射频的概念
- 格式:doc
- 大小:62.50 KB
- 文档页数:10
射频发射和接收原理射频发射和接收是无线电通信中必不可少的环节,其设计和实现的关键在于理解射频信号的产生和组成以及传输和接受。
在现代通信中,射频信号可以是数字或模拟信号,其传输媒介可以是无线或有线媒介。
本文将介绍射频发射和接收原理的基本概念、组成和执行方式。
射频信号是指频率在无线电波段内的电磁波,这些信号可以轻松地穿过不同材料和物体,像建筑物和薄膜层。
射频信号进入要通信的电设备以后,需要转换成数字信号,以方便人类的理解和处理。
射频发射系统射频发射系统(RF transmitter system)的主要组成部分包括振荡器、调制器和功率放大器。
振荡器:振荡器(oscillator)是发射机中的基本发生器,用于产生射频信号。
振荡器的输入由基准信号源提供,其输出的频率和相位可以通过调整物理器件的参数来实现,例如电容、电感、晶体管和螺旋通道。
一种重要的振荡器类型是谐振振荡器,该振荡器利用固定电感和电容构成的基本谐振电路,以产生稳定的信号。
调制器:调制器(modulator)将声音信号或其他信息信号转换成射频信号的调制信号。
常用的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)。
调制过程是通过改变载波信号的某些特性,例如振幅、频率或相位,来携带原始信号信息。
功率放大器:功率放大器(power amplifier)用于加强射频信号,使其能够克服传输距离的损耗和传输介质的噪音。
典型的功率放大器包括二极管放大器、场效应管放大器和恒温极端放大器。
功率放大器还可以在信号输出之前进行滤波,以去除截止频带外的噪音。
天线:天线(antenna)用于接收到达的射频信号,并将其传输到接收器中。
天线的类型和特性取决于其使用情况和工作频率。
典型的天线类型包括全向天线、末级直线天线、方向图可变天线和结构化广播天线。
射频前置放大器:射频前置放大器(RF Pre-Amplifier)主要用于增强输入信号,并提高系统灵敏度。
通常,在混频器之前的信号源之后添加一个RF前置放大器。
射频基础知识第⼀部分射频基础知识⽬录第⼀章与移动通信相关的射频知识简介 (1)1.1 何谓射频 (1)1.1.1长线和分布参数的概念 (1)1.1.2射频传输线终端短路 (3)1.1.3射频传输线终端开路 (4)1.1.4射频传输线终端完全匹配 (4)1.1.5射频传输线终端不完全匹配 (5)1.1.6电压驻波分布 (5)1.1.7射频各种馈线 (6)1.1.8从低频的集中参数的谐振回路向射频圆柱形谐振腔过渡 (9) 1.2 ⽆线电频段和波段命名 (9)1.3 移动通信系统使⽤频段 (9)1.4 第⼀代移动通信系统及其主要特点 (12)1.5 第⼆代移动通信系统及其主要特点 (12)1.6 第三代移动通信系统及其主要特点 (12)1.7 何谓“双⼯”⽅式?何谓“多址”⽅式 (12)1.8 发信功率及其单位换算 (13)1.9 接收机的热噪声功率电平 (13)1.10 接收机底噪及接收灵敏度 (13)1.11 电场强度、电压及功率电平的换算 (14)1.12 G⽹的全速率和半速率信道 (14)1.13 G⽹设计中选⽤哪个信道的发射功率作为参考功率 (15) 1.14 G⽹的传输时延,时间提前量和最⼤⼩区半径的限制 (15) 1.15 GPRS的基本概念 (15)1.16 EDGE的基本概念 (16)第⼆章天线 (16)2.1天线概述 (16)2.1.1天线 (16)2.1.2天线的起源和发展 (17)2.1.3天线在移动通信中的应⽤ (17)2.1.4⽆线电波 (17)2.1.5 ⽆线电波的频率与波长 (17)2.1.6偶极⼦ (18)2.1.7频率范围 (19)2.1.8天线如何控制⽆线辐射能量⾛向 (19)2.2天线的基本特性 (21)2.2.1增益 (21)2.2.2波瓣宽度 (22)2.2.3下倾⾓ (23)2.2.4前后⽐ (24)2.2.5阻抗 (24)2.2.6回波损耗 (25)2.2.7隔离度 (27)2.2.8极化 (29)2.2.9交调 (31)2.2.10天线参数在⽆线组⽹中的作⽤ (31)2.2.11通信⽅程式 (32)2.3.⽹络优化中天线 (33)2.3.1⽹络优化中天线的作⽤ (33)2.3.2天线分集技术 (34)2.3.3遥控电调电下倾天线 (1)第三章电波传播 (3)3.1 陆地移动通信中⽆线电波传播的主要特点 (3)3.2 快衰落遵循什么分布规律,基本特征和克服⽅法 (4)3.3 慢衰落遵循什么分布规律,基本特征及对⼯程设计参数的影响 (4) 3.4 什么是⾃由空间的传播模式 (5)3.5 2G系统的宏⼩区传播模式 (5)3.6 3G系统的宏⼩区传播模式 (6)3.7 微⼩区传播模式 (6)3.8 室内传播模式 (9)3.9 接收灵敏度、最低功率电平和⽆线覆盖区位置百分⽐的关系 (10) 3.10 全链路平衡和最⼤允许路径损耗 (11)第四章电磁⼲扰 (12)4.1 电磁兼容(EMC)与电磁⼲扰(EMI) (12)4.2 同频⼲扰和同频⼲扰保护⽐ (13)4.3 邻道⼲扰和邻道选择性 (14)4.4 发信机的(三阶)互调⼲扰辐射 (15)4.5 收信机的互调⼲扰响应 (15)4.6 收信机的杂散响应和强⼲扰阻塞 (15)4.7 dBc与dBm (16)4.8 宽带噪声电平及归⼀化噪声功率电平 (16)4.9 关于噪声增量和系统容量 (17)4.10 直放站对基站的噪声增量 (17)4.11 IS-95 CDMA 对 GSM 基站的⼲扰 (19)4.12 G⽹与PHS⽹的相互⼲扰 (20)4.13 3G系统电磁⼲扰 (22)4.14 PHS系统与3G系统之间的互⼲扰 (24)4.15 GSM系统与3G系统之间的互⼲扰 (25)第五章室内覆盖交流问题应答 (12)5.1、⽬前GSM室内覆盖⽆线直放站作信源站点数量达60%,WCDMA的建设中,此类站点太多将导致⽹络上⾏噪声被直放站抬⾼,请问怎么考虑?5.2、⾼层窗边的室内覆盖信号场强难以做到主导,⽽室内窗边将是数据业务需求的⾼发区域,室内窗边的⾼速速率如何保证?5.3、有⼚家建议室内覆盖不⽤⼲放,全⽤⽆源覆盖分布,我们如何考虑?5.4、室内覆盖中,HSDPA引⼊后,有何新要求?5.5、系统引⼊多载频对室内覆盖的影响?5.6、上、下⾏噪声受限如何考虑?5.7、室内覆盖时延分集增益。
射频基础知识第⼀部分射频基本概念第⼀章常⽤概念⼀、特性阻抗特征阻抗是微波传输线的固有特性,它等于模式电压与模式电流之⽐。
对于TEM波传输线,特征阻抗⼜等于单位长度分布电抗与导纳之⽐。
⽆耗传输线的特征阻抗为实数,有耗传输线的特征阻抗为复数。
在做射频PCB板设计时,⼀定要考虑匹配问题,考虑信号线的特征阻抗是否等于所连接前后级部件的阻抗。
当不相等时则会产⽣反射,造成失真和功率损失。
反射系数(此处指电压反射系数)可以由下式计算得出:z1⼆、驻波系数驻波系数式衡量负载匹配程度的⼀个指标,它在数值上等于:由反射系数的定义我们知道,反射系数的取值范围是0~1,⽽驻波系数的取值范围是1~正⽆穷⼤。
射频很多接⼝的驻波系数指标规定⼩于1.5。
三、信号的峰值功率解释:很多信号从时域观测并不是恒定包络,⽽是如下⾯图形所⽰。
峰值功率即是指以某种概率出现的尖峰的瞬态功率。
通常概率取为0.1%。
四、功率的dB表⽰射频信号的功率常⽤dBm、dBW表⽰,它与mW、W的换算关系如下:dBm=10logmWdBW=10logW例如信号功率为x W,利⽤dBm表⽰时其⼤⼩为五、噪声噪声是指在信号处理过程中遇到的⽆法确切预测的⼲扰信号(各类点频⼲扰不是算噪声)。
常见的噪声有来⾃外部的天电噪声,汽车的点⽕噪声,来⾃系统内部的热噪声,晶体管等在⼯作时产⽣的散粒噪声,信号与噪声的互调产物。
六、相位噪声相位噪声是⽤来衡量本振等单⾳信号频谱纯度的⼀个指标,在时域表现为信号过零点的抖动。
理想的单⾳信号,在频域应为⼀脉冲,⽽实际的单⾳总有⼀定的频谱宽度,如下页所⽰。
⼀般的本振信号可以认为是随机过程对单⾳调相的过程,因此信号所具有的边带信号被称为相位噪声。
相位噪声在频域的可以这样定量描述:偏离中⼼频率多少Hz处,单位带宽内的功率与总信号功率相⽐。
例如晶体的相位噪声可以这样描述:七、噪声系数噪声系数是⽤来衡量射频部件对⼩信号的处理能⼒,通常这样定义:单元输⼊信噪⽐除输出信噪⽐,如下图:对于线性单元,不会产⽣信号与噪声的互调产物及信号的失真,这时噪声系数可以⽤下式表⽰:Pno 表⽰输出噪声功率,Pni 表⽰输⼊噪声功率,G 为单元增益。
射频基础知识单选题100道及答案一、射频基本概念1. 射频通常指的是频率范围在()的电磁波。
A. 3Hz - 30kHzB. 30kHz - 300kHzC. 300kHz - 3MHzD. 3MHz - 300GHz答案:D2. 以下哪个单位通常用于表示射频功率?A. 伏特(V)B. 安培(A)C. 瓦特(W)D. 欧姆(Ω)答案:C3. 射频信号在自由空间中的传播速度大约是()。
A. 3×10⁵千米/秒B. 3×10⁶米/秒C. 3×10⁷米/秒D. 3×10⁸米/秒答案:D4. 射频信号的波长与频率的关系是()。
A. 波长=频率/光速B. 波长=光速×频率C. 波长=光速/频率D. 波长=频率×光速答案:C5. 射频信号的极化方式不包括()。
A. 水平极化B. 垂直极化C. 圆极化D. 三角极化答案:D二、射频电路元件6. 以下哪种元件主要用于储存电场能量?A. 电感B. 电容C. 电阻D. 二极管答案:B7. 一个理想电容在射频电路中的阻抗随着频率的增加而()。
A. 增加B. 减少C. 不变D. 先增加后减少答案:B8. 电感在射频电路中的主要作用是()。
A. 阻碍交流,通过直流B. 阻碍直流,通过交流C. 储存磁场能量D. 储存电场能量答案:C9. 电阻在射频电路中的作用主要是()。
A. 分压和分流B. 储能C. 滤波D. 放大答案:A10. 二极管在射频电路中的主要作用不包括()。
A. 整流B. 检波C. 放大D. 开关答案:C三、射频传输线11. 常见的射频传输线有()。
A. 同轴电缆、双绞线、光纤B. 同轴电缆、微带线、波导C. 双绞线、光纤、波导D. 微带线、双绞线、光纤答案:B12. 同轴电缆的主要特点是()。
A. 损耗小、带宽大B. 成本低、易安装C. 抗干扰能力强D. 以上都是答案:D13. 微带线主要用于()。
第一部分射频基本概念第一章常用概念一、特性阻抗特征阻抗是微波传输线的固有特性,它等于模式电压与模式电流之比。
对于TEM波传输线,特征阻抗又等于单位长度分布电抗与导纳之比。
无耗传输线的特征阻抗为实数,有耗传输线的特征阻抗为复数。
在做射频PCB板设计时,一定要考虑匹配问题,考虑信号线的特征阻抗是否等于所连接前后级部件的阻抗。
当不相等时则会产生反射,造成失真和功率损失。
反射系数(此处指电压反射系数)可以由下式计算得出:z1二、驻波系数驻波系数式衡量负载匹配程度的一个指标,它在数值上等于:由反射系数的定义我们知道,反射系数的取值范围是0~1,而驻波系数的取值范围是1~正无穷大。
射频很多接口的驻波系数指标规定小于1.5。
三、信号的峰值功率解释:很多信号从时域观测并不是恒定包络,而是如下面图形所示。
峰值功率即是指以某种概率出现的尖峰的瞬态功率。
通常概率取为0.1%。
四、功率的dB 表示射频信号的功率常用dBm 、dBW 表示,它与mW 、W 的换算关系如下:dBm=10logmWdBW=10logW例如信号功率为x W ,利用dBm 表示时其大小为五、噪声噪声是指在信号处理过程中遇到的无法确切预测的干扰信号(各类点频干扰不是算噪声)。
常见的噪声有来自外部的天电噪声,汽车的点火噪声,来自系统内部的热噪声,晶体管等在工作时产生的散粒噪声,信号与噪声的互调产物。
六、相位噪声相位噪声是用来衡量本振等单音信号频谱纯度的一个指标,在时域表现为信号过零点的抖动。
理想的单音信号,在频域应为一脉冲,而实际的单音总有一定的频谱宽度,如下页所示。
一般的本振信号可以认为是随机过程对单音调相的过程,因此信号所具有的边带信号被称为相位噪声。
相位噪声在频域的可以这样定量描述:偏离中心频率多少Hz处,单位带宽内的功率与总信号功率相比。
例如晶体的相位噪声可以这样描述:噪声系数是用来衡量射频部件对小信号的处理能力,通常这样定义:单元输入信噪比除输出信噪比,如下图:对于线性单元,不会产生信号与噪声的互调产物及信号的失真,这时噪声系数可以用下式表示:Pno 表示输出噪声功率,Pni 表示输入噪声功率,G 为单元增益。
RF基本概念培训教材基本概念Radio Frequency ,简称RF。
射频就是射频电流,它是一种高频交流变化电磁波的简称。
每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。
1.频率:一个信号在一秒周期内循环的次数。
2.微波:微波具有很高的频率,在一秒周期内有1G~2G的循环。
3.滤波器:需要的波可以通过,不需要的波滤掉。
4.双工器:双工器包含两个连接在一起的滤波器,这两个滤波器有一个公共的端口,叫天线端。
它们的功能也不同,一个传输信号,一个接受信号,两个滤波器的响应在频率上很接近,因此一个必须抑制另一个滤波器的信号。
5.插损:有多少功率损失在装置中。
6.回损:损耗在装置中产生的回波。
7.为什么校准?排除网络分析仪的误差,了解电缆的性能是否良好以及各种未知情况,消除系统误差。
8.何时校准?测试新产品之前或检查出系统误差较大的时候。
9.如何判断校验是否成功?Channel 1. S11或S22,Channel 2. S21,看系统匹配S21是否>-0.005dB,S11和S22是否当你校验好之后,将双阴连接,再接你使用的负载,看测量值回波损耗是否11.网络分析仪的电缆每天要清洁,减少误差。
你每天使用的连接件也必须每天用酒精和棉签清洁,同样是为了减少误差。
12.带内波动:通带内最差的插损减去最小的插损。
(数值都是用绝对值) 13.滤波器最好的插损可能在哪里?在通带的中间位置。
14.调试螺钉的作用:调谐螺钉:顺时针旋转,频率向低端偏移。
逆时针旋转,频率向高端偏移。
耦合螺钉:顺时针旋转,将通带频率增宽。
逆时针旋转,将通带频率变窄。
TuningRX:接受端 TX:发射端Attenuation: 在某特定频率范围内,滤波器可大量削弱信号程序:一.校验使用响应校验方式对记录本进行校验,使用完全双端口校验方式对其它记录本进行校验。
在每个班的开始用每台网络分析仪测试参考产品,确保全部网络分析仪工作正常。
第一部分射频基础知识目录第一章与移动通信相关的射频知识简介..................................................... 错误!未定义书签。
何谓射频 ........................................................................................................ 错误!未定义书签。
长线和分布参数的概念................................................................................... 错误!未定义书签。
射频传输线终端短路....................................................................................... 错误!未定义书签。
射频传输线终端开路....................................................................................... 错误!未定义书签。
射频传输线终端完全匹配............................................................................... 错误!未定义书签。
射频传输线终端不完全匹配........................................................................... 错误!未定义书签。
电压驻波分布 .................................................................................................. 错误!未定义书签。
射频即Radio Frequency,通常缩写为RF。
表示可以辐射到空间的电磁频率,频率范围从300KHz~30GHz之间。
射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。
每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。
有线电视系统就是采用射频传输方式。
在电子学理论中,电流流过导体,导体周围会形成磁场;交变电流通过导体,导体周围会形成交变的电磁场,称为电磁波。
在电磁波频率低于100khz时,电磁波会被地表吸收,不能形成有效的传输,但电磁波频率高于100khz时,电磁波可以在空气中传播,并经大气层外缘的电离层反射,形成远距离传输能力,我们把具有远距离传输能力的高频电磁波称为射频,射频技术在无线通信领域中被广泛使用。
射频常用计算单位简介绝对功率各种射频常用计算单位,是深入地理解射频概念的必备基础知识之一。
绝对功率的dB 表示射频信号的绝对功率常用dBm、dBW表示,它与mW、W的换算关系如下:例如信号功率为x W,利用dBm表示时其大小为:射频常用计算单位简介例如:1W等于30dBm,等于0dBW。
相对功率相对功率的dB表示射频信号的相对功率常用dB和dBc两种形式表示,其区别在于:dB是任意两个功率的比值的对数表示形式,而dBc是某一频点输出功率和载频输出功率的比值的对数表示形式。
天线和天线增益天线增益一般由dBi或dBd表示。
dBi是指天线相对于无方向天线的功率能量密度之比,dBd是指相对于半波振子Dipole 的功率能量密度之比,半波振子的增益为2.15dBi,因此0dBd=2.15dBi。
其他常用计算单位射频原理电阻:阻挡电流通过的物体或物质,从而把电能转化为热能或其它形式的能量,单位:欧姆,Ω电压:电位或电位差,单位:伏特,V电流:单位时间内通过电路上某一确定点的电荷数,单位:安培,A电感:线圈环绕着的东西,通常是导线,由于电磁感应的原因,线圈可产生电动势能,单位:亨利,H电容:一个充电的绝缘导电物体潜在具有的最大电荷率,单位:法拉,F射频术语知识1.功率/电平(dBm):放大器的输出能力,一般单位为w、mw、dBm2.增益(dB):即放大倍数,单位可表示为分贝(dB)。
注:dBm是取1mw作基准值,以分贝表示的绝对功率电平。
换算公式:电平(dBm)=10lgw5W → 10lg5000=37dBm10W → 10lg10000=40dBm20W → 10lg20000=43dBm从上不难看出,功率每增加一倍,电平值增加3dB即:dB=10lgA(A为功率放大倍数)3.插损:当某一器件或部件接入传输电路后所增加的衰减,单位用dB表示。
4.选择性:衡量工作频带内的增益及带外辐射的抑制能力。
-3dB带宽即增益下降3dB 时的带宽,-40dB、-60dB同理。
5.驻波比(回波损耗):行驻波状态时,波腹电压与波节电压之比(VSWR)附:驻波比——回波损耗对照表:SWR 1.2 1.25 1.30 1.35 1.40 1.50回波损耗(dB) 21 19 17.6 16.6 15.6 14.06.三阶交调:若存在两个正弦信号ω1和ω2 由于非线性作用将产生许多互调分量,其中的2ω1-ω2和2ω2-ω1两个频率分量称为三阶交调分量,其功率P3和信号ω1或ω2的功率之比称三阶交调系数M3。
即M3 =10lg P3/P1 (dBc)7.噪声系数:一般定义为输出信噪比与输入信噪比的比值,实际使用中化为分贝来计算。
单位用dB。
8.耦合度:耦合端口与输入端口的功率比,单位用dB。
9.隔离度:本振或信号泄露到其他端口的功率与原有功率之比,单位dB。
10.天线增益(dB):指天线将发射功率往某一指定方向集中辐射的能力。
一般把天线的最大辐射方向上的场强E与理想各向同性天线均匀辐射场场强E0相比,以功率密度增加的倍数定义为增益。
Ga=E2/ E0211.天线方向图:是天线辐射出的电磁波在自由空间存在的范围。
方向图宽度一般是指主瓣宽度即从最大值下降一半时两点所张的夹角。
E面方向图指与电场平行的平面内辐射方向图;H面方向图指与磁场平行的平面内辐射方向图。
一般是方向图越宽,增益越低;方向图越窄,增益越高。
12.天线前后比:指最大正向增益与最大反向增益之比,用分贝表示。
13.单工:亦称单频单工制,即收发使用同一频率,由于接收和发送使用同一个频率,所以收发不能同时进行,称为单工。
14.双工:亦称异频双工制,即收发使用两个不同频率,任何一方在发话的同时都能收到对方的讲话。
单工、双工都属于移动通信的工作方式。
15.放大器:(amplifier)用以实现信号放大的电路。
16.滤波器:(filter)通过有用频率信号抑制无用频率信号的部件或设备17.衰减器:(attenuator) 在相当宽的频段范围内一种相移为零、其衰减和特性阻抗均为与频率无关的常数的、由电阻元件组成的四端网络,其主要用途是调整电路中信号大小、改善阻抗匹配。
功分器:进行功率分配的器件。
有二、三、四….功分器;接头类型分N头(50Ω)、SMA头(50Ω)、和F头(75Ω)三种。
18.耦合器:从主干通道中提取出部分信号的器件。
按耦合度大小分为5.10.15.20…. dB不同规格;从基站提取信号可用大功率耦合器(300W),其耦合度可从30~65dB中选用;耦合器的接头多采用N头。
19.负载:终端在某一电路(如放大器)或电器输出端口,接收电功率的元/器件、部件或装置统称为负载。
对负载最基本的要求是阻抗匹配和所能承受的功率。
20.环形器:使信号单方向传输的器件。
21.转接头:把不同类型的传输线连接在一起的装置。
22.馈线:是传输高频电流的传输线。
23.天线:(antenna)是将高频电流或波导形式的能量变换成电磁波并向规定方向发射出去或把来自一定方向的电磁波还原为高频电流。
射频技术的分类自动识别技术自动设备识别技术是目前国际上发展很快的一项新技术,英文名称为AutomaticEquipmentIdentification,简称AEI。
该项技术的基本思想是通过采用一些先进的技术手段,实现人们对各类物体或设备(人员、物品)在不同状态(移动、静止或恶劣环境)下的自动识别和管理。
目前应用最广泛的自动识别技术大致可以分为两个方面:光学技术和无线电技术两个方面。
其中光学技术中普遍应用的产品有:条形码和摄像两大类。
这两类产品目前已广泛应用于人们的日常生活中,并已为人们所熟知。
比如:条形码用于商品管理,摄像用于抓拍违章车辆等。
射频识别技术射频识别技术依其采用的频率不同可分为低频系统和高频系统两大类;根据电子标签内是否装有电池为其供电,又可将其分为有源系统和无源系统两大类;从电子标签内保存的信息注入的方式可将其分为集成电路固化式、现场有线改写式和现场无线改写式三大类;根据读取电子标签数据的技术实现手段,可将其分为广播发射式、倍频式和反射调制式三大类。
1.低频系统一般指其工作频率小于30MHz,典型的工作频率有:125KHz、225KHz、13.56MHz等,这些频点应用的射频识别系统一般都有相应的国际标准予以支持。
其基本特点是电子标签的成本较低、标签内保存的数据量较少、阅读距离较短(无源情况,典型阅读距离为10cm)电子标签外形多样(卡状、环状、钮扣状、笔状)、阅读天线方向性不强等。
2.高频系统一般指其工作频率大于400MHz,典型的工作频段有:915MHz、2450MHz、5800MHz等。
高频系统在这些频段上也有众多的国际标准予以支持。
高频系统的基本特点是电子标签及阅读器成本均较高、标签内保存的数据量较大、阅读距离较远(可达几米至十几米),适应物体高速运动性能好、外形一般为卡状、阅读天线及电子标签天线均有较强的方向性。
3.有源电子标签内装有电池,一般具有较远的阅读距离,不足之处是电池的寿命有限(3~10年);无源电子标签内无电池,它接收到阅读器(读出装置)发出的微波信号后,将部分微波能量转化为直流电供自己工作,一般可做到免维护。
相比有源系统,无源系统在阅读距离及适应物体运动速度方面略有限制。
射频通信体系结构频率介绍在整个射频通信中,主要包含以下几种频率:传输频率、接收频率、中频和基带频率。
基带频率是用来调制数据的信号频率。
而真正的传输频率则比基带频率高很多,一般的频谱范围是500MHz到38GHz,数据信号也是在此高频下进行传输的。
一般来说,射频系统具有非常强大的传输调制信号的功能,即使在有干扰信号和阻断信号[z2] 的情况下,该系统也可以做到以最高的质量发送并且以最好的灵敏度接收调制信号。
阻断信号主要有两种:带内阻断信号和带外阻断信号。
带外阻断信号是指分布在信号频谱之外的无关信号,例如由其它无线传输技术产生的数据信号。
带内阻断信号则分布在我们感兴趣的信号频谱之内,例如由相同的无线传输技术在其它终端产生的数据信号。
对于无线通信而言,要成功地实现射频接收功能,必须要过滤掉这两种阻断信号。
中频多被用来作为传输/接受频率和基带频率的过渡,而这种传输方式正是超外差结构的基础。
一般而言,带外阻断信号可以被天线自带的滤波器过滤掉。
而中频的存在使我们有机会在信号被混合到基带频率并做数字处理之前将带内阻断信号滤除。
另一方面,在发送端,中频常被用来滤除所有从基带转换到中频这个过程中可能产生的伪数据和噪声。
采用超外差结构的另外一种实现方法是利用中频采样来减少信号链上的器件个数。
这种方法选择在中频对信号进行采样,而不是在采样前先将信号混合到基带。
在第一种超外差结构中,从中频到基带的转换过程需要以下器件:本机锁相环、智能解调器(混频器)和双向ADC(模拟-数字转换器)。
如果选择在中频进行采样,那这三个器件可以用一个高性能的ADC来代替。
这不仅可以降低信号链的复杂程度,还可以提高信号解调的质量。
但是,如果在下行基带转换器里应用高质量智能解调器,也能得到非常好的通信效果。
如果能使本机锁相环和射频器件的漏电足够小,基带的直流失调便可最小化。
现在,许多智能解调器都使用了直流失调补偿环路来进一步减小甚至最终消除直流失调。
除此之外,解调器的相位分离功能可以做到非常准确的90度的相位分离,这将确保信号解调时,误差向量的值不会变坏或者只是变坏一点。
最后,如果我们在使用智能解调器的同时,使用一个具有低相位噪声的锁相环,将会确保基带输出信号的低噪声,并且因此获得一个好的位错误率(BER)。
因为ADC要在越来越高的频率下工作,所以中频采样结构的功耗变得比第一种超外差结构越来越高,并因此而越来越昂贵,这是中频采样结构的最主要的缺点。
由于这个原因,基于中频采样的射频结构往往更适合那些在相对低频或者中频的应用,毕竟这些频段对成本的影响不大。