2022-2023学年江苏省泰州市泰兴一中高三数学第一学期期末质量检测试题含解析
- 格式:doc
- 大小:1.96 MB
- 文档页数:20
2025届江苏省泰兴市第一高级中学数学高三上期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}|,A x x a a R =≤∈,{}|216xB x =<,若A B ,则实数a 的取值范围是( )A .∅B .RC .(],4-∞D .(),4-∞2.已知函数()()2,211,22xa x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩,满足对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围为( ) A .()1,+∞B .13,8⎛⎤-∞ ⎥⎝⎦C .13,8⎛⎫-∞ ⎪⎝⎭D .13,8⎛⎫+∞⎪⎝⎭3.已知向量(1,2),(3,1)a b =-=-,则( ) A .a ∥bB .a ⊥bC .a ∥(a b -)D .a ⊥( a b -)4.已知m ∈R ,复数113z i =+,22z m i =+,且12z z ⋅为实数,则m =( ) A .23-B .23C .3D .-35.已知数列{}n a 对任意的*n N ∈有111(1)n n a a n n +=-++成立,若11a =,则10a 等于( )A .10110B .9110C .11111D .122116.已知复数为纯虚数(为虚数单位),则实数( )A .-1B .1C .0D .27.已知集合{}2,1,0,1A =--,{}22*|,B x x a a N=≤∈,若A B ⊆,则a 的最小值为( )A .1B .2C .3D .48.在5678(1)(1)(1)(1)x x x x -+-+-+-的展开式中,含3x 的项的系数是( ) A .74B .121C .74-D .121-9.ABC 中,角,,A B C 的对边分别为,,a b c ,若1a =,30B =︒,27cos C -=ABC 的面积为( )A .32B .3C .7D .7210.在钝角ABC 中,角,,A B C 所对的边分别为,,a b c ,B 为钝角,若cos sin a A b A =,则sin sin A C +的最大值为( ) A .2B .98C .1D .7811.若()*13nx n N x x ⎛⎫+∈ ⎪⎝⎭的展开式中含有常数项,且n 的最小值为a ,则22aaa x dx --=⎰( ) A .36πB .812πC .252πD .25π12.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为 A .12B .13C .16D .112二、填空题:本题共4小题,每小题5分,共20分。
泰兴中学2022—2023学年秋学期高三年级第一次调研考试数 学 试 题(本试卷共4页,22小题,满分150分。
考试用时120分钟。
)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知命题p x >,1q ,则p 是q 的 A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件2.已知集合π{sin |0}2A x x =<≤,π{|0}2B x x =<≤,则AB =A .{1}B .{0}C .{0,1}D .{|01}x x <≤3.已知4z z +=,||z =z = A .12i + B .12i +或12i - C .2i +D .2i +或2i -4.曲线32113y x x =--的对称中心为A .7(1,)3--B .5(1,)3-C .23(2,)3--D .(3,1)-5.现给出一系列对应数据,表格如下:根据表中数据,若4log (202201261314520)x =⨯,则x 落于区间 A .(15,16)B .(22,23)C .(42,44)D .(44,46)6.已知抛物线24y x =在点处的切线与双曲线2222:1y x C a b -=(0,0)a b >>的一条渐近线平行,则C 的离心率为A .B .2C D 7.在空间直角坐标系O xyz -中,已知圆22:(2)(1)1A x y -+-=在平面xOy 内,(0,,2)C t ()t ∈R .若OAC △的面积为S ,以C 为顶点,圆A 为底面的几何体的体积为V ,则V S的最大值为ABCD8.设函数()f x 的定义域为R ,且(32)f x +是奇函数,3(1)f x +是偶函数,则一定有 A .(1)0f -= B .(3)0f = C .(4)0f = D .(5)0f =二、选择题:本题共4小题,每小题5分,共20分。
2022-2023学年高三上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知命题p :“关于x 的方程240x x a -+=有实根”,若p ⌝为真命题的充分不必要条件为31a m >+,则实数m 的取值范围是( )A .[)1,+∞B .1,C .(),1-∞D .(],1-∞2.已知纯虚数z 满足()122i z ai -=+,其中i 为虚数单位,则实数a 等于( ) A .1-B .1C .2-D .23.已知函数()2()2ln (0)f x a e x x a =->,1,1D e ⎡⎤=⎢⎥⎣⎦若所有点(,())s f t ,(,)s t D ∈所构成的平面区域面积为2e 1-,则a =( )A .eB .1e 2- C .1D .2e e - 4.某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[20,40)(单位:元)的同学有34人,则n 的值为( )A .100B .1000C .90D .905.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的y 的值为2,则输入的x 的值为( )A .74B .5627C .2D .164816.设双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为12,F F ,点()()0,0E t t >.已知动点P 在双曲线C 的右支上,且点2,,P E F 不共线.若2PEF ∆的周长的最小值为4b ,则双曲线C 的离心率e 的取值范围是( )A .23,3⎛⎫+∞ ⎪ ⎪⎝⎭B .231,3⎛⎤⎥ ⎝⎦C .)3,⎡+∞⎣D .(1,3⎤⎦7.如图在直角坐标系xOy 中,过原点O 作曲线()210y x x =+≥的切线,切点为P ,过点P 分别作x 、y 轴的垂线,垂足分别为A 、B ,在矩形OAPB 中随机选取一点,则它在阴影部分的概率为( )A .16B .15C .14D .128.我国古代数学著作《九章算术》中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗为十升).问,米几何?”下图是解决该问题的程序框图,执行该程序框图,若输出的S =15(单位:升),则输入的k 的值为( ) A .45B .60C .75D .1009.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:2222(1)(21)1236n n n n ++++++=)A .1624B .1024C .1198D .156010.已知等差数列{}n a 的前n 项和为n S ,若1512,90a S ==,则等差数列{}n a 公差d =( ) A .2B .32C .3D .411.已知m ,n 是两条不重合的直线,α,β是两个不重合的平面,则下列命题中错误的是( ) A .若m //α,α//β,则m //β或m β⊂B .若m //n ,m //α,n α⊄,则n //αC .若m n ⊥,m α⊥,n β⊥,则αβ⊥D .若m n ⊥,m α⊥,则n //α 12.设全集U=R ,集合()2log 41{|}A x x =-≤,()()35{|}0B x x x =-->,则()U B A =( )A .[2]5,B .[2]3,C .[)24,D .[)34,二、填空题:本题共4小题,每小题5分,共20分。
一、选择题(每题5分,共50分)1. 已知函数 $f(x) = x^3 - 3x^2 + 4$,则 $f(x)$ 的对称中心为()A. $(0, 4)$B. $(1, 2)$C. $(1, -2)$D. $(0, -2)$2. 若 $a, b, c$ 是等差数列,且 $a + b + c = 12$,$ab + bc + ca = 36$,则$a^2 + b^2 + c^2$ 的值为()A. 108B. 90C. 72D. 543. 下列命题中正确的是()A. 函数 $y = x^2$ 在定义域内单调递增B. 函数 $y = \log_2 x$ 在定义域内单调递减C. 函数 $y = e^x$ 在定义域内单调递增D. 函数 $y = \frac{1}{x}$ 在定义域内单调递增4. 已知向量 $\vec{a} = (2, 3)$,$\vec{b} = (1, 2)$,则 $\vec{a} \cdot \vec{b}$ 的值为()A. 7B. 5C. 3D. 15. 若 $x^2 - 2ax + 1 = 0$ 有两个实根,则 $a$ 的取值范围是()A. $a \leq 1$B. $a \geq 1$C. $a > 1$D. $a < 1$6. 下列不等式中正确的是()A. $2x + 3 > 5$ 当且仅当 $x > 1$B. $2x + 3 < 5$ 当且仅当 $x < 1$C. $2x + 3 \leq 5$ 当且仅当 $x \leq 1$D. $2x + 3 \geq 5$ 当且仅当 $x \geq 1$7. 已知函数 $f(x) = \frac{x^2 - 1}{x - 1}$,则 $f(x)$ 的定义域为()A. $x \neq 1$B. $x > 1$C. $x < 1$D. $x \geq 1$8. 若 $log_2 x + log_3 y = 1$,则 $x$ 和 $y$ 的取值范围是()A. $x > 1, y > 1$B. $x > 1, y < 1$C. $x < 1, y > 1$D. $x < 1, y < 1$9. 下列函数中,与 $y = \sqrt{x}$ 的图像相似的函数是()A. $y = \sqrt[3]{x}$B. $y = \sqrt{x + 1}$C. $y = \sqrt{x^2 - 1}$D. $y = \sqrt{x^2}$10. 已知等差数列 $\{a_n\}$ 的前 $n$ 项和为 $S_n$,若 $S_5 = 50$,$S_8 = 80$,则 $a_6 + a_7$ 的值为()A. 10B. 20C. 30D. 40二、填空题(每题5分,共50分)11. 若 $log_4 3 + log_3 2 = 1$,则 $log_2 3$ 的值为 ________。
2022-2023学年高三上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集U =R ,集合{|(1)(3)0}A x x x =--≥,11|24xB x ⎧⎫⎪⎪⎛⎫=>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭.则集合()U A B 等于( )A .(1,2)B .(2,3]C .(1,3)D .(2,3)2.已知0.212a ⎛⎫= ⎪⎝⎭,120.2b -=,13log 2c =,则( )A .a b c >>B .b a c >>C .b c a >>D .a c b >>3.集合{}2|4,M y y x x ==-∈Z 的真子集的个数为( )A .7B .8C .31D .324.如图所示点F 是抛物线28y x =的焦点,点A 、B 分别在抛物线28y x =及圆224120x y x +--=的实线部分上运动, 且AB 总是平行于x 轴, 则FAB ∆的周长的取值范围是( )A .(6,10)B .(8,12)C .[6,8]D .[8,12]5.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式1()3V S S S S h =+下下上上•). A .2寸B .3寸C .4寸D .5寸()2n到直线()10x n n ++=的距离之和的最大值为n a ,若数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S m <恒成立,则实数m 的取值范围是( ) A .3,4⎛⎫+∞⎪⎝⎭B .3,4⎡⎫+∞⎪⎢⎣⎭C .2,3⎛⎫+∞⎪⎝⎭D .3,2⎡⎫+∞⎪⎢⎣⎭7.已知椭圆22:13x C y +=内有一条以点11,3P ⎛⎫ ⎪⎝⎭为中点的弦AB ,则直线AB 的方程为( )A .3320x y --=B .3320x y -+=C .3340x y +-=D .3340x y ++=8.2019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院A ,医生乙只能分配到医院A 或医院B ,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有( ) A .18种B .20种C .22种D .24种9.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F 、,圆222x y b +=与双曲线在第一象限内的交点为M ,若123MF MF =.则该双曲线的离心率为A .2B .3C D 10.已知斜率为2的直线l 过抛物线C :22(0)y px p =>的焦点F ,且与抛物线交于A ,B 两点,若线段AB 的中点M 的纵坐标为1,则p =( )A .1BC .2D .411.设3log 0.5a =,0.2log 0.3b =,0.32c =,则,,a b c 的大小关系是( ) A .a b c <<B .a c b <<C .c a b <<D .c b a <<12.祖暅原理:“幂势既同,则积不容异”.意思是说:两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A 、B 为两个同高的几何体,:p A 、B 的体积不相等,:q A 、B 在等高处的截面积不恒相等.根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。
14.已知()x axf x e e =+是偶函数,则()f x 的最小值为___________.15.根据如图所示的伪代码,输出I 的值为______.16.如图,在矩形ABCD 中,24==AD AB ,E 是AD 的中点,将ABE △,CDE △分别沿BE CE ,折起,使得平面ABE ⊥平面BCE ,平面CDE ⊥平面BCE ,则所得几何体ABCDE 的外接球的体积为__________.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,在长方体1111ABCD A B C D -中,1224AB BC AA ===,E 为11A D 的中点,N 为BC 的中点,M 为线段11C D 上一点,且满足11114MC D C =,F 为MC 的中点.(1)求证://EF 平面1A DC ;(2)求二面角1N AC F --的余弦值. 18.(12分)某工厂生产一种产品的标准长度为10.00cm ,只要误差的绝对值不超过0.03cm 就认为合格,工厂质检部抽检了某批次产品1000件,检测其长度,绘制条形统计图如图:(1)估计该批次产品长度误差绝对值的数学期望;(2)如果视该批次产品样本的频率为总体的概率,要求从工厂生产的产品中随机抽取2件,假设其中至少有1件是标准长度产品的概率不小于0.8时,该设备符合生产要求.现有设备是否符合此要求?若不符合此要求,求出符合要求时,生产一件产品为标准长度的概率的最小值.19.(12分)在四棱锥P ABCD -中,底面ABCD 是平行四边形,PD ⊥底面5,1,5,sin 5ABCD PD AD AB ABD ===∠=.(1)证明:PA BD ⊥;(2)求二面角A PB C --的正弦值.20.(12分)已知ABC ∆是等腰直角三角形,,22ACB AC π∠==.,D E 分别为,AC AB 的中点,沿DE 将ADE ∆折起,得到如图所示的四棱锥1A BCDE -.(Ⅰ)求证:平面1A DC ⊥平面1A BC .(Ⅱ)当三棱锥1C A BE -的体积取最大值时,求平面1A CD 与平面1A BE 所成角的正弦值. 21.(12分)已知函数2()22ln f x bx ax x =-+.(1)若曲线()y f x =在(1,(1))f 处的切线为24y x =+,试求实数a ,b 的值; (2)当1b =时,若()y f x =有两个极值点1x ,2x ,且12x x <,52a ≥,若不等式12()f x mx ≥恒成立,试求实数m 的取值范围.22.(10分)某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从,,,,A B C D E 五所高校中任选2所.(2)若已知甲同学特别喜欢A 高校,他必选A 校,另在,,,B C D E 四校中再随机选1所;而同学乙和丙对五所高校没有偏爱,因此他们每人在五所高校中随机选2所. (i )求甲同学选D 高校且乙、丙都未选D 高校的概率;(ii )记X 为甲、乙、丙三名同学中选D 高校的人数,求随机变量X 的分布列及数学期望.参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A 【解析】 先算出集合UA ,再与集合B 求交集即可.【详解】因为{|3A x x =≥或1}x ≤.所以{|13}UA x x =<<,又因为{}|24{|2}xB x x x =<=<. 所以(){|12}UA B x x ⋂=<<.故选:A. 【点睛】本题考查集合间的基本运算,涉及到解一元二次不等式、指数不等式,是一道容易题. 2、B 【解析】利用指数函数和对数函数的单调性,将数据和0,1做对比,即可判断. 【详解】由于0.2110122⎛⎫⎛⎫<<= ⎪⎪⎝⎭⎝⎭,120.2-==1133log 2log 10<=故b a c >>. 故选:B. 【点睛】本题考查利用指数函数和对数函数的单调性比较大小,属基础题. 3、A 【解析】计算{}M =,再计算真子集个数得到答案. 【详解】{}{}|M y y x ==∈=Z ,故真子集个数为:3217-=.故选:A . 【点睛】本题考查了集合的真子集个数,意在考查学生的计算能力. 4、B 【解析】根据抛物线方程求得焦点坐标和准线方程,结合定义表示出AF ;根据抛物线与圆的位置关系和特点,求得B 点横坐标的取值范围,即可由FAB ∆的周长求得其范围. 【详解】抛物线28y x =,则焦点()2,0F ,准线方程为2x =-,根据抛物线定义可得2A AF x =+,圆()22216x y -+=,圆心为()2,0,半径为4,点A 、B 分别在抛物线28y x =及圆224120x y x +--=的实线部分上运动,解得交点横坐标为2.点A 、B 分别在两个曲线上,AB 总是平行于x 轴,因而两点不能重合,不能在x 轴上,则由圆心和半径可知()2,6B x ∈, 则FAB ∆的周长为246A B A B AF AB BF x x x x ++=++-+=+, 所以()68,12B x +∈, 故选:B. 【点睛】本题考查了抛物线定义、方程及几何性质的简单应用,圆的几何性质应用,属于中档题. 5、B 【解析】试题分析:根据题意可得平地降雨量22219(106)3314πππ⨯⨯+==,故选B.考点:1.实际应用问题;2.圆台的体积. 6、B 【解析】由于,n n A B到直线()10x n n ++=的距离和等于,n n A B 中点到此直线距离的二倍,所以只需求,n n A B 中点到此直线距离的最大值即可。
再得到,n n A B 中点的轨迹是圆,再通过此圆的圆心到直线距离,半径和,n n A B 中点到此直线距离的最大值的关系可以求出n a 。
再通过裂项的方法求1n a ⎧⎫⎨⎬⎩⎭的前n 项和,即可通过不等式来求解m 的取值范围.【详解】由22n n n OA OB ⋅=-,得2cos 2n n n n n A OB ⋅⋅∠=-,120n n A OB ∴∠=.设线段n n A B 的中点n C ,则2n n OC =,nC ∴在圆2224n x y +=上,n n A B 到直线()10x n n ++=的距离之和等于点n C 到该直线的距离的两倍,点n C 到直线距离的最大值为圆心到直线的距离与圆的半径之和,而圆2224n x y+=的圆心(0,0)到直线()10x n n ++=的距离为()12n n d +==,()212222n n n n a n n +⎡⎤∴=+=+⎢⎥⎣⎦,211111222n a n n n n ⎛⎫∴==- ⎪++⎝⎭,1231111n n S a a a a ∴=+++⋅⋅⋅+=1111111112324352n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+⋅⋅⋅+- ⎪ ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦11113122124n n ⎛⎫=+--< ⎪++⎝⎭. 34m ∴≥. 故选:B 【点睛】本题考查了向量数量积,点到直线的距离,数列求和等知识,是一道不错的综合题. 7、C 【解析】设()11,A x y ,()22,B x y ,则221113x y +=,222213x y +=,相减得到22033k +=,解得答案. 【详解】设()11,A x y ,()22,B x y ,设直线斜率为k ,则221113x y +=,222213x y +=, 相减得到:()()()()1212121203x x x x y y y y -+++-=,AB 的中点为11,3P ⎛⎫⎪⎝⎭,即22033k +=,故1k =-,直线AB 的方程为:43y x =-+. 故选:C . 【点睛】本题考查了椭圆内点差法求直线方程,意在考查学生的计算能力和应用能力. 8、B 【解析】分两类:一类是医院A 只分配1人,另一类是医院A 分配2人,分别计算出两类的分配种数,再由加法原理即可得到答案. 【详解】根据医院A 的情况分两类:第一类:若医院A 只分配1人,则乙必在医院B ,当医院B 只有1人,则共有2232C A 种不同 分配方案,当医院B 有2人,则共有1222C A 种不同分配方案,所以当医院A 只分配1人时, 共有2232C A +122210C A =种不同分配方案;第二类:若医院A 分配2人,当乙在医院A 时,共有33A 种不同分配方案,当乙不在A 医院, 在B 医院时,共有1222C A 种不同分配方案,所以当医院A 分配2人时, 共有33A +122210C A =种不同分配方案; 共有20种不同分配方案. 故选:B 【点睛】本题考查排列与组合的综合应用,在做此类题时,要做到分类不重不漏,考查学生分类讨论的思想,是一道中档题. 9、D本题首先可以通过题意画出图像并过M 点作12F F 垂线交12F F 于点H ,然后通过圆与双曲线的相关性质判断出三角形2OMF 的形状并求出高MH 的长度,MH 的长度即M 点纵坐标,然后将M 点纵坐标带入圆的方程即可得出M 点坐标,最后将M 点坐标带入双曲线方程即可得出结果。