山西省大同市矿区2017-2018学年七年级数学下学期期中试题 新人教版
- 格式:doc
- 大小:250.00 KB
- 文档页数:5
山西省大同市七年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)若∠A=34°,则∠A的补角为()A . 56°B . 146°C . 156°D . 166°2. (2分) (2016九上·沙坪坝期中) 下列计算正确的是()A . (a2)3=a5B . (ab2)2=ab4C . a4÷a=a4D . a2•a2=a43. (2分)下列说法中正确命题有()①一个角的两边分别垂直于另一个角的两边,则这两个角相等.②已知甲、乙两组数据的方差分别为:S2甲=0.12,S2乙=0.09 ,则甲的波动大.③等腰梯形既是中心对称图形,又是轴对称图形.④Rt△ABC中,∠C=90°,两直角边a,b分别是方程x2-7x+7=0的两个根,则AB边上的中线长为.A . 0个B . 1个C . 2个D . 3个4. (2分) (2019七下·邵武期中) 方程组的解是,则m的值是()A . 3B . -3C . 2D . -25. (2分)如图,∠AOB是直角,∠AOC=38°,OD平分∠BOC,则∠AOD的度数为()A . 52°B . 38°C . 64°D . 26°6. (2分) (2017七下·东城期中) 如图,,,则、、的关系为().A .B .C .D .7. (2分)为了美化城市,经统一规划,将一正方形草坪的南北方向增加3m,东西方向缩短3m,则改造后的长方形草坪面积与原来正方形草坪面积相比()A . 增加6m2B . 减少6m2C . 增加9m2D . 减少9m28. (2分)如果a+b=5,ab=1,则a2+b2的值等于()A . 27B . 25C . 23D . 219. (2分)如图,在矩形ABCD中,AB=4,BC=5,点E、F、G、H分别在已知矩形的四条边上,且四边形EFGH也是矩形,GF=2EF.若设AE=a,AF=b,则a与b满足的关系为()A .B .C .D .10. (2分)一批同学和部分家长结伴参加夏令营,同学和家长一共18人,同学数是家长数的2倍少3人.设家长有x人,同学有y人,根据题意,下面列出的方程组正确的是()A .B .C .D .11. (2分)(2012·遵义) 如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A . πcm2B . πcm2C . cm2D . cm212. (2分)下列计算正确的是()A . (2x﹣3)2=4x2+12x﹣9B . (4x+1)2=16x2+8x+1C . (a+b)(a﹣b)=a2+b2D . (2m+3)(2m﹣3)=4m2﹣3二、填空题 (共6题;共8分)13. (1分) (2018七下·东台期中) 肥皂泡沫的泡壁厚度大约是0.0007mm,则数据0.0007用科学记数法表示为________14. (2分)若是二元一次方程,则m=________,n=________.15. (1分)(2018·重庆模拟) 如图,甲和乙同时从学校放学,两人以各自速度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册.于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距________米.16. (1分)如图,∠C=110°,请添加一个条件,使得AB∥CD,则符合要求的其中一个条件可以是________17. (2分) (2020七下·无锡月考)(1)若2•4m•8m=221,则m=________.(2)已知am=3,an=5,则am-n=________.18. (1分) (2019八上·秀洲期中) 如图,直线,的顶点在直线上,.若,,则 ________.三、解答题 (共10题;共54分)19. (5分) (2019七上·松江期末) 计算:(a+b)(3a-2b)-b(a-b).20. (5分) (2017七下·南沙期末) 解方程组.21. (10分) (2019七上·周口期中) 年月日晚,正值中秋佳节,我国“天宫二号”空间实验室顺利升空,同学们倍受鼓舞,某同学绘制了如图所示的火箭模型截面图,下面是梯形,中间是长方形,上面是三角形.(1)用含有以、的代数式表示该截面的面积.(2)当,时,求这个截面的面积.22. (5分)(2018·青岛模拟) 如图,已知△ABC,∠B=40°.在图中作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F.23. (1分) (2017七下·常州期中) 如图,四边形ABCD中,AB∥CD,∠B=60°,当∠D=________°时,AD∥BC.24. (5分)(2017·大连模拟) 有大小两种水桶,3个大桶与4个小桶一次最多可以装水220L,6个大桶与7个小桶一次最多可以装水415L.2个大桶与3个小桶一次最多可以装多少水?25. (5分) (2017八上·夏津开学考) 今年春季我县大旱,导致大量农作物减产,下图是一对农民父子的对话内容,请根据对话内容分别求出该农户今年两块农田的产量分别是多少千克?26. (3分) (2018七上·桥东期中) 有4张写着以下数字的卡片,请按要求抽出卡片,完成下列各题:(1)从中取出2张卡片,使这2张卡片上数字之积最大,最大值是________.(2)从中取出2张卡片,使这2张卡片上数字之差最小,最小值是________.(3)从中取出4张卡片,将这4个数字进行加、减、乘、除或乘方等混合运算,使结果为24,请写出一种符合要求的运算式子________.(注:4个数字都必须用到且只能用一次.)27. (5分) (2019七下·顺德月考) 已知:如图,,求证:AD∥BC28. (10分)(2017·兰州) 如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE 交AD于点F.(1)求证:△BDF是等腰三角形;(2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共8分)13-1、14-1、15-1、16-1、17-1、17-2、18-1、三、解答题 (共10题;共54分)19-1、20-1、21-1、21-2、22-1、23-1、24-1、25-1、26-1、26-2、26-3、27-1、28-1、28-2、第11 页共11 页。
山西省2017~2018学年第二学期七年级期中检测卷( 时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1. 下列方程中,是一元一次方程的是( )A. 53=-xB.2=+y xC.32122-=+x x D.12=x2. 下列方程中,解为1=x 的方程是( )A. 01=+xB.32=-xC.011.0=-xD.212+=+x x 3. 根据等式的性质,下列变形错误的是( ) A. 如果y x =,那么11+=+y x B. 如果y x =,那么11-=-y xC. 如果y x =,那么22y x = D. 如果y x =,那么y x -=-4. 若⎩⎨⎧-==21y x 是方程32=+y mx 的解,则m 的值为( )A. -7B.7C.-1D.15. 下列个数中 ,能使不等式01<+x 成立的是( ) A ,1 B.-1 C.0 D.-26. 解方程4121xx =-+时,去分母 后正确的是( ) A. x x =-+412 B.x x =-+112 C.()x x =-+412 D.()x x =-+112 7. 不等式3x+1≤4的解集在数轴上表示正确的是( )8. 下列方程组中,是二元一次方程组的是( )A. ⎩⎨⎧==-21y z xB.⎩⎨⎧=--=221x y xC.⎩⎨⎧==+x xy y x 1D.⎩⎨⎧==-102y y x9. 已知y x ,满足方程组⎩⎨⎧=-=+823126y x y x ,则y x +的值是( )A.3B.7C.5D.910. 《九章算术》是中国传统数学中最重要的著作,奠定了中国传统数学的基本框架。
《九章算术》中记载:“今有善行者一百步,不善行者行六十步。
今不善行者先行一百步,善行者追之,问几何步及之?”意思是:走路快的人走100步时,走路慢的人只走60步,若走路慢的人先走100步,则走路快的人要走多少步才能追上?设走路快的人要走x 步才能追上,则下面所列方程正确的是( )A.x x =+⨯10060100 B.x x=+⨯10010060 C.x x =-⨯10010060 D.x x =-⨯10060100二、填空题(每小题3分,共15分)11.若3-=x 是方程52=+a x 的解,则a 的值为 。
大同市七年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2017·桥西模拟) 某工厂2015年产品的产量为100吨,该产品产量的年平均增长率为x(x>0),设2017年该产品的产量为y吨,则y关于x的函数关系式为()A . y=100(1﹣x)2B . y=100(1+x)2C . y=D . y=100+100(1+x)+100(1+x)22. (2分)函数中,自变量x的取值范围是()A . 全体实数B . x≠1C . x>1D . x≥13. (2分)如图,已知直线,过点作轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点,过点作y轴的垂线交直线l于点,过点作直线的垂线交y轴于点,…,按此作法继续下去,则点的坐标为()A .B .C .D .4. (2分)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1 , O2 , O3 ,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2 015秒时,点P的坐标是()A . (2 014,0)B . (2 015,-1)C . (2 015,1)D . (2 016,0)5. (2分)(2011·绍兴) 李老师从“淋浴龙头”受到启发.编了一个题目:在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A,B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,2),PM与x轴交于点N(n,0),如图3.当m= 时,求n的值.你解答这个题目得到的n值为()A . 4﹣2B . 2 ﹣4C .D .6. (2分)如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1 ,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为()A . (0,64)B . (0,128)C . (0,256)D . (0,512)7. (2分)在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1 ,作正方形A1B1C1C;延长C1B1交x轴于点A2 ,作正方形A2B2C2C1 ,…,按这样的规律进行下去,第2013个正方形的面积为()A .B .C .D .8. (2分) (2017八上·陕西期末) 如图,在平面直角坐标系中,以原点为圆心的同心圆的半径由内向外依次为,,,,…,同心圆与直线和分别交于,,,,…,则的坐标是()A .B .C .D .二、填空题 (共6题;共6分)9. (1分)方程2x2+3x-1=0的两个根为x1 , x2 ,则 =________.10. (1分) (2019九上·沭阳月考) 已知m是方程x2-x-1=0的一个根,则代数式5m2-5m+2015的值为________11. (1分) (2019九上·未央期末) 用配方法将方程x2-4x+1=0化成(x+m)2=n的形式(m、n为常数),则=________12. (1分)新定义:[a , b]为一次函数y=ax+b(a≠0,a , b为实数)的“关联数”.若“关联数”[1,m-3]的一次函数是正比例函数,则关于x的方程的解为________ .13. (1分) (2017七下·高阳期末) 在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点为整点,若整点P(,)在第四象限,则m的值为________;14. (1分) (2017七下·个旧期中) 如图,要使AD∥BC,需添加一个条件,这个条件可以是________.(只需写出一种情况)三、解答题 (共9题;共68分)15. (10分) (2019九上·平遥月考) 关于x的一元二次方程x2-3x+k=0有实数根(1)求k的取值范围:(2)如果k是符合条件的最大整数,且一元二次方程(m-1)x2+x+m-3=0与方程x2-3x+k=0有一个相同的根,求此时m的值。
2017-2018学年山西省大同市矿区七年级(下)期中数学试卷一、选择题(每小题3分,共30分) 1.(3分)如图,1∠与2∠是对顶角的是()A .B .C .D .2.(3分)在下列各式中正确的是( )A 2=- B .3= C 8= D 2=3.(3分)如图所示,点E 在A C 的延长线上,下列条件中能判断//A BC D的是()A .3A ∠=∠B .12∠=∠C .DD C E∠=∠D .180DA C D ∠+∠=︒4.(3分)平面直角坐标系中,点(2,)A a -位于x 轴的上方,则a 的值可以是( )A .0B .1-C D .3±5.(3分)在 0 0.101001⋯,2227,2π 6 个数中, 无理数有()A . 1 个B . 2 个C . 3 个D . 4 个6.(3()A .2B .4-C .4±D .2±7.(31是a的相反数,那么a 的值是()A.1-B.1+C.D8.(3分)在平面直角坐标系中,点(3,5)A-所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限9.(3分)已知点(,)-在第()象限.M a b在第三象限,则点(,)N b aA.一B.二C.三D.四10.(3分)已知点(1,0)B,点P在x轴上,且PABA,(0,2)∆的面积为5,则点P的坐标是()A.(4,0)-B.(6,0)C.(4,0)--或(6,0)D.(0,12)或(0,8)二、填空题(每小题3分,共15分)11.(3分)36的平方根是;的算术平方根是;=.12.(3分)如果两个角是对顶角,那么这两个角相等,是(真或假)命题,此命题的题设是,结论是.13.(344.90≈14.20≈.14.(3分)已知点P在第四象限,且到x轴的距离是3,到y轴的距离是2,则点P的坐标为.15.(3分)如图所示第1个图案是由黑白两种颜色的正六边形的地面砖组成,第2个、第3个图案可以看作是第1个图案经过平移得到的,那么第4个图案中白色六边形地面砖块,第n个图案中白色地面砖块.三、解答题(共55分)16.(20分)解方程(1)225x=(2)3--+=-x8(1)225计算:(3)|+(4(5|1-(6)|1--17.(9分)如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xO y ,按要求解答下列问题:(1)写出A B C ∆三个顶点的坐标;(2)画出A B C ∆向右平移6个单位后的图形△111A B C ; (3)求A B C ∆的面积.18.(6分)已知n M=3m+的算术平方根,24m n N-=2n -的立方根,试求MN-的值.19.(10分)如图,已知A D B C⊥于D ,E GB C⊥于G ,1E ∠=∠.试说明:A D 平分B A C ∠.20.(10分)如图①,在平面直角坐标系中,(,0)A a ,(,2)C b ,且满足2(2)0a++=,过C 作C Bx⊥轴于B .(1)求三角形A B C 的面积; (2)如图②,若过B 作//B DA C交y 轴于D ,且A E ,D E 分别平分C A B ∠,O D B ∠,求AED∠的度数;(3)在y 轴上是否存在点P ,使得三角形A C P 和三角形A B C 的面积相等?若存在,求出P点的坐标;若不存在,请说明理由.。
山西省大同市七年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列方程组中不是二元一次方程组的是()A .B .C .D .2. (2分)若x2a-3b+2y5a+b-10=11=0是二元一次方程,那么的a、b值分别是()A . 2,1B . 0,-1C . 1,0D . 2,-33. (2分)已知-5a2mb和7b3-na4是同类项,则m+n的值是()A . 2B . 3C . 4D . 54. (2分)如图,将正方形ABCD的一角折叠,折痕为AE,∠BAD比大∠BAE大48°.设∠BAD和∠BAE的度数分别为x、y,那么x、y所适合的一个方程组是()A .B .C .D .5. (2分)下列计算正确的是()A . (a4)2=a6B . a+2a=3a2C . a7÷a2=a5D . a(a2+a+1)=a3+a26. (2分)(2016·福田模拟) 下列计算正确的是()A . (a2)3=a5B . a2•a=a3C . a6÷a3=a2D . (ab)2=ab27. (2分)下列各式从左到右的变形为分解因式的是()A . m2-m-6=(m+2)(m-3)B . (m+2)(m-3)=m2-m-6C . x2+8x-9=(x+3)(x-3)+8xD . 18x3y2=3x3y2·68. (2分)把代数式a2b﹣b3分解因式,结果正确的是()A . 2b(a+b)B . b(a﹣b)C . b(a2﹣b2)D . b(a+b)(a﹣b)9. (2分) (2016八上·肇庆期末) 下列式子中是完全平方式的是()A . a2-ab-b2B . a2+2ab+3C . a2-2b+b2D . a2-2a+110. (2分) (2016九上·无锡期末) 二次函数y=x2的图象向上平移2个单位,得到新的图象的二次函数表达式是()A . y=x2-2B . ,y=(x-2)2C . y=x2+2D . y=(x+2)2二、填空题 (共8题;共9分)11. (2分)若方程4xm﹣n﹣5ym+n=6是二元一次方程,则m=________ ,n=________12. (1分) (2016八上·河源期末) 已知:a、b是常数,若关于m、n的二元一次方程组的解是,则关于x、y的二元一次方程组的解是________.13. (1分)(2016·新化模拟) 已知m+n=3,m﹣n=2,那么m2﹣n2的值是________.14. (1分) (2019八下·交城期中) 计算: = ________.15. (1分) (2015八上·平邑期末) 分解因式:a2b﹣b3=________.16. (1分) (2018九下·江阴期中) 分解因式:4x2-16=________17. (1分) (2016八上·宜兴期中) 如图为某楼梯的侧面,测得楼梯的斜长AB为5米,高BC为3米,计划在楼梯表面铺地毯,地毯的长度至少需要________米.18. (1分)(2019·平谷模拟) 超市中有A、B两种饮料,小洋买了4瓶A种饮料,3瓶B种饮料,一共花了16元,其中B种饮料比A种饮料贵0.2元,若设A种饮料的单价为x元,B种饮料的单价为y元,可列方程组为________.三、解答题 (共8题;共60分)19. (10分)阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组;(2)已知x,y满足方程组,求xy的值.20. (5分)(1)计算:(2a+b)(a﹣b)﹣(8a3b﹣4a2b2)÷4ab(2)分解因式:x3﹣9xy2 .21. (10分) (2017八上·梁子湖期末) 分解因式:(1) 6xy2﹣9x2y﹣y3;(2) 16x4﹣1.22. (5分)解方程组:.23. (10分)利用我们学过的知识,可以导出下面这个形式优美的等式:a2+b2+c2-ab-bc-ac= [(a-b)2+(b-c)2+(c-a)2],该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.(1)请你检验这个等式的正确性;(2)若a=2 016,b=2 017,c=2 018,你能很快求出a2+b2+c2-ab-bc-ac的值吗?24. (5分)有一个圆形的花园,其半径为4米,现要扩大花园,将其半径增加2米,这样花园的面积将增加多少平方米?25. (5分)已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.26. (10分) (2017·吴忠模拟) 某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共60分)19-1、19-2、20-1、21-1、21-2、22-1、23-1、23-2、24-1、25-1、26-1、26-2、。
2017-2018学年七年级(下)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.下列各式计算正确的是()A.2a3•a3=2 B.a3•a2=a6C.(a3)2=a9 D.a6÷a3=a32.∠A的补角是125°,则它的余角是()A.54°B.35°C.25°D.以上均不对3.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°4.下列算式能用平方差公式计算的是()A.(3a+b)(3b﹣a)B.(a+b)(a﹣b)C.(2x﹣y)(﹣2x+y)D.(m+n)(﹣m ﹣n)5.下列说法中正确的个数有()①两点之间的所有连线中,线段最短;②过一点有且只有一条直线与已知直线垂直;③平行于同一直线的两条直线互相平行;④直线外一点到这条直线的垂线段叫做点到直线的距离.A.4个B.3个C.2个D.1个6.若x2+ax+9=(x+3)2,则a的值为()A.3 B.±3 C.6 D.±67.如图,直线AB∥CD,∠B=25°,∠D=37°,则∠E=()A.25°B.37°C.62°D.12°8.2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)9.(﹣2xy)4的计算结果是______.10.一种细菌半径是0.0000047米,用科学记数法表示为______米.11.如图,在立定跳远后,体育老师是这样测量运动员的成绩的,用一块直角三角板的一边附在跳线上,另一边与拉的皮尺重合,这样做的理由是______.12.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是______.13.长方形的周长为24cm,其中一边为x(其中x>0),面积为ycm2,则这样的长方形中y与x的关系式可以写为______.14.如图,已知AB、CD相交于点O,OE⊥AB,∠EOC=28°,则∠AOD=______度.15.图象中所反映的过程是:张强从家跑步取体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.则体育场力张强家______千米,张强在体育场锻炼了______分钟,张强从早餐店回家的平均速度是______千米/小时.16.若a m=﹣2,a n=﹣,则a2m+3n=______.三、解答题(共7小题,满分52分)17.计算:(1)(π﹣3.14)0﹣(﹣)﹣2+52016×(﹣0.2)2015(2)201×199(利用公式计算)(3)先化简,再求值:[(2x+y)(2x﹣y)﹣(3x+y)(x﹣2y)﹣x2]÷(﹣2y),其中x=2,y=﹣1.18.按要求用尺规作图并填空(保留作图痕迹):如图,点P是∠AOB边OA上一点.过点P作直线PC∥BO.你的作图方法使PC∥BO的依据是______.19.已知(a x)y=a6,(a x)2÷a y=a3(1)求xy和2x﹣y的值;(2)求4x2+y2的值.20.在学习地理时,我们知道:“海拔越高,气温越低”,下表是海拔高度h(千米)与此高(1)请写出气温t与海拔高度h的关系式;(2)2014年3月8日,马航MH370航班失去联系,据报道称,马航MH370航班失去联系前飞行高度10668米,请计算在该海拔高度时的气温大约是多少?(3)当气温是零下40℃时,其海拔高度是多少?21.如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,求该平行四边形的面积.22.如图,已知CF⊥AB于F,ED⊥AB于D,∠1=∠2,求证:FG∥BC.23.已知动点P以每秒2cm的速度沿如图甲所示的边框按从B﹣C﹣D﹣E﹣F﹣A的路径移动,相应的△ABP的面积S与关于时间t的图象如图乙所示,若AB=6cm,求:(1)BC长为多少cm?(2)图乙中a为多少cm2?(3)图甲的面积为多少cm2?(4)图乙中b为多少s?七年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.下列各式计算正确的是()A.2a3•a3=2 B.a3•a2=a6C.(a3)2=a9 D.a6÷a3=a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;单项式乘多项式.【分析】依据同底数幂的乘法、幂的乘方、同底数幂的除法法则即可判断.【解答】解:A、2a3•a3=2a6,故A错误;B、a3•a2=a5,故B错误;C、(a3)2=a6,故C错误;D、a6÷a3=a3,故D正确.故选:D.2.∠A的补角是125°,则它的余角是()A.54°B.35°C.25°D.以上均不对【考点】余角和补角;度分秒的换算.【分析】先求出∠A的度数,再由余角的定义即可得出结论.【解答】解:∵∠A的补角是125°,∴∠A=180°﹣125°=55°,∴它的余角=90°﹣55°=35°.故选B.3.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°【考点】平行线的判定.【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析即可.【解答】解:A、根据内错角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;B、∠2=∠3,不能判断直线l1∥l2,故此选项符合题意;C、根据同位角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;D、根据同旁内角互补,两直线平行可判断直线l1∥l2,故此选项不合题意;故选:B.4.下列算式能用平方差公式计算的是()A.(3a+b)(3b﹣a)B.(a+b)(a﹣b)C.(2x﹣y)(﹣2x+y)D.(m+n)(﹣m ﹣n)【考点】平方差公式.【分析】两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.即可利用平方差公式相乘.【解答】解:A、两项既不相同,也不互为相反数,故选项错误;B、正确;C、两个多项式两项都互为相反数,故选项错误;D、两个多项式两项都互为相反数,故选项错误.故选B.5.下列说法中正确的个数有()①两点之间的所有连线中,线段最短;②过一点有且只有一条直线与已知直线垂直;③平行于同一直线的两条直线互相平行;④直线外一点到这条直线的垂线段叫做点到直线的距离.A.4个B.3个C.2个D.1个【考点】平行公理及推论;线段的性质:两点之间线段最短;垂线;点到直线的距离.【分析】根据直线的性质,两点间的距离的定义,线段的性质以及直线的表示对各小题分析判断即可得解.【解答】解:①两点之间的所有连线中,线段最短,正确;②过平面上的一点有且只有一条直线与已知直线垂直,故本命题错误;③平行于同一直线的两条直线互相平行,正确;④直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故本命题错误;综上所述,正确的有①,③共2个.故选C.6.若x2+ax+9=(x+3)2,则a的值为()A.3 B.±3 C.6 D.±6【考点】完全平方公式.【分析】根据题意可知:将(x+3)2展开,再根据对应项系数相等求解.【解答】解:∵x2+ax+9=(x+3)2,而(x+3)2=x2+6x+9;即x2+ax+9=x2+6x+9,∴a=6.故选C.7.如图,直线AB∥CD,∠B=25°,∠D=37°,则∠E=()A.25°B.37°C.62°D.12°【考点】平行线的性质.【分析】首先过点E作EF∥AB,由AB∥CD,可得AB∥EF∥CD,然后根据两直线平行,内错角相等,即可求得答案.【解答】解:过点E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∵∠B=25°,∠D=37°,∴∠1=∠B=25°,∠2=∠D=37°,∴∠BED=∠1+∠2=25°+37°=62°.故选C.8.2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】根据在电脑上打字录入这篇文稿,录入字数增加,因事暂停,字数不变,继续录入并加快了录入速度,字数增加,变化快,可得答案.【解答】解:A.暂停后继续录入并加快了录入速度,字数增加,故A不符合题意;B.字数先增加再不变最后增加,故B不符合题意错误;C.开始字数增加的慢,暂停后再录入字数增加的快,故C符合题意;D.中间应有一段字数不变,不符合题意,故D错误;故选:C.二、填空题(共8小题,每小题3分,满分24分)9.(﹣2xy)4的计算结果是16x4y4.【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则化简求出答案.【解答】解:(﹣2xy)4=16x4y4.故答案为:16x4y4.10.一种细菌半径是0.0000047米,用科学记数法表示为 4.7×10﹣6米.【考点】科学记数法—表示较小的数.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n 表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:0.0000047=4.7×10﹣6.故答案为:4.7×10﹣611.如图,在立定跳远后,体育老师是这样测量运动员的成绩的,用一块直角三角板的一边附在跳线上,另一边与拉的皮尺重合,这样做的理由是垂线段最短.【考点】垂线段最短.【分析】利用点到直线的距离中垂线段最短判断即可.【解答】解:如图,在立定跳远后,体育老师是这样测量运动员的成绩的,用一块直角三角板的一边附在跳线上,另一边与拉的皮尺重合,这样做的理由是垂线段最短.故答案为:垂线段最短12.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是55°.【考点】平行线的性质;翻折变换(折叠问题).【分析】根据折叠性质得出∠2=∠EFG,求出∠BEF,根据平行线性质求出∠CFE,即可求出答案.【解答】解:∵根据折叠得出四边形MNFG≌四边形BCFG,∴∠EFG=∠2,∵∠1=70°,∴∠BEF=∠1=70°,∵AB∥DC,∴∠EFC=180°﹣∠BEF=110°,∴∠2=∠EFG=∠EFC=55°,故答案为:55°.13.长方形的周长为24cm,其中一边为x(其中x>0),面积为ycm2,则这样的长方形中y与x的关系式可以写为y=12x﹣x2.【考点】函数关系式.【分析】根据长方形的面积公式,可得函数关系式.【解答】解;长方形中y与x的关系式可以写为y=12x﹣x2,故答案为:y=﹣x2+12.14.如图,已知AB、CD相交于点O,OE⊥AB,∠EOC=28°,则∠AOD=62度.【考点】角的计算;对顶角、邻补角.【分析】根据余角和对顶角的性质可求得.【解答】解:∵OE⊥AB,∠EOC=28°,∴∠COB=90°﹣∠EOC=62°,∴∠AOD=62°(对顶角相等).故答案为:62.15.图象中所反映的过程是:张强从家跑步取体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.则体育场力张强家 2.5千米,张强在体育场锻炼了15分钟,张强从早餐店回家的平均速度是3千米/小时.【考点】函数的图象.【分析】结合图象得出张强从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离张强家的距离;进而得出锻炼时间以及整个过程所用时间.由图中可以看出,体育场离张强家2.5千米;平均速度=总路程÷总时间.【解答】解:由函数图象可知,体育场离张强家2.5千米,张强在体育场锻炼30﹣15=15(分钟);∵张强从早餐店回家所用时间为95﹣65=30(分钟),距离为1.5km,∴张强从早餐店回家的平均速度1.5÷0.5=3(千米/时).故答案为2.5,15,3.16.若a m=﹣2,a n=﹣,则a2m+3n=﹣.【考点】同底数幂的乘法.【分析】首先根据幂的乘方的运算方法,求出a2m、a3n的值各是多少;然后根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,求出a2m+3n的值是多少即可.【解答】解:∵a m=﹣2,a n=﹣,∴a2m=(a m)2=(﹣2)2=4,a3n=(a n)3==﹣,∴a2m+3n=4×(﹣)=﹣.故答案为:﹣.三、解答题(共7小题,满分52分)17.计算:(1)(π﹣3.14)0﹣(﹣)﹣2+52016×(﹣0.2)2015(2)201×199(利用公式计算)(3)先化简,再求值:[(2x+y)(2x﹣y)﹣(3x+y)(x﹣2y)﹣x2]÷(﹣2y),其中x=2,y=﹣1.【考点】整式的混合运算;整式的混合运算—化简求值;零指数幂;负整数指数幂.【分析】(1)直接利用零指数幂的性质以及负整数指数幂的性质化简求出答案;(2)直接利用平方差公式化简求出答案;(3)首先利用多项式乘法化简进而利用多项式除法运算法则求出答案.【解答】解:(1)(π﹣3.14)0﹣(﹣)﹣2+52016×(﹣0.2)2015=1﹣9﹣(5×0.2)2015×5=﹣13;(2)201×199=×=39999;(3)[(2x+y)(2x﹣y)﹣(3x+y)(x﹣2y)﹣x2]÷(﹣2y),=[4x2﹣y2﹣(3x2﹣5xy﹣2y2)﹣x2]÷(﹣2y),=(y2+5xy)÷(﹣2y),=﹣y﹣x,把x=2,y=﹣1代入得:原式=﹣×(﹣1)﹣×2=﹣.18.按要求用尺规作图并填空(保留作图痕迹):如图,点P是∠AOB边OA上一点.过点P作直线PC∥BO.你的作图方法使PC∥BO的依据是同位角相等两直线平行.【考点】作图—基本作图.【分析】以P为顶点,作∠APC=∠O,根据同位角相等两直线平行可得PC∥BO.【解答】解:如图所示,使PC∥BO的依据是同位角相等两直线平行.故答案为:同位角相等两直线平行.19.已知(a x)y=a6,(a x)2÷a y=a3(1)求xy和2x﹣y的值;(2)求4x2+y2的值.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】(1)利用积的乘方和同底数幂的除法,即可解答;(2)利用完全平方公式,即可解答.【解答】解:(1)∵(a x)y=a6,(a x)2÷a y=a3∴a xy=a6,a2x÷a y=a2x﹣y=a3,∴xy=6,2x﹣y=3.(2)4x2+y2=(2x﹣y)2+4xy=32+4×6=9+24=33.20.在学习地理时,我们知道:“海拔越高,气温越低”,下表是海拔高度h(千米)与此高(1)请写出气温t与海拔高度h的关系式;(2)2014年3月8日,马航MH370航班失去联系,据报道称,马航MH370航班失去联系前飞行高度10668米,请计算在该海拔高度时的气温大约是多少?(3)当气温是零下40℃时,其海拔高度是多少?【考点】函数关系式;函数值.【分析】(1)根据表中的数据写出函数关系式(2)由函数关系式求解.(3)由函数关系式求解.【解答】解:(1)t=20﹣6h,(2)∵10668米=10.668千米∴t=20﹣64.008=﹣44.008答:在该海拔高度时的气温大约是﹣44.008℃.(3)﹣40=20﹣6h解得h=10千米答:其海拔高度是10千米.21.如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,求该平行四边形的面积.【考点】平行四边形的性质.【分析】根据拼成的平行四边形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.【解答】解:(2a)2﹣(a+2)2=4a2﹣a2﹣4a﹣4=3a2﹣4a﹣4.答:平行四边形的面积为3a2﹣4a﹣4.22.如图,已知CF⊥AB于F,ED⊥AB于D,∠1=∠2,求证:FG∥BC.【考点】平行线的判定与性质.【分析】根据在同一平面内垂直于同一条直线的两条直线平行可知DE∥FC,故∠1=∠ECF=∠2.根据内错角相等两直线平行可知,FG∥BC.【解答】证明:∵CF⊥AB,ED⊥AB,∴DE∥FC(垂直于同一条直线的两条直线互相平行),∴∠1=∠BCF(两直线平行,同位角相等);又∵∠2=∠1(已知),∴∠BCF=∠2(等量代换),∴FG∥BC(内错角相等,两直线平行).23.已知动点P以每秒2cm的速度沿如图甲所示的边框按从B﹣C﹣D﹣E﹣F﹣A的路径移动,相应的△ABP的面积S与关于时间t的图象如图乙所示,若AB=6cm,求:(1)BC长为多少cm?(2)图乙中a为多少cm2?(3)图甲的面积为多少cm2?(4)图乙中b为多少s?【考点】动点问题的函数图象.【分析】(1)根据动点P以每秒2cm的速度,从B到C用的时间为4s,可以求得BC的长度;(2)根据三角形的面积等于底乘以高除以2,可以得到a的值;(3)根据题意和图形可以得到AB、AF的长,CD、DE的长,从而可以求得图甲的面积;(4)根据题意和图形可以得到BC、CD、DE、EF、FA的长,从而可以得到b的值.【解答】解:(1)由图象可得,点P从点B到点C运动的时间是4s,运动的速度是每秒2cm,故BC的长度是:4×2=8cm,即BC长是8cm;(2)∵BC=8cm,AB=6cm,∴S=,即图乙中a的值为24cm2;(3)由图可知,BC=4×2=8cm,CD=(6﹣4)×2=4cm,DE=(9﹣6)×2=6cm,AB=6cm,∴AF=BC+DE=14cm,∴图甲的面积是:AB•AF﹣CD•DE=6×14﹣4×6=84﹣24=60cm2;(4)由题意可得,b==s,即b的值是17s.2016年9月20日。
山西省大同市2017-2018学年七年级数学下学期期中试卷一、选择题(每小题3分,共30分)1.(3分)如图,∠1与∠2是对顶角的是()A.B.C.D.2.(3分)在下列各式中正确的是()A. =﹣2 B. =3 C. =8 D. =23.(3分)如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°4.(3分)平面直角坐标系中,点A(﹣2,a)位于x轴的上方,则a的值可以是()A.0 B.﹣1 C.D.±35.(3分)在0,,0.101001…,,,这6个数中,无理数有()A.1个B.2个C.3个D.4个6.(3分)的平方根等于()A.2 B.﹣4 C.±4 D.±27.(3分)如果是a的相反数,那么a的值是()A.B.C.D.8.(3分)在平面直角坐标系中,点A(3,﹣5)所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.(3分)已知点M(a,b)在第三象限,则点N(﹣b,a)在第()象限.A.一B.二C.三D.四10.(3分)已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.(0,12)或(0,﹣8)二、填空题(每小题3分,共15分)11.(3分)36的平方根是;的算术平方根是; = .12.(3分)如果两个角是对顶角,那么这两个角相等,是(真或假)命题,此命题的题设是,结论是.13.(3分)若≈44.90,≈14.20,则≈.14.(3分)已知点P在第四象限,且到x轴的距离是3,到y轴的距离是2,则点P的坐标为.15.(3分)如图所示第1个图案是由黑白两种颜色的正六边形的地面砖组成,第2个、第3个图案可以看作是第1个图案经过平移得到的,那么第4个图案中白色六边形地面砖块,第n个图案中白色地面砖块.三、解答题(共55分)16.(20分)解方程(1)x2=25(2)﹣8(x﹣1)3+2=﹣25计算:(3)2++||(4)(+)(5)+﹣|1﹣|(6)|1﹣|+×﹣17.(9分)如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xOy,按要求解答下列问题:(1)写出△ABC三个顶点的坐标;(2)画出△ABC向右平移6个单位后的图形△A1B1C1;(3)求△ABC的面积.18.(6分)已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M﹣N的值.19.(10分)如图,已知AD⊥BC于D,EG⊥BC于G,∠E=∠1.试说明:AD平分∠BAC.20.(10分)如图①,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)2+=0,过C作CB⊥x轴于B.(1)求三角形ABC的面积;(2)如图②,若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,求∠A ED 的度数;(3)在y轴上是否存在点P,使得三角形ACP和三角形ABC的面积相等?若存在,求出P 点的坐标;若不存在,请说明理由.2017-2018学年山西省大同市矿区七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)如图,∠1与∠2是对顶角的是()A.B.C.D.【解答】解:A、∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角,故A选项错误;B、∠1与∠2没有公共顶点,不是对顶角,故B选项错误;C、∠1与∠2的两边互为反向延长线,是对顶角,故C选项正确;D、∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角,故D 选项错误.故选:C.2.(3分)在下列各式中正确的是()A. =﹣2 B. =3 C. =8 D. =2【解答】解:A、=2,故A选项错误;B、=±3,故B选项错误;C、=4,故C选项错误;D、=2,故D选项正确.故选:D.3.(3分)如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°【解答】解:A、∠3=∠A,无法得到,AB∥CD,故此选项错误;B、∠1=∠2,根据内错角相等,两直线平行可得:AB∥CD,故此选项正确;C、∠D=∠DCE,根据内错角相等,两直线平行可得:BD∥AC,故此选项错误;D、∠D+∠ACD=180°,根据同旁内角互补,两直线平行可得:BD∥AC,故此选项错误;故选:B.4.(3分)平面直角坐标系中,点A(﹣2,a)位于x轴的上方,则a的值可以是()A.0 B.﹣1 C.D.±3【解答】解:∵点A(﹣2,a)位于x轴的上方,∴a为正数,故选:C.,0.101001…,,,这6个数中,无理数有()5.(3分)在0,A.1个B.2个C.3个D.4个【解答】解:无理数有:0.101001…,,共3个.故选:C.6.(3分)的平方根等于()A.2 B.﹣4 C.±4 D.±2【解答】解: =4,4的平方根是±2,故选:D.7.(3分)如果是a的相反数,那么a的值是()A.B.C.D.【解答】解:是a的相反数,那么a的值是1﹣,故选:A.8.(3分)在平面直角坐标系中,点A(3,﹣5)所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限【解答】解:点A(3,﹣5)所在象限为第四象限.故选:D.9.(3分)已知点M(a,b)在第三象限,则点N(﹣b,a)在第()象限.A.一B.二C.三D.四【解答】解:∵点M(a,b)在第三象限,∴a<0,b<0,∴﹣b>0,∴点N(﹣b,a)在第四象限.故选:D.10.(3分)已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.(0,12)或(0,﹣8)【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选:C.二、填空题(每小题3分,共15分)11.(3分)36的平方根是±6 ;的算术平方根是 2 ; = ﹣3 .【解答】解:36的平方根是±6, =4,4的算术平方根是2, =﹣3.故答案为:±6,2,﹣3.12.(3分)如果两个角是对顶角,那么这两个角相等,是真(真或假)命题,此命题的题设是两个角是对顶角,结论是这两个角相等.【解答】解:如果两个角是对顶角,那么这两个角相等,是真命题,此命题的题设是两个角是对顶角,结论是这两个角相等;故答案为:是,两个角是对顶角,这两个角相等.13.(3分)若≈44.90,≈14.20,则≈ 4.490 .【解答】解:∵≈44.90∴≈44.90即×≈44.90∴×10≈44.90即≈4.490故答案为:4.49014.(3分)已知点P在第四象限,且到x轴的距离是3,到y轴的距离是2,则点P的坐标为(2,﹣3).【解答】解:∵点P在第四象限,且到x轴的距离是3,到y轴的距离是2,∴点P的横坐标是2,纵坐标是﹣3,∴点P的坐标为(2,﹣3).故答案为:(2,﹣3).15.(3分)如图所示第1个图案是由黑白两种颜色的正六边形的地面砖组成,第2个、第3个图案可以看作是第1个图案经过平移得到的,那么第4个图案中白色六边形地面砖18 块,第n个图案中白色地面砖4n+2 块.【解答】解:第1个图案中有白色六边形地面砖有6块;第2个图案中有白色六边形地面砖有6+4=10(块);第3个图案中有白色六边形地面砖有6+2×4=14(块);第4个图案中有白色六边形地面砖有6+3×4=18(块);第n个图案中有白色地面砖6+4(n﹣1)=4n+2(块).故答案为:18,4n+2.三、解答题(共55分)16.(20分)解方程(1)x2=25(2)﹣8(x﹣1)3+2=﹣25计算:(3)2++||(4)(+)(5)+﹣|1﹣|(6)|1﹣|+×﹣【解答】解:(1)开方得:x=5或x=﹣5;(2)方程整理得:(x﹣1)3=,开立方得:x﹣1=,解得:x=;(3)原式=2++﹣=4﹣;(4)原式=3+2=5;(5)原式=5﹣4﹣+1=2﹣;(6)原式=﹣1﹣×﹣=﹣1.17.(9分)如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xOy,按要求解答下列问题:(1)写出△ABC三个顶点的坐标;(2)画出△ABC向右平移6个单位后的图形△A1B1C1;(3)求△ABC的面积.【解答】解;(1)如图所示:A(﹣1,8),B(﹣5,3),C(0,6);(2)如图所示:(3)△ABC的面积为:×(5+1)×5﹣×1×2﹣×3×5=6.5.18.(6分)已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M﹣N的值.【解答】解:∵M=是m+3的算术平方根,N=是n﹣2的立方根,∴n﹣4=2,2m﹣4n+3=3,解得:m=12,n=6,∴M==,N==,∴M﹣N=﹣.19.(10分)如图,已知AD⊥BC于D,EG⊥BC于G,∠E=∠1.试说明:AD平分∠BAC.【解答】解:∵AD⊥BC于D,EG⊥BC于G,∴∠ADC=∠EGC=90°,∴AD∥EG,∴∠1=∠2,∠E=∠3.又∵∠E=∠1,∴∠2=∠3,∴AD平分∠BAC.20.(10分)如图①,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)2+=0,过C作CB⊥x轴于B.(1)求三角形ABC的面积;(2)如图②,若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,求∠AED 的度数;(3)在y轴上是否存在点P,使得三角形ACP和三角形ABC的面积相等?若存在,求出P 点的坐标;若不存在,请说明理由.【解答】解:(1)∵(a+2)2+=0,∴a+2=0,b﹣2=0,∴a=﹣2,b=2,∴A(﹣2,0),C(2,2).∵CB⊥AB,∴B(2,0),∴AB=4,CB=2,则S三角形ABC=×4×2=4.(2)如图甲,过E作EF∥AC.∵CB⊥x轴,∴CB∥y轴,∠CBA=90°,∴∠ODB=∠6.又∵BD∥AC,∴∠CAB=∠5,∴∠CAB+∠ODB=∠5+∠6=180°﹣∠CBA=90°.∵BD∥AC,∴BD∥AC∥EF,∴∠1=∠3,∠2=∠4.∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠CAB,∠4=∠ODB,∴∠AED=∠1+∠2=∠3+∠4=(∠CAB+∠ODB)=45°.(3)①当P在y轴正半轴上时,如图乙.设点P(0,t),分别过点P,A,B作MN∥x轴,AN∥y轴,BM∥y轴,交于点M,N,则AN=t,CM=t﹣2,MN=4,PM=PN=2.∵S三角形ABC=4,∴S三角形ACP=S梯形MNAC﹣S三角形ANP﹣S三角形CMP=4,∴×4(t﹣2+t)﹣×2t﹣×2(t﹣2)=4,解得t=3,即点P的坐标为(0,3).②当P在y轴负半轴上时,如图丙,同①作辅助线.设点P(0,a),则AN=﹣a,CM=﹣a+2,PM=PN=2.∵S三角形ACP=S梯形MNAC﹣S三角形ANP﹣S三角形CMP=4,∴×4(﹣a+2﹣a)﹣×2•(﹣a)﹣×2(2﹣a)=4,解得a=﹣1,∴点P的坐标为(0,﹣1).综上所述,P点的坐标为(0,﹣1)或(0,3).。
山西省大同市七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共6小题,每小题2分,共12分) (共6题;共12分)1. (2分) (2019七下·武汉月考) 如图,将下图中的福娃“欢欢”通过平移可得到图为()A .B .C .D .2. (2分) (2019七下·姜堰期中) 下列各式从左到右的变形,是因式分解的是()A . xB .C .D .3. (2分)(2017·云南) 下列说法正确的是()A . 要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B . 4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C . 甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D . 某次抽奖活动中,中奖的概率为表示每抽奖50次就有一次中奖4. (2分)已知a、b互为相反数,c、d互为倒数,m的绝对值为2,则 +m2﹣cd的值是()A . 2B . ﹣1C . 0D . 、35. (2分) (2018七下·慈利期中) 若(x+3)(x+n)=x2+mx﹣15,则m的值为()A . ﹣5B . 5C . ﹣2D . 26. (2分) (2017七下·海安期中) 已知一个二元一次方程组的解是则这个二元一次方程组可能是()A .B .C .D .二、填空题(本大题共10小题,每小题2分,共20分) (共10题;共10分)7. (1分) (2019七下·锡山月考) 计算:(﹣m)5•(﹣m)•m3=________;(﹣xy)•(﹣2x2y)2=________.8. (1分)(2019·台江模拟) 若正多边形的一个内角等于120°,则这个正多边形的边数是________.9. (1分) (2019七下·昌平期中) 写出一个解为的二元一次方程组________.10. (1分) (2017八上·林甸期末) 把命题“同角的补角相等”改写成“如果…,那么…”的形式________.11. (1分)一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是________.12. (1分)若是二元一次方程,则m=________,n=________.13. (1分) (2017七下·江阴期中) 如图,若CD平分∠ACE,BD平分∠ABC,∠A=45°,则∠D=________°.14. (1分) (2019八上·盘龙镇月考) 若4次3项式m4+4m2+A是一个完全平方式,则A=________.15. (1分) (2019九下·温州竞赛) 如图,菱形OABC的顶点A的坐标是(-5,0),点B,C在x轴上方,反比例函数y= (k>0,x>0)的图象分别与边OC、BC交于点D、点E,射线BD交y轴子点H,交反比例函数图象于点F,交x轴于点G,BD:DF:FG=2:3:1,若记△ODH的面积为S1 ,△CDE的面积为S2 ,则的值是________16. (1分)(2013·河南) 如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为________.三、解答题(本大题共10小题,共68分) (共10题;共68分)17. (9分)(3a+2b)(﹣3a+2b)(9a2+4b2)(结果用幂的形式表示)18. (6分) (2018八上·北京月考)(1)计算:2x(x﹣4)+3(x﹣1)(x+3);(2)分解因式:x2y+2xy+y.19. (8分) (2018八下·青岛期中) 计算题(1)解不等式2x+9≥3(x+2)(2)解不等式组并写出其整数解。
2017-2018学年七年级(下册)期中数学试卷一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a63.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.001244.计算的平方根为()A.±4 B.±2 C.4 D.±5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+28.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个 B.2个 C.3个 D.4个9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤910.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= b B.a=3b C.a= b D.a=4b二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3=.12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017=.13.某数的平方根是2a+3和a﹣15,则这个数为.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012=.15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:17.解不等式组,并将解集在数轴上表示出来.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.20.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?参考答案与试题解析一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣【考点】24:立方根.【分析】运用开立方的方法计算.【解答】解:=﹣3,故选A.2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、不是同类项,不能合并,选项错误;B、正确;C、a8•a2=a10,选项错误;D、(2a2)3=8a6,选项错误.故选B.3.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.4.计算的平方根为()A.±4 B.±2 C.4 D.±【考点】21:平方根;22:算术平方根.【分析】首先根据算术平方根的定义求出的值,然后根据平方根的定义即可求出结果.【解答】解:∵=4,又∵(±2)2=4,∴4的平方根是±2,即的平方根±2.故选B.5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.【考点】48:同底数幂的除法.【分析】利用同底数幂除法的逆运算法则计算即可.【解答】解:∵2x=3,4y=5,∴2x﹣2y=2x÷22y,=2x÷4y,=3÷5,=0.6.故选:A.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x【考点】4E:完全平方式.【分析】根据完全平方公式的结构对各选项进行验证即可得解.【解答】解:A、4x4+4x2+1=(2x2+1)2,故本选项错误;B、4x+4x2+1=(2x+1)2,故本选项错误;C、﹣4x+4x2+1=(2x﹣1)2,故本选项错误;D、2x+4x2+1不能构成完全平方公式结构,故本选项正确.故选D.7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+2【考点】4H:整式的除法.【分析】首先利用面积除以一边长即可求得令一边长,则周长即可求解.【解答】解:另一边长是:(4a2﹣6ab+2a)÷2a=2a﹣3b+1,则周长是:2[(2a﹣3b+1)+2a]=8a﹣6b+2.故选D.8.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个 B.2个 C.3个 D.4个【考点】CC:一元一次不等式组的整数解.【分析】由题意可得不等式组,解不等式组,得到不等式组的解集,然后求其整数解.【解答】解:由题意可得,由①得m>﹣,由②得m<,所以不等式组的解集为﹣<x<,则m可以取的整数有0,1共2个.故选:B.9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤9【考点】CC:一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含b的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于b的不等式,从而求出b 的范围.【解答】解:由不等式x﹣b≤0,得:x≤b,由不等式x﹣2≥3,得:x≥5,∵不等式组有4个整数解,∴其整数解为5、6、7、8,则8≤b<9,故选:C.10.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= b B.a=3b C.a= b D.a=4b【考点】4I:整式的混合运算.【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式.【解答】解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b ﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.解法二:既然BC是变化的,当点P与点C重合开始,然后BC向右伸展,设向右伸展长度为X,左上阴影增加的是3bX,右下阴影增加的是aX,因为S不变,∴增加的面积相等,∴3bX=aX,∴a=3b.故选:B.二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3=mn(2+n)(2﹣n).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=mn(4﹣n2)=mn(2+n)(2﹣n),故答案为:mn(2+n)(2﹣n)12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017=﹣1.【考点】98:解二元一次方程组;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】利用相反数性质及非负数性质列出方程组,求出方程组的解得到x与y 的值,代入原式计算即可得到结果.【解答】解:∵与|x+2y﹣5|互为相反数,∴+|x+2y﹣5|=0,∴,①×2+②得:5x=5,解得:x=1,把x=1代入②得:y=2,则原式=﹣1,故答案为:﹣113.某数的平方根是2a+3和a﹣15,则这个数为121.【考点】21:平方根;86:解一元一次方程.【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a的方程即可求得a的值,进而求得这个数的值.【解答】解:根据题意得:2a+3+(a﹣15)=0,解得a=4,则这个数是(2a+3)2=121.故答案为:121.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012=1.【考点】CB:解一元一次不等式组;98:解二元一次方程组;C6:解一元一次不等式.【分析】求出不等式组的解集,根据已知不等式组的解集得出m+n﹣2=﹣1,m=2,求出m、n的值,再代入求出即可.【解答】解:,解不等式①得:x>m+n﹣2,解不等式②得:x<m,∴不等式组的解集为:m+n﹣2<x<m,∵不等式组的解集为﹣1<x<2,∴m+n﹣2=﹣1,m=2,解得:m=2,n=﹣1,∴(m+n)2012=(2﹣1)2012=1.故答案为:1.15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为﹣672.【考点】33:代数式求值;13:数轴.【分析】依据绝对自的定义可知b﹣a=2016,﹣a=2b,从而可求得a、b的值,故此可求得a+b的值.【解答】解:∵点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧,∴a<0,b>0.又∵|a﹣b|=2016,∴b﹣a=2016.∵AO=2BO,∴﹣a=2b.∴3b=2016.解得:b=672.∴a=﹣1344.∴a+b=﹣1344+672=﹣672.故答案为:﹣672.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:【考点】73:二次根式的性质与化简;15:绝对值;6E:零指数幂;6F:负整数指数幂.【分析】理解绝对值的意义:负数的绝对值是它的相反数;表示的算术平方根即;一个数的负指数次幂等于这个数的正指数次幂的倒数;任何不等于0的数的0次幂都等于1.【解答】解:原式=2﹣+﹣1=1.17.解不等式组,并将解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别解出两不等式的解集再求其公共解.【解答】解:解不等式①得x<﹣解不等式②得x≥﹣1∴不等式组的解集为﹣1≤x<﹣.其解集在数轴上表示为:如图所示.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.【考点】4J:整式的混合运算—化简求值.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式==﹣3﹣5=﹣8.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.【考点】4C:完全平方公式.【分析】根据完全平方公式进行变形,再整体代入求出即可.【解答】解:(1)∵a+b=2,ab=1,∴(a﹣b)2=(a+b)2﹣4ab=4﹣4=0,则a﹣b=0,(2)∵a+b=2,ab=1,a﹣b=0∴a2﹣b2+4b=420.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.【考点】C7:一元一次不等式的整数解;21:平方根;85:一元一次方程的解.【分析】首先计算出不等式的解集,从而确定出最小整数解,进而得到x的值,再把x的值代入方程算出m的值,然后再次把m的值代入代数式m2﹣2m+11计算出结果,再算出平方根即可.【解答】解:解不等式得:x>﹣4则x的最小整数解为﹣3,当x=﹣3时,×(﹣3)+3m=5,解得:m=2,把m=2代入m2﹣2m+11得:22﹣2×2+11=11,11平方根为±.故代数式m2﹣2m+11的平方根的值为±.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【考点】CE:一元一次不等式组的应用.【分析】(1)设租用甲车x辆,则乙车(10﹣x)辆.不等关系:①两种车共坐人数不小于340人;②两种车共载行李不小于170件.(2)因为车的总数是一定的,所以费用少的车越多越省.【解答】解:(1)设租用甲车x辆,则乙车(10﹣x)辆.根据题意,得,解,得4≤x≤7.5.又x是整数,∴x=4或5或6或7.共有四种方案:①甲4辆,乙6辆;②甲5辆,乙5辆;③甲6辆,乙4辆;④甲7辆,乙3辆.(2)①甲4辆,乙6辆;总费用为4×2000+6×1800=18800元;②甲5辆,乙5辆;总费用5×2000+5×1800=19000元;③甲6辆,乙4辆;总费用为6×2000+4×1800=19200元;④甲7辆,乙3辆.总费用为7×2000+3×1800=19400元;因为乙车的租金少,所以乙车越多,总费用越少.故选方案①.2017年5月24日。
山西省大同市矿区2017-2018学年七年级数学下学期期中试题
一、选择题(每小题3分,共30分)
1.如图,∠1与∠2是对顶角的是()
A.B.C.D.
2.在下列各式中正确的是()
A. =﹣2 B. =3 C. =8 D. =2
3.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()
A.∠3=∠4 B.∠1=∠2
C.∠D=∠DCE D.∠D+∠ACD=180°
4.平面直角坐标系中,点A(﹣2,a)位于x轴的上方,则a的值可以是()
A.0 B.C.﹣1 D.±3
5.在0,,0.101001…,,,这6个数中,无理数有()
A.1个B.2个C.3个 D.4个
6.的平方根等于()
A.2 B.﹣4 C.±4 D.±2
7.如果是a的相反数,那么a的值是()
A.B.C.D.
8.在平面直角坐标系中,点A(3,﹣5)所在象限为()
A.第一象限B.第二象限C.第三象限D.第四象限
9.已知点M(a,b)在第三象限,则点N(﹣b,a)在第()象限.
A.一B.二C.三D.四
10.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A(﹣4,0)B(6,0)C(﹣4,0)或(6,0)D(0,12)或(0,﹣8)
二、填空题(每小题3分,共15分)
1.36的平方根是 ;的算术平方根是 ; = .
2.如果两个角是对顶角,那么这两个角相等,是 (真或假)命题,此命题的题设是 ,结论是 .
3.若≈44.90,≈14.20,则≈ .
4.已知点P 在第四象限,且到x 轴的距离是3,到y 轴的距离是2,则点P 的坐标为 .
5.如图所示第1个图案是由黑白两种颜色的正六边形的地面砖组成,第2个、第3个图案可以看作是第1个图案经过平移得到的,那么第4个图案中白色六边形地面砖 块,第n 个图案中白色地面砖 块.
三、解答题(共50分)
16、
解方程
(1)225x = (3分) (2)()252183
-=+--x (3分)
计算
(3)3
2232-++ (3分) (4)(+)(3分)
(5) +﹣ (4分) (6)|1﹣|+×﹣.(4分)
17.如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xOy,按要求解答下列问题:
(1)写出△ABC三个顶点的坐标;(3分)
(2)画出△ABC向右平移6个单位后的图形
△A1B1C1;(3分)
(3)求△ABC的面积.(3分)
18.(6分)已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M﹣N的值.
19.(10分)如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.
20.如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足,过C作CB⊥x轴于B.
(1)求△ABC的面积.(4分)
(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求
∠AED的度数.(4分)
(3)在y轴上是否存在点P,使得△ABC和△ACP的面积相等?若存在,直接写出P点坐标;若不存在,请说明理由.(2分)。