考查了等腰三角形的性质,解答过程中两次运用“等边对等角”,难度不大.3.已知实数x,y满足|x﹣4|+(y﹣8)2=0,则以x,y的值为两边长的等腰三角形的周长是.【答案】20【解析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20;点评:本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.4.如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,D、E为垂足,BD与CE交于点O,则图中全等三角形共有对.【答案】3【解析】根据等腰三角形性质推出∠ABC=∠ACB,根据垂线定义证∠ADB=∠AEC,∠BEO=∠CDO,根据AAS证△BEC≌△BDC,根据AAS证△ADB≌△AEC,根据AAS证△BEO≌△CDO即可解:有3对:理由是∵AB=AC,∴∠ABC=∠ACB,∵BD⊥AC,CE⊥AB,∴∠BDC=∠BEC=90°,∵BC=BC,∴△BEC≌△BDC,∵∠ADB=∠AEC,∠A=∠A,AB=AC,∴△ADB≌△AEC,∴AD=AE,∴BE=DC,∵∠EOB=∠DOC,∠BEC=∠BDC,∴△BEO≌△CDO,故答案为:3.点评:本题主要考查对全等三角形的性质和判定,等腰三角形性质,垂线定义等知识点的理解和掌握,能推出证三角形全等的三个条件是解此题的关键.5.等腰三角形的两边长分别是3和5,则这个等腰三角形的周长为.【答案】11或13【解析】分3是腰长与底边两种情况讨论求解.解:①3是腰长时,三角形的三边分别为3、3、5,能组成三角形,周长=3+3+5=11,②3是底边长时,三角形的三边分别为3、5、5,能组成三角形,周长=3+5+5=13,综上所述,这个等腰三角形的周长是11或13.故答案为:11或13.点评:本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.6.已知等腰三角形的两条边长分别为3和7,那么它的周长等于.【答案】17【解析】分两种情况讨论:当3是腰时或当7是腰时.根据三角形的三边关系,知3,3,7不能组成三角形,应舍去.解:当3是腰时,则3+3<7,不能组成三角形,应舍去;当7是腰时,则三角形的周长是3+7×2=17.故答案为:17.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.此类题不要漏掉一种情况,同时注意看是否符合三角形的三边关系.7.已知等腰三角形一腰上的中线将它周长分成18cm和12cm两部分,则这个等腰三角形的底边长是.【答案】6cm或8cm【解析】设等腰三角形的腰长、底边长分别为xcm,ycm,根据题意列二元一次方程组,注意没有指明具休是哪部分的长为18,故应该列两个方程组求解.解:∵等腰三角形的周长是18cm+12cm=30cm,设等腰三角形的腰长、底边长分别为xcm,ycm,由题意得或,解得或∴等腰三角形的底边长为6cm或8cm.(1分)故答案为:6cm或8cm.点评:此题主要考查等腰三角形的性质,解二元一次方程组和三角形三边关系的综合运用,此题的关键是分两种情况分析,求得解之后注意用三角形三边关系进行检验.8.等腰三角形的一边是2cm,另一边是9cm,则这个三角形的周长是 cm.【答案】20【解析】本题可先根据三角形三边关系,确定等腰三角形的腰和底的长,然后再计算三角形的周长.解:当腰长为4时,则三角形的三边长为:2、2、9;∵2+2<9,∴不能构成三角形;因此这个等腰三角形的腰长为9,则其周长=9+9+2=20.故答案为:20.点评:本题考查了等腰三角形的性质和三角形的三边关系;对于已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.如图,直角三角形ABC中,∠BAC=90°AD⊥BC,AE是BC边上的中线,①若∠C=40°,则∠DAE= °;②若∠DAE=20°,则∠C= °.【答案】10°,35°【解析】利用∠C=40°,可先求∠BAC,再利用AE是∠BAC的角平分线,可求∠EAC,在Rt△ADC中,可求∠DAC,从而可求∠DAE.解:①∵直角三角形ABC中,∠BAC=90°AD⊥BC,AE是BC边上的中线∠C=40°,∴BE=AE=CE,∴∠EAC=∠C=40°,∠DAC=50°,∴∠DAE=∠DAC﹣∠EAC=50°﹣40°=10°,②∵∠DAE=20°,∴∠AEC=70°∴∠C=∠EAC=35°,故答案为10°,35°.点评:本题利用了三角形内角和定理、角平分线定理.三角形的内角和等于180°.10.如图,在△ABC中,AB=AC,∠BAD=15°,且AE=AD,则∠CDE= °.【答案】7.5°【解析】根据等腰三角形性质推出∠1=∠2,∠B=∠C,根据三角形的外角性质得到∠1+∠3=∠B+15°,∠2=∠C+∠3,推出2∠3=15°即可.解:∵AD=AE,AC=AB,∴∠1=∠2,∠B=∠C,∵∠1+∠3=∠B+∠BAD=∠B+15°,∠2=∠1=∠C+∠3,∴∠C+∠3+∠3=∠B+15°,2∠3=15°,∴∠3=7.5°,即∠CDE=7.5°,故答案为:7.5°.点评:本题主要考查对等腰三角形的性质,三角形的外角性质等知识点的理解和掌握,熟练地运用性质进行推理是解此题的关键.11.如图,在△ABC中,已知BA=BC,∠B=120°,AB的垂直平分线DE交AC于点D.(1)求∠A的度数;(2)若AC=6cm,求AD的长度.【答案】(1)30°(2)2cm【解析】(1)根据等腰三角形的两个底角相等、三角形内角和定理来求∠A的度数;(2)连接BD.根据线段垂直平分线的性质知△ABD是等腰三角形;然后利用(1)中的∠A=∠C=30°和已知条件∠B=120°可以推知△CDB是直角三角形,利用30度角所对的直角边是斜边的一半即可求得BD与CD间的数量关系;最后利用等腰三角形ABD的两腰相等(AD=BD)通过等量代换即可求得AC=3AD,从而求得线段AD的长度.解:(1)∵在△ABC中,已知BA=BC,∴∠A=∠C(等边对等角);又∵∠B=120°,∴∠A=(180°﹣120°)=30°(三角形内角和定理);(2)连接BD.∵AB的垂直平分线DE交AC于点D,∴AD=BD,∠A=∠ABD=30°,∴∠CBD=90°;由(1)知∠A=∠C=30°,∴BD=CD(30°所对的直角边是斜边的一半),∴CD=2AD=2BD,∴AC=AD+CD=AD+2AD=3AD;又∵AC=6cm,∴AD=2cm.点评:本题综合考查了等腰三角形的性质、含30度角的直角三角形以及三角形内角和定理.解答(2)题时,要充分利用等腰三角形的“三线合一”的性质.12.如图,AB=AC,∠C=67°,AB的垂直平分线EF交AC于点D,求∠DBC的度数.【答案】21°【解析】求出∠ABC,根据三角形内角和定理求出∠A,根据线段垂直平分线得出AD=BD,求出∠ABD,即可求出答案.解:∵AB=AC,∠C=67°,∴∠ABC=∠C=67°,∴∠A=180°﹣67°﹣67°=46°,∵EF是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=46°,∴∠DBC=67°﹣46°=21°.点评:本题考查了线段垂直平分线,三角形的能或定理,等腰三角形的性质和判定等知识点,关键是求出∠ABC和∠ABD的度数,题目比较好.13.如图,△ABC中,AB=AC,BD平分∠ABC交AC于点D,若∠A=52°,则∠BDC等于()A.84°B.64°C.52°D.32°【答案】A【解析】根据角平分线的性质,依据∠A=52°,AB=AC,可求得△ABC中三个内角的度数,然后根据三角形的外角性质可求出∠BDC=∠A+∠ABD.解:∵△ABC中,AB=AC,∠A=52°,∴∠ABC=∠C=(180﹣∠A)÷2=64°;又∵BD平分∠ABC交AC于点D,∴∠ABD=32°,∴∠BDC=∠A+∠ABD=32°+52°=84°.故选A.点评:主要考查了等腰三角形的性质.解题时,需要熟知三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和.(2)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.14.下列性质中,等腰三角形具有而直角三角形不一定具有的是()A.任意两边之和大于第三边B.内角和等于180°C.有两个锐角的和等于90°D.有一个角的平分线垂直于这个角的对边【答案】D【解析】根据等腰三角形与直角三角形的性质作答.解:A、对于任意一个三角形都有两边之和大于第三边,不符合题意;B、对于任意一个三角形都有内角和等于180°,不符合题意;C、只有直角三角形才有两个锐角的和等于90°,不符合题意;D、等腰三角形顶角的平分线垂直于顶角的对边,而直角三角形(等腰直角三角形除外)没有任何一个角的平分线垂直于这个角的对边,符合题意.故选D.点评:本题主要考查了三角形的性质,等腰三角形与直角三角形的性质的区别.15.如图,在四边形ABCD中,△ABC与△ADC关于对角线AC对称,则以下结论正确的是()①AC平分∠BAD②CA平分∠BCD③BD⊥AC④BE=DE.A.①②③④B.①②③C.①②D.④【答案】A【解析】根据轴对称的性质推出△ABC≌△ADC,推出∠BAC=∠DAC,∠BCA=∠DCA,AD=AB,根据等腰三角形性质求出BE=DE,AE⊥BD,根据以上结论判断即可.解:∵△ABC与△ADC关于对角线AC对称,∴△ABC≌△ADC,∴∠BAC=∠DAC,∠BCA=∠DCA,∴①正确;②正确;AB=AD,∴BE=DE,AE⊥BD,∴④正确;即BD⊥AC,∴③正确.故选A.点评:本题主要考查对轴对称的性质,全等三角形的性质和判定,等腰三角形的性质等知识点的理解和掌握,能推出△ABC≌△ADC是解此题的关键.16.如图,在△ABC中,AB=AC,AD是∠BAC的角平分线,AD=8cm,BC=6cm,点E、F是AD上的两点,则图中阴影部分的面积是()A.48B.24C.12D.6【答案】C【解析】根据等腰三角形性质求出BD=DC ,AD ⊥BC ,推出△CEF 和△BEF 关于直线AD 对称,得出S △BEF =S △CEF ,根据图中阴影部分的面积是S △ABC 求出即可.解:∵AB=AC ,AD 是∠BAC 的平分线,∴BD=DC=8,AD ⊥BC , ∴△ABC 关于直线AD 对称, ∴B 、C 关于直线AD 对称, ∴△CEF 和△BEF 关于直线AD 对称, ∴S △BEF =S △CEF ,∵△ABC 的面积是×BC×AD=×8×6=24,∴图中阴影部分的面积是 S △ABC =12.故选C .点评:本题主要考查对等腰三角形性质,三角形的面积,轴对称性质等知识点的理解和掌握,能求出图中阴影部分的面积是S △ABC 是解此题的关键.17. 已知等腰三角形的一个外角等于140°,则这个三角形的三个内角的度数分别是( )A .20°、20°、140°B .40°、40°、100°C .70°、70°、40°D .40°、40°、100°或70°、70°、40°【答案】D【解析】由于140°的外角不明确等腰三角形顶角和底角的外角,故应分两种情况讨论.解:(1)当40°角是顶角时,另两个底角度数为70°,70°;(2)当40°角是底角时,另两个底角度数为40°,100°.故选D .点评:本题考查了等腰三角形的性质及三角形内角和定理;等腰三角形的角度计算,要注意区别顶角,底角的不同情况,不要漏解.18. 如图,△ABC 中,D 为AB 上一点,E 为BC 上一点,且AC=CD=BD=BE ,∠A=50°,则∠CDE 的度数为( )A .50°B .51°C .51.5°D .52.5°【答案】D【解析】根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB ,∠BDE=∠BED ,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE ,根据平角的定义即可求出选项. 解:∵AC=CD=BD=BE ,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB ,∠BDE=∠BED ,∵∠B+∠DCB=∠CDA=50°, ∴∠B=25°, ∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA ﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D .点评:本题主要考查对等腰三角形的性质,三角形的内角和定理,三角形的外角性质,邻补角的定义等知识点的理解和掌握,熟练地运用这些性质进行计算是解此题的关键.19.如图,在△ABC中,AB=AC,AB的垂直平分线交BC于D,M是BC的中点,若∠BAD=30°,则图中等于30°的角的个数是()A.1个B.2个C.3个D.4个【答案】D【解析】本题先运用线段垂直平分线的性质得出∠BAD=∠ABD=∠C,又因为△ABC为等腰三角形可得AM⊥BC,然后证得△ADM∽△ACM,然后可求解.解:已知AB的垂直平分线交BC于D可得∠BAD=∠B=30°又因为△ABC为等腰三角形,所以∠BAD=∠ABD=∠CM为等腰三角形△ABC的中线,故AM⊥BC∴△ADM∽△ACM,∴∠DAM=∠C=30°.故选D.点评:本题先看清图中三角形的关系,再根据线段垂直平分线的性质以及等腰三角形中线的性质求解,难度一般.20.如图,AD=BC=BA,那么∠1与∠2之间的关系是()A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°【答案】B【解析】由已知条件可得到∠2=∠B,∠1=∠BCA,在△ABC中,由∠1+∠ACB+∠B=180°,可推出结论.解:∵AB=BC,∴∠1=∠BCA,∵AB=AD,∴∠B=∠2,∵∠1+∠B+∠ACB=180°,∴2∠1+∠2=180°.故选B.点评:本题考查了对等边对等角和三角形内角和定理的应用.。
人教版八年级数学13.3 等腰三角形培优训练一、选择题(本大题共10道小题)1. 如图,已知P A=PB,在证明∠A=∠B时,需要添加辅助线,下面有甲、乙两种辅助线的作法:甲:作底边AB的中线PC;乙:作PC平分∠APB交AB于点C.则()A.甲、乙两种作法都正确B.甲的作法正确,乙的作法不正确C.甲的作法不正确,乙的作法正确D.甲、乙两种作法都不正确2. 已知实数x、y满足|x-4|+y-8=0,则以x、y的值为两边长的等腰三角形的周长是()A. 20或16B. 20C. 16D. 以上答案均不对3. 如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A. 5B. 6C. 8D. 104. 如图,∠AOB=50°,OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,则∠MAB等于()A.50°B.40°C.25°5. 如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD6. 如图所示,△ABC是等边三角形,D为AB的中点,DE⊥AC,垂足为E. 若AE=1,则△ABC的边长为()A. 2B. 4C. 6D. 87. 如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠BCD的度数为()A.150°B.160°C.130°D.60°8. 如图,在△ABC中,∠BAC=72°,∠C=36°,∠BAC的平分线AD交BC于点D,则图中有等腰三角形()A.0个B.1个C.2个D.3个9. 如图所示的正方形网格中,网格线的交点称为格点. 已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形.....,那么符合题意的点C的个数是()A. 6B. 7C. 8D. 910. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在点O相连并可绕点O转动,点C固定,OC=CD=DE,点D,E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°二、填空题(本大题共6道小题)11. 如图,在等边三角形ABC中,点D在边AB上,点E在边AC上,将△ADE 折叠,使点A落在BC边上的点F处,则∠BDF+∠CEF=________°.12. 如图,在△ABC中,AB=AC,D是AC上一点,且BC=BD.若∠CBD=46°,则∠A=________°.13. 在△ABC中,若∠A=100°,∠B=40°,AC=5,则AB=________.14. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.15. 如图,在△ABC中,若AB=AC=8,∠A=30°,则S△ABC=________.16. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.三、解答题(本大题共4道小题)17. 如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB于点E,DF⊥AC 于点F.求证:DE=DF.18. 如图,在等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE ⊥AC交BC于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,求BF的长.19. 如图,将一张长方形的纸条ABCD沿EF折叠,若折叠后∠AGC′=48°,AD交EC′于点G.(1)求∠CEF的度数;(2)求证:△EFG是等腰三角形.20. 如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.求证:DF=2DC.人教版八年级数学13.3 等腰三角形培优训练-答案一、选择题(本大题共10道小题)1. 【答案】A2. 【答案】B【解析】∵|x -4|+y -8=0,∴x -4=0,y -8=0,解得x =4,y =8.分两种情况讨论:①当4为腰时,根据三角形三边关系知4+4=8,∴这样的等腰三角形不存在;②当8为腰时,则有4+8>8,这样能够组成等腰三角形,∴此三角形的周长是8+8+4=20.3. 【答案】C 【解析】∵AB =AC ,AD 平分∠BAC ,∴根据等腰三角形三线合一性质可知AD ⊥BC ,BD =CD ,在Rt △ABD 中,AB =5,AD =3,由勾股定理得BD =4,∴BC =2BD =8.4. 【答案】C[解析] ∵OM 平分∠AOB ,MA ⊥OA 于点A ,MB ⊥OB 于点B ,∴∠AOM =∠BOM =25°,MA =MB.∴∠OMA =∠OMB =65°.∴∠AMB =130°.∴∠MAB =12×(180°-130°)=25°.故选C.5. 【答案】D[解析] 选项A 由等角对等边可得△ABC 是等腰三角形;选项B 由所给条件可得△ADB ≌△ADC ,由全等三角形的性质可得AB =AC ;选项C 由垂直平分线的性质可得AB =AC ;选项D 不可以得到AB =AC. 6. 【答案】B7. 【答案】A[解析] ∵AB ∥ED ,∴∠E =180°-∠EAB =180°-120°=60°. 又∵AD =AE ,∴△ADE 是等边三角形.∴∠EAD =60°.∴∠BAD =∠EAB -∠EAD =120°-60°=60°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠ADC.在四边形ABCD 中,∠BCD =∠B +∠ADC =12(360°-∠BAD)=12×(360°-60°)=150°. 故选A.8. 【答案】D[解析] ∵∠BAC =72°,∠C =36°,∴∠ABC =72°.∴∠BAC =∠ABC. ∴CA =CB.∴△ABC 是等腰三角形.∵∠BAC 的平分线AD 交BC 于点D ,∴∠DAB=∠CAD=36°.∴∠CAD=∠C.∴CD=AD,∴△ACD是等腰三角形.∵∠ADB=∠CAD+∠C=72°,∴∠ADB=∠B.∴AD=AB.∴△ADB是等腰三角形.9. 【答案】C10. 【答案】D[解析] ∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC.∴∠DCE=∠O+∠ODC=2∠ODC.∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°.∵∠CDE+∠ODC=180°-∠BDE=105°,∴∠CDE=105°-∠ODC=80°.二、填空题(本大题共6道小题)11. 【答案】120[解析] 由于△ABC是等边三角形,所以∠A=60°.所以∠ADE+∠AED=120°.因为将△ADE折叠,使点A落在BC边上的点F处,所以∠ADE=∠EDF,∠AED=∠DEF.所以∠ADF+∠AEF=2(∠ADE+∠AED)=240°.所以∠BDF+∠CEF=360°-(∠ADF+∠AEF)=120°.12. 【答案】46[解析] ∵BC=BD,∠CBD=46°,∴∠C=∠BDC=12(180°-46°)=67°.∵AB=AC,∴∠ABC=∠C=67°.∴∠A=46°.13. 【答案】514. 【答案】30[解析] ∵MN∥BC,∴∠MOB=∠OBC. ∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.15. 【答案】16[解析] 如图,过点C作CD⊥AB,垂足为D,则△ADC是含30°角的直角三角形,那么DC=12AC=4,∴S△ABC=12AB·DC=12×8×4=16.16. 【答案】6[解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.三、解答题(本大题共4道小题)17. 【答案】证明:连接AD.∵AB=AC,D为BC的中点,∴AD平分∠BAC.又∵DE⊥AB,DF⊥AC,∴DE=DF.18. 【答案】解:(1)证明:如图,过点D作DM∥AB,交CF于点M,则∠MDF=∠E.∵△ABC是等边三角形,∴∠CAB=∠CBA=∠C=60°.∵DM∥AB,∴∠CDM=∠CAB=60°,∠CMD=∠CBA=60°.∴△CDM是等边三角形.∴CM=CD=DM.在△DMF 和△EBF 中,⎩⎨⎧∠MDF =∠E ,DF =EF ,∠DFM =∠EFB ,∴△DMF ≌△EBF(ASA).∴DM =BE. ∴CD =BE.(2)∵ED ⊥AC ,∠CAB =∠CBA =60°, ∴∠E =∠FDM =30°. ∴∠BFE =∠DFM =30°. ∴BE =BF ,DM =MF.∵△DMF ≌△EBF ,∴MF =BF. ∴CM =MF =BF.又∵BC =AB =12,∴BF =13BC =4.19. 【答案】解:(1)∵四边形ABCD 是长方形, ∴AD ∥BC.∴∠BEG =∠AGC′=48°. 由折叠的性质得∠CEF =∠C′EF , ∴∠CEF =12(180°-48°)=66°. (2)证明:∵四边形ABCD 是长方形, ∴AD ∥BC.∴∠GFE =∠CEF. 由折叠的性质得∠CEF =∠C′EF , ∴∠GFE =∠C′EF.∴GE =GF ,即△EFG 是等腰三角形.20. 【答案】证明:∵△ABC 是等边三角形, ∴∠A =∠B =∠ACB =60°. ∵DE ∥AB ,∴∠EDC =∠B =60°,∠DEC =∠A =60°. ∵EF ⊥DE ,∴∠DEF =90°. ∴∠F =90°-∠EDC =30°.∵∠ACB=∠EDC=∠DEC=60°,∴△EDC是等边三角形.∴DE=DC. ∵∠DEF=90°,∠F=30°,∴DF=2DE=2DC.。
等腰三角形专题练习题等腰三角形是一种特殊的三角形,它具有一般三角形的性质,同时,还具有自身的特殊性,这些特殊性使它比一般三角形应用更加广泛.等腰三角形的性质和判定为证明两个角相等和两条线段相等提供了依据.等腰三角形是轴对称图形,底边上的高所在直线是它的对称轴,对于某些含有(或隐含)等腰三角形条件的问题,可以作等腰三角形底边上的高或构建等腰三角形、等边三角形找到解决问题的途径.例1如图1-1,△ABC中,AB=BC,M、N为BC边上两点,且∠BAM=∠CAN,MN=AN,求∠MAC的度数.练习11.如图1-2,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于().A.7.5° B.10° C.12.5° D.18°1-22.如图1-3,AA′、BB′分别是△ABC的外角∠EAB和∠CBD的平分线,且AA′=AB=B′B,A′、B、C在一直线上,则∠ACB的度数是多少?1-33.如图1-4,等腰三角形ABC中,AB=BC,∠A=20°.D是AB边上的点,且AD=BC,•连结CD,则∠BDC=________.1-4例2 如图1-5,D是等边三角形ABC的AB边延长线上一点,BD•的垂直平分线HE•交AC延长线于点E,那么CE与AD相等吗?试说明理由.练习21.已知如图1-6,在△ABC中,AB=CD,D是AB上一点,DE⊥BC,E为垂足,ED•的延长线交CA的延长线于点F,判断AD与AF相等吗?1-6 1-7 1-82.如图1-7,△ABC是等腰直角三角形,∠BAC=90°,点D是△ABC内一点,且∠DAC=∠DCA=15°,则BD与BA的大小关系是()A.BD>BA B.BD<BA C.BD=BA D.无法确定3.已知:如图1-8,在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=•AC,•延长BE交AC于F,AF与EF相等吗?为什么?例3已知:如图1-9,△ABD和△BEC均为等边三角形,M、N分别为AE和DC•的中点,那么△BMN是等边三角形吗?说明理由.练习31.已知:如图1-10,在等边三角形ABC中,BD=CE=AF,AD与BE交于G,BE与CF•交于H,CF与AD交于K,试判断△GHK的形状.1-102.已知:如图1-11,△ABC是等边三角形,E是AC延长线上的任意一点,选择一点D,•使△CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,那么△CMN•是等边三角形吗?为什么?1-113.已知:如图1-12,等边三角形ABC,在AB上取点D,在AC上取点E,使AD=AE,作等边三角形PCD、QAE和RAB,则以P、Q、R为顶点的三角形是等边三角形,请说明理由.1-12例4已知:如图1-13,等腰△ABC中,AB=AC,∠A=100°,∠ABC的平分线交AC于E,试比较AE+BE与BC的大小?练习41.如图1-14,在△ABC中,AB=AC,P为底边BC上的一点,PD⊥AB于D,PE⊥AC于E,•CF⊥AB于F,那么PD+PE与CF相等吗?1-142.已知:如图1-15,△ABC和△ADE都是等边三角形.B、C、D在一条直线上,•说明CE与AC+CD相等的理由.1-153.已知:如图1-16,△ABC是等边三角形,延长AC到D,•以BD•为一边作等边三角形BDE,连结AE,则AD_______AE+AB.(填“>”或“=”或“<”)1-16例5已知:如图1-17,△ABC中,AB=AC,CE是AB边上的中线,延长AB到D,使BD=AB,那么CE是CD的几分之几?练习51.如图1-18,D、E分别是等边三角形ABC两边BC、AC上的点,且AE=CD,连结BE、•AD交于点P.过B作BQ⊥AD于Q,请说明BP是PQ的2倍.2.如图1-19,在△ABC中,∠BAC=90°,AB=AC,BE平分∠ABC,CE⊥BE,那么CE•是BD的几分之几?1-193.已知:如图1-20,在△ABC中,AB=AC,AD和BE是高,它们相交于H,且AE=BE,•那么AH是BD的________倍.1-20答案:例1分析AB=AC,MN=AN可知△ABC和△AMN均为等腰三角形,充分利用等腰三角形的性质寻找所求角间的关系.解:设∠BAM=∠CAN=α,∠AMN=β,1-1∵MN=AN , ∴∠AMN=∠MAN=β. 设∠ABC=γ, 在△ABC 中, ∠ABC+∠BCA+∠CAB=180°,由于∠BCA=∠CAB=2α+β, ∴4α+2β+γ=180°. 在△ABM 中,β=α+γ,∴4α+2β+(β-α)=180°. 即3(α+β)=180°. ∴α+β=60°,故∠MAC=60°.例2 分析 要说明似乎没有任何关系的两条线段相等,往往需要做一些工作,如添加辅助线,构造全等三角形等,从而达到解决问题的目的. 解:延长AD 到F ,使AF=EF , ∵△ABC 是等边三角形, ∴AB=AC ,∠A=60°. ∴△AEF 是等边三角形. ∴EA=EF ,∠AEF=∠A=60°. 又∵EH 垂直平分BD , ∴EB=ED ,∠EBD=∠EDB . ∴△EAD ≌△EFB . ∴AD=BF .又∵BF=AF-AB=AE-AC=CE , ∴AD=CE .例3 分析 要说明一个三角形是等边三角形,•只要能够证明这个三角形满足“三条边相等或三个角相等或一个角是60°的等腰三角形”即可.本题只需利用三角形全等证得BM=BN ,且∠MBN=60°即可. 解:在△ABE 和△DBC 中,∵∠ABE=60°+∠DBE ,∠DBC=60°+∠DBE , ∴∠ABE=∠DBC . ∵AB=BD ,BE=EC . ∴△ABE ≌△DBC . ∴AE=DC ,∠MEB=∠NCB .又∵M 、N 分别是AE 和DC 的中点, ∴ME=NC ,又△BEC 为等边三角形, ∴BE=BC .∴△MBE ≌△NBC ,BM=BN .∴∠MBN=∠MBE-∠NBE=∠NBC-∠NBE=60°.1-51-9∴△BMN 为等边三角形.例4 分析 说明一条线段的长是否等于其他两条线段长的和,•常常采用截取等长线段的方法,将那些本来没有关系的线段放在条线段上,这样可迎刃而解. 解:在BC 上截取BF=BE ,BD=BA ,连结FE 、DE ,∵AB=AC ,∠A=100°,∴∠ABC=∠C=40°,又BE 平分∠ABC , ∴∠1=∠2=12∠ABC=20°. ∵BF=BE ,∴∠BEF=∠5=80°. 在△BAE 和△BDE 中, BA=BD ,∠1=∠2,BE=BE . ∴△BAE ≌△BDE . ∴AE=DE ,∠3=∠A=100°. ∴∠4=180°-∠3=180°, ∴∠4=∠5,DE=FE ,AE=FE . 又∠6=∠5-∠C=80°-40°=40°, ∴∠6=∠C ,∴FE=FC .故AE+BE=FC+BF=BC .例5 分析 延长线段到倍长,再证明三角形全等,往往是说明线段倍分关系的重要途径和必要手段.解:延长CE 到F ,使EF=CE ,连结BF ,CE 是AB 的中线,∴AE=EB . 又∠FEB=∠AEC ,∴△EBF ≌△EAC ,∴∠EBF=∠A . BF=AC=BD .在△FBC 和△DBC 中, FB=BD ,BC=BC .∴∠FBC=∠FBE+∠EBC . =∠A+∠ACB . ∠DBC=∠A+∠ACB .∴∠FBC=∠DBC . ∴△BCF ≌△BCD .∴CF=CD=2CE ,故CE=12CD .练习11.解:设∠DEC=x , ∵AD=AE , ∴∠ADE=∠AED .∴x=∠AEC-∠ADE=(∠B+30°)-∠ADE=(∠B+30°)-(∠C+x )1-131-17∵AB=AC,∴∠B=∠C∴2x=30°,x=15°,故选C.2.解:∵AB=BB′,∴∠BAB′=∠BB′A,∠B′BD=∠BAB′+∠BB′A=2∠BAB′.又∠CBB′=∠DBB′,∴∠ACB=∠CBB′+∠CB′B=3∠CAB.设∠CAB=x,∴∠ACB=3x,∠CBD=4x,又AA′=AB,∴∠A′=∠ABA′=∠CBD=4x.∵AA′平分∠EAB.∴∠A′AB=12(180°-x).又∠A′AB=180°-(∠A′+∠ABA′)=180°-8x∴12(180°-x)=180°-8x.∴x=12°,故∠ACB=36°.3.解:如图,作△AED≌△BAC,连结EC.则∠AED=∠BAC=20°,∠DAE=∠ADE=∠B=∠ACB=80°.∴∠CAE=∠DAE-∠BAC=80°-20°=60°.又∵AB=AE=AC,∴△ACE是正三角形,AE=EC=ED.∴∠DEC=∠AEC-∠AED=40°.∴∠EDC=12(180°-∠DEC)=70°.∴∠BDC=180°-(∠ADE+∠EDC)=30°.练习21.解:∵AB=AC,∴∠B=∠C.∵DE⊥BC,∴∠DEB=∠FEC=90°.在Rt△DEB与Rt△FEC中,∵∠B=∠C,∴∠BDE=∠F.∵∠FDA=∠BDE,∴∠FDA=∠F,故AD=AF.2.解:以AD为边在△ADB内作等边△ADE,连结BE.则∠1=∠2=∠3=60°.∴AE=ED=AD.∵∠DAC=15°,∴∠EAB=90°-∠1-∠DAC=15°.∴∠DAC=∠EAB.又∵DA=AE,AB=AC,∴△EAB≌△DAC.∴∠EBA=∠DCA=15°.∴∠BEA=180°-∠EBA-∠EAB=150°.∵∠BED=360°-∠BEA-∠AED=150°.∴∠BEA=∠BED.又∵EB=EB,AE=ED.∴△BEA≌△BED,∴BD=BA.故选择C.3.解:延长AD到G,使DG=AD,连结BG,∵BD=DC,∠BDG=∠CDA,AD=DG,∴△ADC≌△BDE.∴AC=BG,∠G=∠EAF,又∵BE=AC,∴BE=BG.∴∠G=∠BED,而∠BED=∠AEF,∴∠AEF=∠AFE,故FA=FE.练习31.解:∵△ABC是等边三角形,∴AB=BC=CA∠ABC=∠ACB=∠BAC=60°.又∵BD=AF=CE,∴△ABD≌△BCE≌△CAF.∴∠1=∠2=∠3.∴∠BAC-∠1=∠ABC-∠2=∠ACB-∠3.即∠CAK=∠ABG=∠BCH.又∵AB=BC=CA,∴△ABG≌△BCH≌△CAK.∴∠AGB=∠BHC=∠CKA.即∠KGH=∠GHK=∠GKH.故△GKH是等边三角形.2.解:由于△ABC与△CDE均为等边三角形,A、C、E三点共线,得知:CA=CB,CD=CE,∠ACD=∠BCE,故△ACD≌△BCE.∴∠ADC=∠BEC,AD=BE.又DM=12AD,EN=12BE,∴△DCM≌△ECN.∴∠DCM=∠ECN,CM=CN.又∠ECN+∠NCD=∠ECD=60°,∴∠NCM=∠MCD+∠NCD=60°.∴△CMN是等边三角形.3.解:连结BP.∵△ABC与△CDP均为等边三角形,∴AC=BC,CD=CP,∠ACB=∠DCP=60°.∴∠1=∠2,∴△ADC≌△BPC.∴∠CBP=∠DAC=60°.∵∠RBP=∠RBA+∠ABC+∠CBP=60°+60°+60°=180°,∴R、B、P三点共线.又∵∠RAQ=∠RAB+∠BAC+∠CAQ=60°+60°+60°=180°,∴R、A、Q三点共线.而AQ=AE=AD=BP,∴RQ=RA+AQ=RB+BP=RP.又∠R=60°,∴△PQR是等边三角形.故以P、Q、R为顶点的三角形是等边三角形.练习41.解:∵S△ACB=S△APB+S△APC,即12AB·CF=12AB·PD+12AB·PE.∴CF=PD+PE.2.解:∵AC=AB,∠CAE=∠BAD,AE=AD,∴△AEC≌△ADB.∴CE=BD.又∵BD=BC+CD=AC+CD.∴CE=AC+CD.3.解:∵△ABC和△BDE均为等边三角形.∴∠ABE=60°-∠EBC=∠CBD,AB=BC,BE=BD.∴△ABE≌△CBD.∴AE=CD.又∵AB=AC,∴AD=AC+CD=AB+AE.练习51.解:∵∠CAB=∠C=60°,AE=CD,AB=AC,∴△ADC≌△BEA,∴∠CAD=∠EBA.又∠BPQ=∠PAB+∠PBA=∠PAB+∠CAD=60°,∴在Rt△PQB中,∠PBQ=30°,∴BP=2PQ.2.解:延长CE交BA的延长线于F,∵∠1=∠2,∠BEC=∠BEF=90°,BE=BE,∴△BEC≌△BEF.∴BC=BF,CE=EF,∴CE=12 CF.又∵∠2+∠3=90°,∠4+∠5=90°,∠3=∠4,∴∠2=∠5,且AB=AC.∴Rt△AFC≌Rt△ADB.∴CF=BD.故CE=12 BD.3.解:∵AB=AC,AD⊥BC,∴BD=DC,∠DAC+∠C=90°.又∵BE⊥AC,∴∠EBC+∠C=90°.∴∠DAC=∠EBC.在△AEH和△BEC中,∵∠DAC=∠EBC,AE=BE.∠AEH=∠BEC=90°,∴△AEH≌△BEC,∴AH=BC.又BC=2BD,故AH=2BD.。
等腰三角形 (巩固练习)姓名 班级第一部分1、在等腰三角形中,已知有两边长为2和6,则此等腰三角形的周长是 .2、一个等腰三角形的周长为14 cm,,且一边长为4 cm,,则它的腰长为 .3、如图,已知AC 平分∠BAD,CD ⊥AD 于D,CB ⊥AB 于B.请找出图中的等腰三角形,并说明理由.4、如图3,在△ABC 中,CD 与BE 分别是AB,AC 边上的高,且CD=BE.试判断△ABC 的形状,并说明理由.5、如图4,AD 是等腰三角形ABC 的顶角的平分线,点E,F 分别在AB,AC 上,且它们关于AF 对称,则BE=CF.请说明理由.6、如图5, BD 是等腰三角形ABC 的顶角平分线,点E,F 分别在AB,AC 上,请分别作出E,F 关于直线BD 的对称点.图2图4 DFCBA图5图3第二部分1.如图1,点D 是△ABC 的边BC 上一点,且AB=AC,BD=AD,则图中有 个等腰三角形.2.如图1,等腰三角形ABD 的顶角是 ,底边是 .3. 在△MNP 中, 若MN=NP,则此等腰三角形的两个底角是: .4.等腰三角形有两边长分别为1cm,2cm,则它的腰长是 . .5.如果等腰三角形的两边长分别为4和7,则三角形的周长为 .6.下列说法:①等腰三角形是轴对称图形;②等腰三角形的对称轴是顶角的平分线;③等腰三角形的对称轴是顶角平分线所在的直线;④等腰三角形的对称轴有三条. 其中正确的说法有 .(填序号)7. 等腰三角形的底边长是8, 则它的腰的取值范围是 .解析:根据”三角形两边之和大于第三边”, 若设腰长为x, 则2x>8, ∴x>4.8. 已知:线段m 、n.用尺规作出一个等腰三角形,使它的底等于m, 腰等于n (保留作图痕迹,不写作法、不证明)9.如图7, ∠A=∠D,∠1=∠2,E 是AD 的中点.则△EBC 是等腰三角形吗?请说明理由.图7nm 图1参考答案第一部分5、如图4,AD是等腰三角形ABC的顶角的平分线,点E,F分别在AB,AC上,且它们关于AF 对称,则BE=CF.请说明理由.【解】∵AD是等腰三角形ABC的顶角的平分线,∴直线AD是等腰三角形ABC的对称轴.∵B,C 和E,F 是两对对称点,当将图形沿AD 对折时,点B 与点C 重合,点E 与点F 重合, ∴线段BE 与线段CF 重合, ∴BE=CF.6、如图5, BD 是等腰三角形ABC 的顶角平分线,点E,F 分别在AB,AC 上,请分别作出E,F 关于直线BD 的对称点.【解】∵BD 是等腰三角形ABC 的顶角平分线, ∴直线BD 是等腰三角形ABC 的对称轴.∴当把图形沿直线BD 对折时, AD 与DC, BA 与BC 重合, ∴E 的对称点E 1在BC 上, 且BE 1=BE, F 的对称点F 1在AD 上, 且DF 1=DF.如图, 点E 1, F 1分别是E, F 关于直线BD 的对称点.第二部分1.如图1,点D 是△ABC 的边BC 上一点,且AB=AC,BD=AD,则图中有 个等腰三角形.答案:22.如图1,等腰三角形ABD 的顶角是 ,底边是 .答案:∠ABD AB3. 在△MNP 中, 若MN=NP,则此等腰三角形的两个底角是: .答案:∠NMP ∠NPM4.等腰三角形有两边长分别为1cm,2cm,则它的腰长是 . .答案:2cm解析:若AB 为底,则由AB 的长是BC 的2倍可知,两腰之和等于底边,此时三角形不存在;故AB 为腰. ∵AB+BC+AC=40, ∴5BC=40,则BC=8,AB=2BC=16.答案:B5.如果等腰三角形的两边长分别为4和7,则三角形的周长为 .解析:当腰长为7时三角形才存在, 则周长为7+7+4=18. 答案:186.下列说法:①等腰三角形是轴对称图形;②等腰三角形的对称轴是顶角的平分线;③等腰DFF 1E 1CB A图1DFCA图5三角形的对称轴是顶角平分线所在的直线;④等腰三角形的对称轴有三条. 其中正确的说法有 .(填序号)解析:轴对称图形的对称轴是一条直线,故②错误. 一般的等腰三角形的对称轴只有一条,故④错误.答案:①③7. 等腰三角形的底边长是8, 则它的腰的取值范围是.解析:根据”三角形两边之和大于第三边”, 若设腰长为x, 则2x>8, ∴x>4.答案:x>4.8. 已知:线段m、n.用尺规作出一个等腰三角形,使它的底等于m, 腰等于n (保留作图痕迹,不写作法、不证明)解:△ABC就是所求的等腰腰三角形.9.如图7, ∠A=∠D,∠1=∠2,E是AD的中点.则△EBC是等腰三角形吗?请说明理由.分析:根据已知条件,可得△ABE≌△CDE(ASA),则EB=EC.解:∵E是AD的中点, ∴AE=DE.∵∠A=∠D,∠1=∠2, ∴△ABE≌△CDE(ASA). ∴EB=EC, ∴△EBC是等腰三角形图7nmCBA。
第十三讲 等腰三角形和直角三角形趣题引路】2001年山东聊城中考有一道题:如图13-1,AOB 是一个钢架,且∠AOB =10°,为使钢架更加坚固,需在其内部添加一些钢管EF 、FG 、GH 、……,添加的钢管长度都与OE 相等,则最多能添加这样的钢管多少根?O图13-1ABE G HM此问题实际上是问能组成多少个等腰三角形,注意到每添一根,所得的等腰三角形的顶角的外角就增大10°,而极限值为90°,故最多添8根.本节我们研究等腰三角形和直角三角形的性质及应用.知识拓展】等腰三角形和直角三角形都是特殊三角形,因此它们在具有一般三角形性质的同时还具有一般三角形不具备的性质,这些特性在几何证明中有着重要的应用价值.两者也是研究其他三角形和多边形的基础。
1.等腰三角形的性质:底角相等;顶角的平分线、底边上的高、底边上的中线三线合一;是以顶角平分线所在的直线为对称轴的轴对称图形;2.等边三角形具有等腰三角形的一切性质,且每个角为60°;3.直角三角形的性质:两个锐角互余;斜边大于直角边;两条直角边的平方和等于斜边的平方,斜边上的中线等于斜边的一半;如果有一个锐角是30°,那么它所对的直角边等于斜边的一半.方法上,构造等腰三角形或直角三角形是常见的解题策略之一;利用勾股定理,列方程求线段长更体现了方程的思想。
一、等腰三角形的性质例1】 有多少个边长为整数且周长为2004的等腰三角形?解析】 利用周长可得腰底间等量关系,利用三角形三边之间的关系,可找到腰底间不等关系,从而确定腰(或底)的范围。
解:设腰长为x ,底长为y ,则有220042x y x y +=⎧⎨>⎩由此得2x <2004<4x , ∴501<x <1002, ∵x 为整数.∴x =502,503…1001,满足条件的等腰三角形有1001-501=500个.点评】 相等关系、不等关系可以互相转化,注意挖据题中隐藏条件:两腰之和大于底边.例2】(扬州市竞赛题)如图13-2,在△ABC 中,已知AB =AC ,且过△ABC 某一顶点的直线可将△ABC 分成两个等腰三角形,试求△ABC 各内角的度数.图13-2GCBAFCBAE CB AAD解析】 因为等腰三角形有腰底之分,所以许多问题的答案都有多种情形.这里符合题意的图形有如图13-2所示4种情况。
9、等腰三角形【知识精读】(-)等腰三角形的性质1. 有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;2. 定理及其推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。
等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。
(二)等腰三角形的判定1. 有关的定理及其推论定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
2. 定理及其推论的作用。
等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。
3. 等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。
【分类解析】例1. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。
求证:M 是BE 的中点。
E分析:欲证M 是BE 的中点,已知DM ⊥BC ,所以想到连结BD ,证BD =ED 。
因为△ABC 是等边三角形,∠DBE =21∠ABC ,而由CE =CD ,又可证∠E =21∠ACB ,所以∠1=∠E ,从而问题得证。
证明:因为三角形ABC 是等边三角形,D 是AC 的中点所以∠1=21∠ABC 又因为CE =CD ,所以∠CDE =∠E 所以∠ACB =2∠E 即∠1=∠E所以BD =BE ,又DM ⊥BC ,垂足为M所以M 是BE 的中点 (等腰三角形三线合一定理)例2. 如图,已知:AB C ∆中,AC AB =,D 是BC 上一点,且CA DC DB AD ==,,求BAC ∠的度数。
ABCD分析:题中所要求的BAC ∠在AB C ∆中,但仅靠AC AB =是无法求出来的。
因此需要考虑DB A D =和CA DC =在题目中的作用。
此时图形中三个等腰三角形,构成了内外角的关系。
因此可利用等腰三角形的性质和三角形的内外角关系定理来求。
解:因为AC AB =,所以C B ∠=∠ 因为DB A D =,所以C DAB B ∠=∠=∠;因为CD CA =,所以CDA CAD ∠=∠(等边对等角) 而 DAB B ADC ∠+∠=∠ 所以B DAC B ADC ∠=∠∠=∠22, 所以B 3B AC ∠=∠又因为180=∠+∠+∠BAC C B即180B 3C B =∠+∠+∠ 所以36B =∠即求得108BAC =∠说明1. 等腰三角形的性质是沟通本题中角之间关系的重要桥梁。
把边的关系转化成角的关系是此等腰三角形性质的本质所在。
本条性质在解题中发挥着重要的作用,这一点在后边的解题中将进一步体现。
2. 注意“等边对等角”是对同一个三角形而言的。
3. 此题是利用方程思想解几何计算题,而边证边算又是解决这类题目的常用方法。
例3. 已知:如图,AB C ∆中,AB CD AC AB ⊥=,于D 。
求证:DCB 2B AC ∠=∠。
C分析:欲证角之间的倍半关系,结合题意,观察图形,BAC ∠是等腰三角形的顶角,于是想到构造它的一半,再证与DCB ∠的关系。
证明:过点A 作B C AE ⊥于E ,AC AB = 所以BAC 2121∠=∠=∠(等腰三角形的三线合一性质) 因为90B 1=∠+∠又AB CD ⊥,所以90CDB =∠所以90B 3=∠+∠(直角三角形两锐角互余) 所以31∠=∠(同角的余角相等) 即DCB 2B AC ∠=∠ 说明:1. 作等腰三角形底边高线的目的是利用等腰三角形的三线合一性质,构造角的倍半关系。
因此添加底边的高是一条常用的辅助线;2. 对线段之间的倍半关系,常采用“截长补短”或“倍长中线”等辅助线的添加方法,对角间的倍半关系也同理,或构造“半”,或构造“倍”。
因此,本题还可以有其它的证法,如构造出DCB ∠的等角等。
4、中考题型:1.如图,△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别为∠ABC 与∠ACB 的角平分线,且相交于点F ,则图中的等腰三角形有( ) A. 6个 B. 7个 C. 8个 D. 9个A 36° E DFB分析:由已知条件根据等腰三角形的性质和三角形内角和的度数可求得等腰三角形有8个,故选择C 。
2.)已知:如图,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,E 、F 分别是垂足。
求证:AE =AF 。
AE FBDC证明:因为AC AB =,所以C B ∠=∠ 又因为AC DF AB DE ⊥⊥, 所以90CFD BED =∠=∠又D 是BC 的中点,所以DC DB = 所以)AAS (CFD DEB ∆∆≅ 所以CF B E =,所以A F A E =说明:证法二:连结AD ,通过≅∆A ED A FD ∆证明即可5、题形展示:例1. 如图,AB C ∆中,100=∠=A AC AB ,,BD 平分ABC ∠。
求证:B C B D AD =+。
分析一:从要证明的结论出发,在BC 上截取B D B F =,只需证明AD CF =,考虑到21∠=∠,想到在BC 上截取B A B E =,连结DE ,易得,则有FD A D =,只需证明CF DE =,这就要从条件出发,通过角度计算可以得出DE DF CF ==。
证明一:在BC 上截取B D B F B A B E ==,,连结DE 、DF 在AB D ∆和EB D ∆中,B D B D 21B E B A =∠=∠=,,80DEF 100A BED DE AD )SAS (EBD ABD =∠∴=∠=∠=∴∆≅∆∴,又100A AC AB =∠=, 40)100180(21C ABC =-=∠=∠∴ 20402121=⨯=∠=∠∴ 而B F B D = 80)20180(21)2180(21BDF BFD =-=∠-=∠=∠∴ADBD FC BF BC FCDF DE AD FC DF C FDC 404080C DFE FDC 40C 80DFE DFDE 80DFE DEF +=+=∴===∴=∴∠=∠∴=-=∠-∠=∠∴=∠=∠∴=∴=∠=∠∴,即B C B D AD =+分析二:如图,可以考虑延长BD 到E ,使DE =AD ,这样BD +AD=BD+DE=BE ,只需证明BE =BC ,由于202=∠,只需证明80BCE E =∠=∠EFC易证6020100180ADB EDC =--=∠=∠,120BDC =∠,故作BDC ∠的角平分线,则有FB D A B D ∆≅∆,进而证明DFC DEC ∆≅∆,从而可证出80E =∠。
证明二:延长BD 到E ,使DE =AD ,连结CE ,作DF 平分BDC ∠交BC 于F 。
由证明一知:100A 2021=∠=∠=∠,则有12060180BDC 603660201001803=-=∠=∠=∠=--=∠,, DF 平分 6054BDC=∠=∠∴∠606543=∠=∠=∠=∠∴,在AB D ∆和FB D ∆中 43B D B D 21∠=∠=∠=∠,, )ASA (FBD ABD ∆≅∆∴100A BFD FD AD =∠=∠=∴,,而DE DF DE AD =∴=, 在DEC ∆和DFC ∆中,DC DC 65DF DE =∠=∠=,, )SAS (DFC DEC ∆≅∆∴80100180BFD 180DFC E =-=∠-=∠=∠∴ 在B CE ∆中,803202=∠=∠,BCE E BCE ∠=∠∴=∠∴,80 B C B D AD B E B C =+∴=∴,说明:“一题多证”在几何证明中经常遇到,它是培养思维能力提高解题水平的有效途径,读者在以后的几何学习中要善于从不同角度去思考、去体会,进一步提高自身的解题能力。
【实战模拟】1. 选择题:等腰三角形底边长为5cm ,一腰上的中线把其周长分为两部分的差为3cm ,则腰长为( ) A. 2cmB. 8cmC. 2cm 或8cmD. 以上都不对2. 如图,AB C ∆是等边三角形,BC BD 90CBD ==∠,,则1∠的度数是________。
CA 1DB2 33. 求证:等腰三角形两腰中线的交点在底边的垂直平分线上.4. AB C ∆中,120A AC AB =∠=,,AB 的中垂线交AB 于D ,交CA 延长线于E ,求证:BC 21DE =。
AE DO1 2B C【试题答案】1. B2. 分析:结合三角形内角和定理,计算图形中角的度数是等边三角形性质的重要应用。
解:因为AB C ∆是等边三角形 所以60ABC BC AB =∠=, 因为B C B D =,所以B D A B = 所以23∠=∠在AB D ∆中,因为60ABC 90CBD =∠=∠,所以 150ABD =∠,所以152=∠ 所以75ABC 21=∠+∠=∠3. 分析:首先将文字语言翻译成数学的符号语言和图形语言。
已知:如图,在AB C ∆中,AC AB =,D 、E 分别为AC 、AB 边中点,BD 、CE 交于O 点。
求证:点O 在BC 的垂直平分线上。
分析:欲证本题结论,实际上就是证明OC OB =。
而OB 、OC 在AB C ∆中,于是想到利用等腰三角形的判定角等,那么问题就转化为证含有21∠∠、的两个三角形全等。
证明:因为在AB C ∆中,AC AB = 所以ACB AB C ∠=∠(等边对等角)又因为D 、E 分别为AC 、AB 的中点,所以EB DC =(中线定义) 在BCD ∆和 CB E ∆中,⎪⎩⎪⎨⎧=∠=∠=)(CB BC )(EBC DCB )(EB DC 公共边已证已证所以)SAS (CBE BCD ∆≅∆所以21∠=∠(全等三角形对应角相等)。