跳频详解
- 格式:docx
- 大小:17.86 KB
- 文档页数:2
一文读懂跳频技术
跳频是移动通信中常用的载波技术,有良好的扛干扰作用,能够有效提高通信质量。
跳频指载波频率在一定范围内,按某种规律跳变。
跳频就是手机和基站都按照一个相同的频点序列来收发信息,这个频点序列就是跳频序列(HSN)。
一个跳频序列就是在给定的包含N个频点的频点集(MA)内,通过一定算法,由跳频序列号(HSN)和移动分配偏移(MAIO)唯一确定所有(N个)频点的一个排列。
不同时隙(TN)上的N 个信道可以使用相同的跳频序列,同一小区相同时隙内的不同信道使用不同的移动分配偏移(MAIO)。
采用紧密频率复用技术时,系统干扰是决定频率复用比的最重要因素。
为了降低系统干扰,通常采用的技术是功率控制、非连续发射技术(DTX);而为了抗干扰,提高系统在同等干扰条件下的通信质量,通常采用跳频技术。
因此,跳频是GSM系统抗干扰和提高频率复用度的一项重要技术。
按照GSM规范,慢跳频可以用于GSM通信系统中,跳频是指载波频率在一定。
跳频是指载波频率在很宽频带范围内按某种图案(序列)进行跳变。
信息数据D经信息调制成带宽为Bd的基带信号后,进入载波调制。
载波频率受伪随机码发生器控制,在带宽Bss(Bss>>Bd)的频带内随机跳变,实现基带信号带宽Bd扩展到发射信号使用的带宽Bss的频普扩展。
可变频率合成器受伪随机序列(跳频序列)控制,使载波频率随跳频序列的序列值改变而改变,因此载波调制又被称为扩频调制。
GSM的无线接口使用了慢速跳频,其要点是按固定间隔改变一个信道使用的频率。
系统使用慢速跳频(SFH),每秒跳频217次,传输频率在一个突发脉冲传输期间保持一定。
跳频系统具有以下优点:能大大提高通信系统抗干扰、抗衰落的能力;能多址工作而尽量不互相干扰;不存在直接扩频通信系统的远近效应问题,即可以减少近端强信号干扰远端弱信号的问题;跳频系统的抗干扰性严格说是“躲避”式的,外部干扰的频率改变跟不上跳频系统的频率改变。
在GSM数字蜂窝系统中,跳频技术可以提高抗衰落、抗干扰能力。
跳频技术对于静态或慢速移动的移动台具有很好的抗衰落效果,而对于快速移动的移动台由于同一信道的两个连接的突发脉冲序列其位置差已足以使它们与瑞利变化不相关,因此跳频增益很小,这就是跳频所具有的频率分集。
由于跳频时频率在不停的变化,频率的干扰是瞬时的,因此跳频具有干扰分集。
1.GSM网络质量评估在GSM数字蜂窝系统中,由于存在着频率复用,因此必然存在着同频和邻频干扰,同邻干扰强度决定着话音质量。
在我们通话过程中,通常遇到的话音辨别不清,时断时续等情况很大程度上存在着干扰,根据GSM规范为了保证网络质量,需要定义相应的同频干扰和邻频干扰保护值,因此在实际网络设计中,需要根据该保护值来设计网络。
在非跳频网络中表示网络干扰程度的C/I和BER(比特误码率),FER(帧误码率)的关系是唯一的,并且是独立于系统的负载率。
但是引入跳频技术后,我们发现某一C/I值所对应的RXQUAL值和非跳频网络是相似的,但在解码后所得到的误码率和帧删除率主要依赖于跳频数量的多少和系统负载情况,因此在跳频网络仅仅用C/I或QXQUAL来评估跳频网络是不够的。
跳频也是一种扩频技术,英文为FH(Frequency Hopping)。
通俗的来说,就是让信号在跳变的频率其实跳频越快越好,这样越安全,干扰越分散,但是成本高、实现难度大,因此快跳频一般用于军事,保证安全性。
我们的gsm一般采用慢跳频SFH(Slow Frequency Hopping)。
多慢呢?每个TDMA 帧跳变一次,帧周期大约4.615ms,所以GSM跳频就是一秒跳217次。
GSM的慢跳频又分两种,基带跳频和射频跳频。
基带跳频就是你有几块载频,每块载频的频率不变,然后信号按照跳变规律分成几份,在不同的时间射频跳频就是,每块载频都可以收发GSM需要的全部频率,所以信号不必分到不同的载频上面去收发,只要在一块载频上面就可以实现,不过载频的频率一直在变化而已。
看到这里,大家应该看得出来,射频跳频效果好,因为每块频点都可以随便收发频段内的任意频点,因此调频表可以比实际的载频多,而基带的跳频表比载频少。
同时,基带跳频一块载频坏了,该路信当然世界上没有都是好的东西,射频跳频的麻烦在于:实现的难度要大一些,因为这样每块载频都要可以跳变成任何频率;其次是频率跳变范围广,必须采用混合/宽带合路器(基带跳频采用腔体合路器),损耗大;第三是,大家应该都看到过示波器,波形的边缘不可能是“整齐”的,就是说单个载频从一个发射频率转换到另一个发射频率,两个频率的交界处,干扰比较大。
因此,移动的GSM一般采跳频有几个参数比较关键,MA,MAIO,HSN。
MA是什么呢,就是参与跳频的频点表。
比如给你分三个频点参与跳频{1,3,5,7},MAIO叫做什么移动分配索引偏置,太拗口了,其实就是说待会跳频了,从哪个频点开始,MAIO有6bit,可以编码0~63。
所以可以推测知道MA表最多有64个频点。
有了跳频频点表,有了索引表告诉我们从哪个开始跳,还不够,如果大家都从头开始跳频的话,就太容易撞车了,同频概率太大。
因此还来了一个参数HSN,叫做跳频序列号,这个翻译很容易和MAIO混淆,其实HSN是跳频的算法。
跳频一种利用载波跳变实现频谱展宽的扩频技术。
广泛应用于抗干扰的通信系统中。
其方法是把一个宽频段分成若干个频率间隔(称为频道,或频隙),由一个伪随机序列控制发射机在某一特定的驻留时间所发送信号的载波频率。
当接收机的本地振荡信号频率与接收机输入信号的频率按同一规律同步跳变,那么,经过变频以后,将得到一个固定的中频信号即把原来的频率跳变解除,这一过程称解跳或去跳。
分类跳频可分为慢跳频和快跳频。
慢跳频是指跳频速率低于信息比特率,即每跳可传输连续几个信息比特。
快跳频是指跳频速率高于信息比特率,即一个信息比特需要多跳来传输。
跳频还可分为单通道跳频和双通道跳频。
原理发送端在时钟控制下,伪码发生器产生伪随机序列去控制频率合成至生成跳频载波系列,称做跳频图案。
跳频通信系统的原理框图见上图。
图中接收端的预调制滤波器是一种中心频率随信号跳频式样而同步跳变的窄带滤波器(通频带允许所需信号通过),目的在于增加接收机的时间选择性,减少强干扰对接收机可能引起的阻塞现象。
接收的跳频载波序列若与本地产生的跳频序列图案一致,则经混频后可得到一个固定的中频信号,再经解调获得输出。
若外来跳频图案与本地图案不一致,则得不到一个固定的中频信号,解调后只是一些噪声而得不到有用的输出。
因此时间同步是跳频通信的关键技术。
调制方式可根据跳频信号的特征进行选择。
在跳频系统中不宜采用对相位要求严格的调制方式。
因为在跳频通信系统中,接收机的本地载波要做到与外来信号的载波在相位上保持相干是很困难的。
因此,宜用非相干检测方式。
频率合成器是跳频通信系统的重要组成部分。
频率合成器的性能将制约跳频速率。
对频率合成器的要求是跳频速率快、杂散电平低和功耗小。
频率合成器进行频率跳变时,一般有2个阶段:一个是过渡期(暂态时间),一个是滞留期(稳态时间)。
要求过渡期尽量的要短,以实现高速转换。
跳频特性跳频带宽跳频系统的总频带宽度,可以由互不衔接的几个频段组成,是跳频系统抗干扰性的重要指标。
跳频算法的基本原理和应用一、跳频算法的概述跳频算法是一种在无线通信中广泛应用的技术,通过在一定范围内随机或按照特定序列改变通信频率,从而增强通信系统的安全性和抗干扰能力。
本文将介绍跳频算法的基本原理和应用。
二、跳频算法的基本原理跳频算法是通过跳频序列来改变通信频率,其基本原理如下:1.频率跳变:在跳频通信系统中,发送和接收信号的频率会按照跳频序列进行跳变。
2.频率选择器:跳频通信系统会使用一种特定的频率选择器来选择信号的频率。
3.窄带信号和宽带信号:跳频通信系统中的窄带信号会在较短的时间内在频谱上进行跳变,而宽带信号则会在较长的时间内进行跳变。
4.同步:跳频通信系统中,发送方和接收方需要保持同步,以便正确接收到跳频序列。
三、跳频算法的应用场景跳频算法在许多领域中得到了广泛的应用,以下是一些常见的应用场景:1. 无线通信系统跳频算法在无线通信系统中起到了很重要的作用,它可以提高通信系统的安全性和抗干扰能力。
跳频通信系统能够减少单个频率上的干扰,并且跳频序列的随机性可以增加系统的安全性。
2. 雷达通信系统在雷达通信系统中,跳频算法能够提供更高的隐蔽性和抗干扰性能。
通过频率的跳变,雷达系统可以减少被敌方干扰的概率,提高系统的可靠性。
3. 蓝牙通信技术蓝牙通信技术是一种短距离无线通信技术,跳频算法被广泛应用于蓝牙通信中。
跳频技术可以减少蓝牙通信的干扰,并且提高通信的可靠性和稳定性。
4. 军事通信系统在军事通信系统中,跳频算法被广泛应用于军事通信设备中。
跳频通信系统可以提供更高的抗干扰能力和抗干扰性能,保障军事通信的安全性和可靠性。
四、跳频算法的优势与不足跳频算法具有以下优势和不足:1. 优势•提高系统的安全性:跳频算法可以增加通信系统的安全性,防止被恶意干扰和攻击。
•提高抗干扰能力:跳频算法可以减少单一频率上的干扰,提高系统的抗干扰能力。
•提高系统的可靠性:跳频算法可以提高通信系统的可靠性,减少通信中断和数据丢失的概率。
跳频技术简介2006-10-30 19:50跳频是最常用的扩频方式之一,其工作原理是指收发双方传输信号的载波频率按照预定规律进行离散变化的通信方式,也就是说,通信中使用的载波频率受伪随机变化码的控制而随机跳变。
从通信技术的实现方式来说,“跳频”是一种用码序列进行多频频移键控的通信方式,也是一种码控载频跳变的通信系统。
从时域上来看,跳频信号是一个多频率的频移键控信号;从频域上来看,跳频信号的频谱是一个在很宽频带上以不等间隔随机跳变的。
其中:跳频控制器为核心部件,包括跳频图案产生、同步、自适应控制等功能;频合器在跳频控制器的控制下合成所需频率;数据终端包含对数据进行差错控制。
与定频通信相比,跳频通信比较隐蔽也难以被截获。
只要对方不清楚载频跳变的规律,就很难截获我方的通信内容。
同时,跳频通信也具有良好的抗干扰能力,即使有部分频点被干扰,仍能在其他未被干扰的频点上进行正常的通信。
由于跳频通信系统是瞬时窄带系统,它易于与其他的窄带通信系统兼容,也就是说,跳频电台可以与常规的窄带电台互通,有利于设备的更新。
通信收发双方的跳频图案是事先约好的,同步地按照跳频图案进行跳变。
这种跳频方式称为常规跳频(Normal FH)。
随着现代战争中的电子对抗越演越烈,在常规跳频的基础上又提出了自适应跳频。
它增加了频率自适应控制和功率自适应控制两方面。
在跳频通信中,跳频图案反映了通信双方的信号载波频率的规律,保证了通信方发送频率有规律可循,但又不易被对方所发现。
常用的跳频码序列是基于m序列、M序列、RS码等设计的伪随机序列。
这些伪随机码序列通过移位寄存器加反馈结构来实现,结构简单,性能稳定,能够较快实现同步。
它们可以实现较长的周期,汉明相关特性也比较好,但是当存在人为的故意干扰(如预测码序列后进行的跟踪干扰)时,这些序列的抗干扰能力较差。
在90年代初,出现了基于模糊(Fuzzy)规则的跳频图案产生器。
在这种系统中,由模糊规则、初始条件以及采样模式共同来决定系统的输出序列。
跳频原理
跳频(Frequency Hopping)是一种无线通信技术,用于在无线信道中抵御干扰和窃听。
该技术通过在通信过程中快速改变信号的频率来实现。
跳频的原理是基于时分多址(Time Division Multiple Access,TDMA)技术和频分多址(Frequency Division Multiple Access,FDMA)技术。
在跳频系统中,通信双方事先约定一组用于跳
频的频率序列,在信息传输过程中按照这个频率序列进行频率的切换。
跳频系统的发射器和接收器需要通过同步信号进行同步,以便在通信过程中准确地进行频率切换。
发射器和接收器的跳频序列需要严格一致,通常是通过伪随机序列生成算法生成。
在跳频通信中,数据被分成一系列较小的数据包进行传输。
每个数据包在分配的时间段内通过不同的频率进行传输。
接收端根据之前约定好的频率序列,可以正确地接收和解析出原始的数据。
跳频技术具有抗干扰和窃听的特点。
由于频率在传输过程中不断变化,即使有人试图对某一频率进行干扰或窃听,由于频率的变化,这种试图也会变得无效。
此外,跳频技术还可以通过将频率序列加密,进一步提高通信的保密性。
总体来说,跳频技术通过快速改变信号的频率来抵御干扰和窃
听。
它在军事通信、无线网络以及一些对保密性和可靠性要求较高的应用中得到了广泛应用。
跳频技术原理
嘿,朋友们!今天咱来聊聊超厉害的跳频技术原理!你知道吗,这就好比在一个超级大的通信舞池里,信号就像是灵活舞动的舞者。
比如说,你的手机和基站之间的通信,就是一场精彩的舞蹈表演。
跳频技术呢,就是让这个信号舞者能够快速地在不同的频率上跳跃。
就好像舞者一会儿在这个角落跳舞,一会儿又闪到另一个地方继续舞动,让别人很难抓住它的确切位置!难道你不觉得这很神奇吗?
想象一下,有很多干扰信号就像调皮的小捣蛋,总想破坏这场通信舞蹈。
但跳频技术可不会让它们得逞!它会让信号不停地变换频率,让那些小捣蛋根本摸不着头脑,找不到信号在哪里。
哇塞,这可太酷了吧!
再举个例子,你在一个热闹非凡的市场里,周围全是嘈杂的声音,但你总能准确地听到你朋友的呼喊。
跳频技术就起到了类似的作用,它能在混乱的频率环境中,精准地找到对的那一个频率进行通信。
这就好像你在人群中一眼就看到了你的朋友,然后和他愉快地交流,而不会被其他人干扰。
这样的技术,是不是让我们的通信变得更加可靠和安全呢?它可真是通信世界里的一大法宝啊!通过让信号灵活地跳频,不仅能避开干扰,还能提高通信的质量和效率。
总之,跳频技术原理就是这么神奇又有趣,它为我们的通信带来了巨大的改变和进步!它就像一把神奇的钥匙,打开了高效通信的大门。
你现在是不是对跳频技术有了更浓厚的兴趣呢?。
第二节跳频介绍跳频是在一次话音或数据连接中使用多个频率。
发射每一个突发脉冲序列用一固定频率,但在发射不同的突发脉冲序列时使用不同的频率。
当手机在使用某一频率且处在谷底时,或受到干扰,很容易丢失某一突发脉冲序列。
下一个突发脉冲序列,如果使用不同的频率,接收到的机率就很高。
系统通过编码和交织可以使单个突发脉冲序列丢失对话音质量影响最小。
每一小区预先设定好一组频率,手机(或基站)发射不同的突发脉冲序列时使用不同的频率,即每秒改变217次。
上行和下行按照相同的顺序。
背景概要在一个通话中,有几个自然因素影响手机和基站间的无线环境。
如多径衰落,它意味着接收信号通过多条路径。
根据路径长度的差距,使接收信号强度增强或减弱。
另一个影响因素是各种干扰。
主要是同频干扰。
但其他干扰方式如临频干扰、互调干扰、军事上的干扰等也必须要考虑。
干扰随干扰信号产生而产生,消亡而消亡。
最坏的情况,干扰在整个通话过程中一直存在。
对一个慢速移动的手机来说,如果用一个固定的频率,处在由于多径衰落而引起的低接收信号强度的时间则较长。
如果用一个固定的频率,产生同频干扰的时间也较长。
对以上两种情况,编码、交织将不能保证恢复信息。
这种情况在上行、下行时类似。
多径衰落导致破坏性干扰的多径衰落称为谷底衰落。
谷底衰落导致话音质量下降。
对一个特殊频率,多径衰落的波谷和波峰间隔约半波长(如GSM900 17CM , DCS1800 8CM)。
当手机刚好处在波谷时(如车碰到红灯时),话音质量将变的不可接受。
不同的频率,在此位置衰耗可能不同。
同频衰落手机的干扰很大程度上依靠使用的频率和时隙,如下图所示:275276两个手机用相同的频率和时隙发射,处于小区的边界。
对白色手机,接受信号强度较弱,所以对干扰较敏感。
同时,B 基站在对黑手机使用相同频率发射用最大功率发射,对白手机产生强而连续的干扰。
黑色手机也有同样的干扰。
实现频率分集跳频能减少由于多径衰落引起的信号强度变化的影响。
1、跳频技术跳频就是按照预先定义的跳频序列(FHS)随机地改变正在进行通信的信道所占用频率的技术。
在同一个频道组内,各跳频序列应是正交的,各信道在跳频传输过程中不能被碰撞。
过去采用跳频技术是为了确保通信的秘密性和抗干扰性,它首先被用于军事通信,后来发现在移动通信中,电波传播多径效应引起的瑞利衰落与传输的发射频率有关,衰落空洞将因频率的不同发生在不同地点,如果在通话期间载波频率在几个频点上变化,则传送信息仅在短时间内受到衰落空洞的影响,尤其是处于多径环境中的漫速移动的移动台通过采用跳频技术,能大大改善移动台的通信质量,可达到频率分集的效果。
此外,跳频还具有干扰分集的作用。
由于跳频频道间的不相关性,分离了来自许多小区的同频干扰,可提高蜂房小区的容量。
跳频系统分为快跳频和慢跳频两种。
慢跳频的跳频频率低于或等于调制符号速率,即在一个或几个调制符号周期内跳频一次;快跳频的跳频频率大于调制符号速率,即在一个调制符号周期内跳频一次以上。
1、GSM的跳频技术在GSM标准中采用慢跳频技术。
每秒217跳,每跳周期为1200比特。
GSM系统中的跳频分为基带跳频和射频跳频两种。
基带跳频的原理是将话音信号随着时间的变换使用不同频率发射机发射,其原理图如图6.26所示。
TR X1TR X2TR X3TR X4图6.26 基带跳频原理由上图可见,基带跳频中可供跳频的频率数N(hop)≦基站载频数N(TRX)。
基带跳频适用于合路器采用空腔耦合器的基站,由于这种空腔耦合器的谐振腔无法快速改变发射频率,故基站无法靠改变载频频率的方法实现跳频。
实施的方框图如图6-27所示,其中,收发信机负责无线信号的接收与发送,基带处理单元进行信道的处理。
图6.27基带跳频实施框图为了实现基带跳频,如上图所示,收发信机与基带处理单元之间的连接由路由转接器来控制,在用户通信过程中,要求无论移动台通信频率如何变化,负责处理用户链路的基带处理单元要保持不变,而基带跳频中所有收发信机的频率也不变。
跳频学习实战首先应该明白几个名词概念。
1.帧跳频:频率的改变以TDMA帧为单位。
同一TRX上不同无线信道使用相同MAIO (实际工程中一般用帧跳频)2.当HSN = 0 时,跳频方式为循环跳频,HSN为调频序列号采用循环跳频时MA集合中的频率被依次循环占用。
GSM规范中只定义了一种循环顺序,即指定频率范围中从低到高依次循环。
当HSN ≠0 时,跳频方式为随机跳频。
采用随机跳频时,MA集合中的频率将被“随机占用”。
而随机占用的规则将由跳频偏移指针MAI决定。
3.MA(移动分配集):跳频时可用的载频频点集合。
最多由16个频点组成。
其中使用的频点必须是属于【小区/小区分配表】内相应小区号的频点,并且不能包含任何BCCH信道的频点。
4.MAIO(跳频序列偏移量):用于确定跳频的初始频点。
一个跳频TRX内的所有信道的MAIO必须相同(帧跳频),同一个小区内的不同跳频TRX内的信道的MAIO必须不同。
5.TSC(训练序列号):训练序列号必须与基站色码相同。
移动台或基站接收信号时,通过指定的训练序列进行时延均衡,而对于不同TSC的同频信号,则因为不能进行时延均衡而无法接收解调,这样可以有效地防止错误的无效接收,防止同频干扰6.1、BCCH频点不跳频;具体方法是在【站点/载频配置表】中只为BCCH载频配置一个频点。
2、移动分配集MA必须是相应小区分配表CA的子集,即小区中某一载频跳频所用的所有频点必须出现在【小区/小区分配表】的相应记录中。
3、对于某一跳频信道而言,因为可用的跳频频点数越多,跳频的抗干扰效果越好,所以通常情况下,某载频的移动分配集MA等于除了BCCH频点以外的所有CA,即小区内的除BCCH频点以外的所有可用频点均参与跳频。
4、在同一小区内,若使用帧跳频,同一载频上所有信道的MA、CA、TSC、HSN、MAIO 均相同;也即同一载频上的所有信道跳频规则完全相同,若为时隙跳频,则MAIO必不同.5、同一小区内不同载频的MA、CA、TSC、HSN相同,而MAIO不同,即不同载频仅仅是跳频的起始频点不同。
一、跳频概述1.1 跳频序列设计FH sequences design ;1. 作用:(1)控制频率跳变以实现频谱扩展;(2) 跳频组网时作为地址码主要设计2. 总体限制:汉明相关特性(1) 汉明自相关最大旁瓣,影响性能:系统抗多径能力和同步性能(同步引导序列)(2) 汉明互相关性能峰值,影响性能:多址组网能力和抗干扰能力。
3. 序列分为:素数序列,m/M 跳频序列,RS 码跳频序列,bent 序列,混沌映射序列构造序列族。
宽间隔跳频的意义:(游程)(a)对抗单频窄带干扰和部分频带干扰;(b)对抗跟踪式干扰,跳频跨度大,敌方干扰机的搜索时间长,调谐时间也长; (c)抗多径衰落:当直射波和折射波通过不同的路径到达接收机,只要跳频时隙小于其的时延差,。
当折射波到达接收机时,工作频率已经跳到另一个频率上,多径可以排除;条件:相邻时隙的载波频率之差大于信道的相关带宽。
跳频频段的的间隔特性有利于宽间隔调频序列的设计,目前有(连续性)中间频带法[1983],对偶频带法[1985], 梅文华有较多探索[1994][1997][2001],国外的基本没见到。
1.2 跳频频率合成器frequency hopping synthesizer ;跳频系统对频率合成器的要求:频率转换速度快,频率稳定度高及纯度高,频率数目多,能在编码控制下跳变。
工作频段:覆盖系数max min /f f 大于2到3时,可以划为几个分频段。
频率合成器;直接频率合成法(倍分频法,快,复杂)、间接频率合成法(锁相,慢),直接数字合成法DDS(简单快速,切换ns 级,杂散抑制差)DDS 工作原理:一般信号形式 00()cos(2)S t U f t πθ=+ 通过变换 *00()22()s t f t f nT n n θππθθ====∆•其中,0022/s s f T f f θππ∆== (0f 对应输出,s f 对应参考频率) 表示连续两次采样之间的相位增量,控制θ∆可以控制合成信号频率 把2π分成q 等分,最小相位增量为2/q δπ= 若每次的相位增量是δ的R 倍,则有:02s s R Rf f T qδπ== (R 对应频率控制字K ) DDS 采用全数字技术,具有频率分辨高;工作频段较宽;频率转换速度快;转换频率时相位连续;可产生宽带正交信号;具有任意波形输出能力;集成度高,体积小,易于微机控制等优点。
跳频分类:快速跳频慢速跳频(GSM)GSM跳频的速率: 最大为217次/秒允许跳频时间为1msGSM跳频分类: 基带跳频射频跳频基带跳频:是把某个时隙切换到相应的频率上完成跳频工作是通过腔体合成器(每个发信机频率固定)来实现的频波数与跳频频点数相同腔体合成器:损耗小3.5db 精度低频点间隔600KHz射频跳频:控制每TRX的频率合成器来完成跳频工作是通过混合合成器来实现的混合合成器:损耗大4.5db(H2D) 8db(H4D) 精度高频点间隔200KHz跳频的优点:频率分集防止瑞利衰落,增加约为6.5DB的增益干扰源分集改善C/I值,增加约为3DB的增益跳频序列:CA小区分配表:该小区用到的所有频点MA移动分配表:参与跳频的所有频点MAIO(参与跳频的频点数)移动分配指针偏移:描述跳频重复功能的起点HSN(0-63)跳频序列号:HSN=0为循环跳频同一小区HSN相同,MAIO不同.该相邻小区中不应存在相同的HSN.跳频序列的算法:由MAIO HSN 当前帧号 T1 T2 T3计算产生.注:BCCH频点不能参与跳频,因为FCCH\SCH\BCCH要不停的向小区所有手机进行广播.涉及的计算参数FN:为TDMA帧号(0~2715647)RFN:为缩减TDMA帧号19比特(信道编码前)RFN缩减算法:RFN=T1+T2+T3'T1=FN/(26×51)取整 T1(11bit) 范围0~2047T2=FN模26 T2(5bit) 范围0~25T3=FN模51 T3(6bit) 范围0~50T3'=(T3-1)/10 T3'(3bit) 范围0~4T1R: T1R=T1模64=(FN/(26×51)取整)模64 T1R(6bit)NBIN:NBIN=[log2(N)+1]取整 N需要的比特数HSN⊕T1R: HSN(6bit)异或T1R(6bit)RNTABLE():包含114个整数的函数表,定义如下表:跳频序列产生的算法:HSN=0(循环跳动)则:MAI(整数0…N-1):MAI=(FN+MAIO)模N 注:当循环跳动时,应避免使用N模13=0的N。
跳频可分为快速跳频和慢速跳频,在GSM中采用的是慢速跳频,其特点是按照固定的间隔改变一个信道使用的频率.
根据GSM的建议,基站无线信道的跳频是以每一个物理信道为基础的,因此对于移动台来说,只需要在每个帧的相应时隙跳变一次,其跳频速率为217跳/秒,它在一个时隙内用固定的频率发送和接收,然后在该时隙后需跳到下一个TDMA帧,由于监视其它基站需要时间,故允许跳频的时间约为1ms,收发频率为双工频率。
但对基站系统来说,每个基站中的TRX(收发信机)要同时于多个移动台通信,因此,对于每个TRX来说,能根据通信使用的物理信道,在其每个时隙上按照不同的跳频方案来进行跳变。
一、跳频的种类及各自实现的方法
GSM中的跳频可分为基带跳频和射频跳频两种。
在北电系统中采用的是射频跳频。
基带跳频是通过腔体合成器来实现的,而射频跳频是通过混合合成器来实现的。
当采用基带跳频时,它的原理是在真单元和载频单元之间加入了一个以时隙为基础的交换单元,通过把某个时隙的信号切换到相应地无线频率上来实现跳频,这种做法的特点是比较简单,而且费用也底。
但由于采用的腔体合成器它要求其每个发信机的频率都是固定发射的,当发信机要改动其频率时,只能人工调谐到新的频率上,其话音信号随着时间的变化使用不同频率发射机发射,收发信机在跳频总线上不停的扫描观察,当总线发现有要求使用某一频率时,总线就自动指向拥有该频率的发信机上来发送信号。
采用基带跳频的小区的载频数与该小区使用的频点数是一样的。
当采用射频跳频时,它是在通过对其每个TRX的频率合成器进行控制,使其在每个时隙的基础上按照不同的方案进行跳频。
它采用的混合合成器对频带的要求十分宽松,每个发信机都可使用一组相同的频率,采用不同的MAIO加以区分。
但它必须有一个固定发射携带有BCCH的频率的发信机,其他的发信机可随着跳频序列的序列值的改变而改变。
两者的区别是:
1、基带跳频采用的腔体合成器最多可配置8个发信机,而且衰耗小,此时衰耗仅为3.5dB;而射频跳频采用的混合合成器的容量较小,最多可配置4个发信机,而且衰耗大,当为H2D时,衰耗为4.5dB当为H4D 时,衰耗为8dB.显然,当基站配置较大时,采用混合合成器的基站的覆盖要小.
2、腔体合成器对频段的要求不如混合合成器灵活,混合合成器所带的发信机可以使用一组频率,频点的间隔要求为200 K;腔体合成器的发信机仅能使用固定的频率发射,而且所用频点的间隔要求大于600K.
3、基带跳频的每个发信机TX只能对应一个频点,而射频跳频的每个发信机TX能够发送所有参与跳频的频点。
当使用基带跳频时携带BCCH频点的TX若出现故障,则易导致整个小区的瘫痪,而在射频跳频时则不会出现这类情况,因为每个TX都能发送BCCH频点,携带BCCH信道的载频优先级最高,当该载频出现问题时,携带BCCH信道的TDMA帧,能够自动通过另一个载频发射出去。
二、跳频的优点
GSM采用跳频有两个原因,是因为它可起到频率分集和干扰源分集的作用。
1、跳频可起到频率分集的作用。
跳频是要保证同一个信息按几个频率发送,从而可提高了传输特性。
不同频率的信号所收到的衰落不同,而且随着频率差别增大时,衰落更加独立。
对于相距足够远的频率,它们可看做是完全独立的,通过跳频,包括信息一部分的所有突发脉冲不会被瑞利衰落以同一方式破坏。
当移动台以高速移动时,在同一信道上接收两个相邻突发脉冲期间(相隔8个时隙,即4.615ms),移动台位置的差别对于驱除信号瑞利变化的相关性以足够了,在这种情况下,跳频基本起不到什么作用.然而对于拥有大量手持机的用户的系统是很重要的,因为手持机的用户通常运动速度较慢,或处于静止状态,在此时跳频优越性就显示出来了,它所能提供的增益大概是在6.5dB左右.
2、跳频可起到干扰源分集作用
在业务量密集的地方,网络的容量将受到由于频率复用产生的干扰限制。
相对干扰比C/I值(载波电平/干扰电平)可能在呼叫之间变化很大。
载波电平随着移动台相对于基站的位置及移动台与基站之间障碍的数量而变化,干扰电平的变化依赖于此频率是否被附近蜂房的另一呼叫使用,它还随着干扰源距离、电平的变化而变化。
由于系统的目标是尽可能满足更多用户的需求,当不选用跳频时,如一频点出现干扰时,当用户占用该频点时就会造成通话质量使用户难以忍受,而当使用跳频时,该干扰情况就会被该小区的许多呼叫所共享,整个网络的性能将得到提高。
经分析使用跳频的网络可比不采用跳频的网络高出3dB 的增益。
三、跳频序列
在小区参数的定义中定义了两个频率组,一个称为小区分配表(CELL ALLOCATION)用来定义该小区所用到的所有频点,另一个被称为移动分配表(MOBILE ALLOCATION)用来定义参与跳频的所有频点。
在此值得注意的是,携带有BCCH的载频,不能用于跳频,因为它携带有FCCH、SCH及BCCH 信道,需要不停的向该小区的所有手机广播同步消息及系统消息。
在GSM规范中有两个参数用来定义跳频序列,分别是MAIO(移动分配指针偏移)和HSN(跳频序列号)。
MAIO因需描述跳频重复功能的起点,所以偏移的可能值与参与跳频的频率数一样多。
MA的频点数应在1到64之间,产生跳频序列要经过一个十分复杂的算法过程时,参与计算的参数有FN(当前的帧号及获得的描述帧号的T1、T2、T3值)、MAIO、HSN。
HSN值有64个不同的值,通常一个小区的信道应有相同的HSN值,不同的MAIO值,因为这是要避免同一小区信道之间的干扰,当同一小区出现相同的MAIO后将导致严重的指派失败率。
两个拥有相同HSN不同MAIO的信道,不会在同一突发脉冲使用相同的频率。
相反,当两个使用同一跳频组,MAIO 也相同的但HSN不同的信道,它只会对突发脉冲的1/n干扰。
MS可以由系统广播消息中提供的小区参数来根据算法导出跳频序列和小区的跳频序列号。
在使用同一跳频组的相邻小区中,应注意使用不同的HSN,该做法可获得干扰源分集增益。
但注意应尽量避开使用HSN=0的情况(它是循环跳频),因为它会导致低质量的干扰源分集。