基于电流预测的内置式永磁同步电机矢量控制系统 (1)
- 格式:pdf
- 大小:872.17 KB
- 文档页数:5
永磁同步电机的矢量控制系统一、本文概述随着科技的不断进步和工业的快速发展,电机作为核心动力设备,在各种机械设备和工业自动化系统中扮演着至关重要的角色。
其中,永磁同步电机(Permanent Magnet Synchronous Motor,简称PMSM)因其高效率、高功率密度和优良的控制性能等优点,被广泛应用于电动汽车、风力发电、机床设备等领域。
为了实现永磁同步电机的精确控制,提高其运行效率和稳定性,矢量控制(Vector Control)技术被引入到永磁同步电机的控制系统中。
本文将对永磁同步电机的矢量控制系统进行深入探讨。
文章将简要介绍永磁同步电机的基本结构和运行原理,为后续的矢量控制理论奠定基础。
接着,文章将重点阐述矢量控制的基本原理和实现方法,包括坐标变换、空间矢量脉宽调制(SVPWM)等关键技术。
文章还将分析矢量控制系统中的传感器选择、参数辨识以及控制策略优化等问题,以提高系统的控制精度和鲁棒性。
通过本文的研究,读者可以对永磁同步电机的矢量控制系统有一个全面而深入的了解,为实际应用中提高永磁同步电机的控制性能提供理论支持和指导。
本文还将探讨未来永磁同步电机矢量控制系统的发展趋势和挑战,为相关领域的研究者和工程师提供有价值的参考信息。
二、永磁同步电机的基本原理永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)是一种高效、高性能的电机类型,其工作原理基于电磁感应和磁场相互作用。
PMSM的核心组成部分包括定子、转子和永磁体。
定子通常由三相绕组构成,负责产生旋转磁场;转子则装有永磁体,这些永磁体在定子产生的旋转磁场作用下,产生转矩从而驱动电机旋转。
PMSM的工作原理可以简要概括为:当定子三相绕组通入三相交流电时,会在定子内部形成旋转磁场。
由于转子上的永磁体具有固定的磁极,它们在旋转磁场的作用下会受到力矩的作用,从而使转子跟随定子磁场的旋转而旋转。
通过控制定子电流的相位和幅值,可以精确控制旋转磁场的转速和转向,从而实现对PMSM的精确控制。
基于MTPA的永磁同步电动机矢量控制系统1 引言永磁同步电动机由于自身结构的优点,再加上近年来永磁材料的发展,以及电力电子技术和控制技术的发展,永磁同步电动机的应用越来越广泛。
而对于凸极式永磁同步电动机,由于具有更高的功率密度和更好的动态性能,在实际应用中越来越受到人们的重视[1]。
高性能的永磁同步电动机控制系统主要采用的矢量控制。
交流电机的矢量控制由德国学者blaschke在1971年提出,从而在理论上解决了交流电动机转矩的高性能控制问题。
该控制方法首先应用在感应电机上,但很快被移植到同步电机。
事实上,在永磁同步电动机上更容易实现矢量控制。
因为该类电机在矢量控制过程中不存在感应电机中的转差频率电流而且控制受参数(主要是转子参数)的影响也小。
永磁同步电动机的矢量控制从本质上讲,就是对定子电流在转子旋转坐标系(dq0坐标系)中的两个分量的控制。
因为电机电磁转矩的大小取决于上述的两个定子电流分量。
对于给定的输出转矩,可以有多个不同的d、q轴电流的控制组合。
不同的组合将影响系统的效率、功率因数、电机端电压以及转矩输出能力,由此形成了各种永磁同步电动机的电流控制方法。
[2]针对凸极式永磁同步电动机的特点,本文采用最优转矩控制(mtpa),并用一种更符合实际应用的方法进行实现,并进行了仿真验证。
图1 电流id、iq和转矩te关系曲线2 永磁同步电动机的数学模型首先,需要建立永磁同步电动机在转子旋转dq0坐标系下的数学模型,这种模型不仅可用于分析电机的稳态运行性能,还可以用于分析电机的暂态性能。
为建立永磁同步电机的dq0轴系数学模型,首先假设:(1)忽略电动机铁芯的饱和;(2)不计电动机中的涡流和磁滞损耗;(3)转子上没有阻尼绕组;(4)电动机的反电动势是正弦的。
这样,就得到永磁同步电动机dq0轴系下数学模型的电压、磁链和电磁转矩方程,分别如下所示:(1)(2)(3)式中:ud和uq是dq轴上的电压分量;id和iq是dq轴上电流分量;如rs为定子绕组电阻;ld和lq是dq轴上的电感;φd和φq是dq轴上的磁链分量;ωe是转子电角速度;φf是永磁体磁链;pn为极对数。
《永磁同步电机矢量控制系统的研究与设计》篇一摘要:随着科技的发展和工业自动化水平的不断提高,永磁同步电机因其高效率、高精度和良好的控制性能被广泛应用于工业领域。
本文详细探讨了永磁同步电机矢量控制系统的基本原理,深入研究了其系统设计、实现过程及其在实际应用中的表现。
通过分析永磁同步电机的工作特性,我们提出了一种先进的矢量控制策略,以优化电机控制系统的性能。
一、引言永磁同步电机(PMSM)作为现代电机技术的代表,因其结构简单、高效和可靠性高等特点,在电动汽车、工业机器人等领域得到广泛应用。
为了满足高性能应用需求,开发高效的控制系统是关键。
本文研究的重点在于矢量控制系统的设计与优化,通过这种控制系统能够更精确地控制电机的工作状态和输出。
二、永磁同步电机的工作原理与特性永磁同步电机由定子和转子两部分组成,其工作原理基于电磁感应定律和安培环路定律。
转子上的永磁体产生恒定磁场,而通过调节定子电流产生的磁场与转子磁场同步,从而驱动电机转动。
PMSM具有高效率、高转矩/质量比和高速度等特点,且能在宽广的调速范围内运行。
三、矢量控制系统的基本原理与优势矢量控制技术是现代电机控制的核心技术之一。
它通过精确控制电机的电流和电压,实现对电机转矩的精确控制。
与传统的标量控制相比,矢量控制具有更高的控制精度和更好的动态响应性能。
在永磁同步电机中应用矢量控制技术可以大大提高电机的效率和输出转矩性能。
四、永磁同步电机矢量控制系统的设计与实现本节将详细描述矢量控制系统设计的各个环节,包括硬件设计、软件算法以及整体系统架构的设计。
在硬件设计部分,包括电机的选择、驱动器的设计以及传感器配置等;在软件算法部分,将详细介绍矢量控制的算法原理和实现过程;在整体系统架构设计部分,将讨论如何将硬件与软件相结合,形成一个高效稳定的控制系统。
五、系统性能分析与优化本节将通过实验数据和仿真结果来分析系统的性能表现,并针对可能存在的问题进行优化。
我们将通过对比优化前后的系统性能指标(如响应速度、稳态误差等),来验证优化措施的有效性。
内置式永磁同步电机工作原理理论说明1. 引言1.1 概述内置式永磁同步电机是一种具有高效率、高功率密度和良好动静态性能的新型电动机。
它采用永磁体作为转子,与同步电机的传统结构相比,内置式永磁同步电机在重量和体积上更加紧凑,且具备较大的输出扭矩和转速范围。
随着现代工业对电动机性能要求的不断提高,内置式永磁同步电机已经成为众多应用领域首选的驱动技术。
1.2 文章结构本文将对内置式永磁同步电机的工作原理进行详细讲解,并通过理论分析、实验验证以及应用案例来深入探讨其性能特点和优化方向。
文章主要包括五个部分:引言、内置式永磁同步电机工作原理、理论说明、实验与应用案例分析以及结论与展望。
1.3 目的旨在通过本文对内置式永磁同步电机的工作原理进行全面深入地剖析,以提供给读者一个清晰明了的技术说明。
同时,通过对该电机的理论分析和实验应用案例的探究,旨在为相关研究者和工程师提供宝贵的参考和指导,帮助他们更好地理解和应用内置式永磁同步电机技术。
2. 内置式永磁同步电机工作原理:2.1 磁场生成原理:内置式永磁同步电机通过激励线圈在定子上产生旋转磁场的方式,进而与转子上的永磁体相互作用,实现运动。
激励线圈通电时产生的磁场会与永磁体的磁场相互作用,形成力对转子施加扭矩。
这种间接方式可以有效地减少能源损耗和噪音。
2.2 基本结构与工作方式:内置式永磁同步电机由定子和转子组成。
定子上包含多个激励线圈,通过外部电源供给直流电流以产生旋转磁场。
转子由多个永磁体组成,它们具有较强的稳定磁性。
当定子产生旋转磁场时,与之交互作用的转子受到力的推动而开始运动,并实现高效能量传递。
2.3 控制原理与方法:为了实现内置式永磁同步电机的精确控制,需要采用合适的控制方法和技术。
常用的控制原理包括传统PID控制、矢量控制和无感知控制等。
其中,矢量控制是一种较为先进和高效的方法,通过坐标变换将三相定子电流变化转化为运动坐标系中的磁链与电压关系,以实现速度和位置闭环控制。
基于电流解耦的永磁同步电机MATLAB仿真研究丁博;周渊深;薛硕;张敏【期刊名称】《淮海工学院学报(自然科学版)》【年(卷),期】2015(024)003【摘要】现代交流伺服系统中,矢量控制和空间矢量脉宽调制(SVPWM)技术使得交流电机应用越来越广.永磁同步电机中存在强烈的动态耦合,矢量控制无法消除其模型存在的d—q轴电压的动态耦合.为获得更好的控制性能,需对电机进行解耦补偿,采用id=0的电流控制方法,利用MAT-LAB/Simulink搭建仿真模型,仿真结果符合电机实际运行特性,验证了解耦控制方法的有效性.【总页数】4页(P33-36)【作者】丁博;周渊深;薛硕;张敏【作者单位】中国矿业大学信息与电气工程学院,江苏徐州 221008;淮海工学院电子工程学院,江苏连云港222005;淮海工学院电子工程学院,江苏连云港222005;中国矿业大学信息与电气工程学院,江苏徐州 221008;淮海工学院电子工程学院,江苏连云港222005;中国矿业大学信息与电气工程学院,江苏徐州 221008;淮海工学院电子工程学院,江苏连云港222005【正文语种】中文【中图分类】TM341【相关文献】1.基于电感辨识的电流解耦算法在内置式永磁同步电机弱磁控制中的应用 [J], 刘栋良;任劲松;林伟杰;徐正华2.基于动态相对增益阵列的\r永磁同步电机电流控制器解耦分析 [J], 安志凯;王琛琛;苟立峰3.基于滑模观测器的永磁同步电机电流偏差解耦控制 [J], 刘宇博; 王旭东; 周凯4.基于PI观测器的永磁同步电机自抗扰电流解耦控制 [J], 胡顺;沈跃;刘国海5.基于单位矩阵的电动汽车永磁同步电机制动电流解耦技术研究 [J], 李晓庆;孟德智;杨家强因版权原因,仅展示原文概要,查看原文内容请购买。
永磁同步发电机矢量控制系统设计Design of Vector Control System of PMSG学 院:专 业 班 级:学 号:学 生 姓 名:指 导 教 师: (教授)2012年 6月摘要在永磁同步发电机应用在发电系统中,存在着一些问题。
由于无转子励磁电流,所以转子磁场存在着不可控性,也就是说,永磁同步发电机的输出电流和输出电压存在着不可控性。
为解决上述问题,提出了利用三相桥式有源逆变电路的控制策略,并基于AT89C51单片机为核心,介绍了三相桥式逆变器的控制单元电路、各种检测保护电路、IGBT驱动电路和软件控制的设计原理与设计过程,应用PWM控制技术和永磁同步电机的矢量控制方法,基于三相电压型逆变电路的工作原理,运用PWM技术使输出电压、电流接近正弦波。
逆变器采用89C51单片机及单相PWM集成电路SA4828后,控制电路大为简化、器件减少,结构紧凑、降低了成本,提高了可靠性。
并通过编程来有效的控制永磁同步发电机的输出电压及输出电流。
通过调试运行取得了比较理想的结果。
关键字:永磁同步发电机;三相桥式逆变电路;PWM;单片机;矢量控制AbstractThere is still some problem remaining to be solved when permanent magnet synchronous generator applies in system. Because of No rotor exciter current, rotor field is uncontrollable, which means the output current and voltage of permanent magnet synchronous generator is uncontrollable. In order to solve the aforementioned problem, someone has come up with this device called three-phase bridge which has a function of reverse current, and uses AT89C51 SCM as a core, three-phase bridge type inverter is introduced. Its Control unit circuit, all kinds of test protection circuit, IGBT driver circuit and the design principle and procedure of the software control, which unitizes PMW control technology and the vector control method of permanent-magnet synchronous motor, based on the working principle of the three phase bridge inverter circuit, applies PMW technology to enable output voltage, make current close to Sine wave. After 89C51 SCM and Single-phase PWM integrated circuit SA4828 of the converter is applied, the control circuit has been simplified essentially, component has been reduced, the cost is lowered, and more reliability is ensured. What's more, controlled by programming technology has effectively controlled the output voltage and output current of the permanent magnet synchronous generator. A satisfactory result is obtained by adjusting the setting.Keywords: PMSG; DSP; adaptive control; direct torque control目录摘要 (I)Abstract ......................................................................................................................... I I 第1章绪论 .. (1)1.1 研究背景、目的和意义 (1)1.2 课题国内外研究现状及趋势 (2)1.3 论文的主要研究内容 (5)1.4 本论文的结构安排 (5)第2章理论分析和论述 (6)2.1 永磁同步发电机数学模型和矢量分析 (6)2.2 矢量控制技术 (9)2.3 IGBT的工作原理 (11)2.4 三相逆变桥电路及其控制 (13)2.5 PWM控制技术 (17)2.6 89C51单片机介绍 (19)2.7 SA4828芯片介绍 (23)第3章硬件电路设计 (26)3.1 永磁同步发电机基本控制电路 (26)3.2 单片机外围电路 (26)3.3 检测电路的设计 (28)第4章永磁同步发电机控制系统的软件设计 (29)4.1 控制器主程序设计 (30)4.2 控制系统子程序设计 (31)第5章结论 (33)参考文献 (34)致谢 (35)第1章绪论1.1 研究背景、目的和意义工业自动化技术和装备设计多个学科领域,其中所应用的计算机相当于人的大脑,负责对信息进行数值计算、逻辑推理、决策判断,并发出控制指令。
诚信声明本人声明:1、本人所呈交的毕业设计(论文)是在老师指导下进行的研究工作及取得的研究成果;2、据查证,除了文中特别加以标注和致谢的地方外,毕业设计(论文)中不包含其他人已经公开发表过的研究成果,也不包含为获得其他教育机构的学位而使用过的材料;3、我承诺,本人提交的毕业设计(论文)中的所有内容均真实、可信。
作者签名:日期:年月日湖南工程学院毕业设计(论文)任务书————☆————设计(论文)题目:基于DSP的永磁同步电动机矢量控制系统研究姓名周琳系别应用技术学院专业电气工程及其自动化班级0786 学号200713010616指导老师颜渐德教研室主任谢卫才一、基本任务及要求:1)掌握矢量控制的基本原理。
2)掌握永磁同步电动机矢量控制系统。
3)利用MATLAB软件仿真,分析。
4)硬件设计及软件设计二、进度安排及完成时间:2月20日:布置任务,下达设计任务书2月21日——3月10日:查阅相关的资料(总参考文章15篇,其中2篇以上IEEE的相关文章)。
3月13日——3月25日:毕业实习、撰写实习报告3月27日——5月30日:毕业设计、4月中旬毕业设计中期抽查6月1日——6月7日:撰写毕业设计说明书(论文)6月8日——6月10日:修改、装订毕业设计说明书(论文),并将电子文档上传FTP。
6月11日——6月12日:毕业设计答辩目录摘要 (I)ABSTRACT (II)第1章概述 (1)1.1永磁同步电动机的发展概况及应用前景 (1)1.1.1 永磁同步电动机发展概况 (1)1.1.2 永磁同步电动机特点及应用 (2)1.2永磁同步电动机控制系统的发展现状与趋势 (3)1.3课题研究的背景及本文的主要研究内容 (4)1.4本课题的研究意义 (5)第2章永磁同步电动机的结构及其数学模型 (7)2.1永磁同步电动机的结构 (7)2.2永磁同步电动机的数学模型 (8)2.2.1 永磁同步电机在静止坐标系(UVW)上的模型 (8)α-)上的模型方程 (10)2.2.2 永磁同步电机在两相静止坐标系(β2.2.3 永磁同步电机在旋转坐标系(d q-)上的数学模型 (12)第3章永磁同步电机矢量控制及空间矢量脉宽调制 (16)3.1永磁同步电机的控制策略 (16)3.1.1永磁同步电机外同步控制策略 (16)3.1.2 永磁同步电机自同步控制策略 (16)3.1.3 永磁同步电动机的弱磁控制 (19)3.2空间矢量脉宽调制(SVPWM) (19)3.2.1 空间矢量脉宽调制原理 (19)3.2.2 空间矢量脉宽调制实现 (22)3.3PI控制器的设计 (24)3.3.1 电流环PI控制器的设计 (24)3.3.2 速度环PI控制器的设计 (25)第4章系统仿真模型 (26)4.1MATLAB仿真工具箱简介 (26)4.2闭环控制系统仿真 (27)4.3仿真结果及分析 (31)第5章永磁同步电机控制器的硬件设计 (34)5.1功率变换单元的设计 (34)5.1.1 三相桥式主电路 (35)5.1.2 IR2130驱动器 (36)5.1.3 信号隔离电路 (38)5.2检测单元的设计 (38)5.2.1位置检测单元的设计 (38)5.2.2 电流检测电路 (40)5.2.3 电压检测电路 (40)5.3控制器的设计 (41)5.3.1 DSP的特点和资源 (42)5.3.2 系统设计中所用的DSP硬件资源 (43)5.4电平转换 (44)5.5保护电路的设计 (45)5.5.1 过流保护电路 (45)5.5.2 过压保护电路 (46)5.5.3 上电保护电路 (46)5.5.4 系统保护电路 (47)第6章永磁同步电机控制器的软件设计 (48)6.1DSP软件一般设计特点 (48)6.1.1 公共文件目标格式 (48)6.1.2 Q格式表示方法 (49)6.2控制系统软件的总体结构 (50)6.3控制系统子程序设计 (53)6.3.1 位置和速度计算 (53)6.3.2 速度、电流PI控制 (55)6.3.3 电流的采样与滤波 (56)6.3.4 坐标变换软件实现 (58)6.3.5 正余弦值的产生 (58)6.3.6 空间矢量PWM程序 (59)结束语 (60)参考文献 (61)致谢 (62)附录 (63)基于DSP永磁同步电动机矢量控制系统研究摘要:本论文在分析了PMSM的结构、数学模型的基础上采用弧公司专用于电机控制的TMS320F2407A型数字信号处理器作为核心,开发了全数字化的永磁同步电机矢量控制调速系统,主要完成了以下几个方面的工作:(1)本文查阅大量的文献资料,阐述了永磁同步电机的发展概况及应用以及其控制系统的发展现状,讨论了此课题的研究意义。
基于电流反馈解耦的永磁同步电机矢量控制研究一、引言永磁同步电机(Permanent Magnet Synchronous Motor,简称PMSM)由于其高效率、高功率密度和良好的动态性能,被广泛应用于工业和交通领域。
在PMSM控制中,矢量控制是一种常用的控制技术,其通过控制电机的电流和转子位置以实现精确的控制。
然而,PMSM控制中的交叉耦合和电流传感器的非线性等问题,限制了控制系统的性能和精度。
本文旨在通过基于电流反馈解耦的方法,对PMSM的矢量控制进行深入研究和探讨。
二、矢量控制原理1.矢量控制概述矢量控制是一种基于转子参考帧的控制方法,通过将PMSM电流和电压转换到dq坐标系下,以实现无触点的控制。
矢量控制可分为直接矢量控制和间接矢量控制两种方法。
2.直接矢量控制(Direct Vector Control)直接矢量控制是一种通过控制定子电流和转子磁链矢量,实现PMSM转矩和磁通的无触点控制方法。
直接矢量控制包含以下步骤:•dq坐标变换•转子磁链估算•转子磁链方向控制•定子电流控制3.间接矢量控制(Indirect Vector Control)间接矢量控制是一种通过控制PMSM的电压,以实现转子位置和速度的闭环控制方法。
间接矢量控制包含以下步骤:•dq坐标变换•转子位置估算•位置反馈环•转子位置和速度控制三、电流反馈解耦技术在传统的矢量控制中,由于PMSM的定子电流是交叉耦合的,即dq轴之间存在相互影响,会导致系统的性能下降。
因此,电流反馈解耦技术可以用来提高系统的响应速度和稳定性。
电流反馈解耦技术主要包括以下几个方面的内容:1.dq电流反馈解耦通过采用dq坐标系下的控制方法,可以实现定子电流之间的解耦。
2.PI控制器的设计利用PI控制器对dq电流进行控制,实现定子电流的精确控制。
3.动态参考电流生成通过动态参考电流生成技术,可以提高系统的动态响应和稳定性。
4.静态参考电流生成通过静态参考电流生成技术,可以提高系统的静态精度和稳定性。
本科毕业设计文献综述题目: 基于嵌入式系统的永磁同步电机控制系统设计与实现基于嵌入式系统的永磁同步伺服电机控制系统设计与实现摘要:本文首先介绍了同步电机的概述,发展现状,工作原理和伺服系统的模型。
然后介绍了矢量控制的基本思想和基本原理。
本文重点分析了变结构滑模控制系统,包括滑模面的研究,以及趋近律的设计。
最后简单提了下永磁同步电机的发展前景。
关键字:同步电机,矢量控制,滑模控制,变结构。
1 永磁同步电机简介1.1 永磁同步伺服电机概述同步电动机的转速是由定子电流交变频率和极对数决定的[1]。
在电励磁的同步电动机中,允许电动机在任何功率因数下工作。
自控式调频方法从根本上解决了振荡、失步问题。
因此,同步电动机变频调速的应用范围越来越广阔,在电气传动领域里占有相当大的比重。
随着电机制造与控制技术的飞速发展,加之大规模集成电路、半导体功率器件和微处理器技术的进步,伺服技术作为自动化的基础技术,有了革命性的进步。
再加上永磁铁的加入,使得电机的效率更高,体积更小,永磁同步电机的特点是用永磁体取代绕线式同步电机转子中的励磁绕组,从而省去了励磁线圈、滑环和电刷。
因此永磁伺服电机得到了广泛的发展和应用。
20世纪80年代以来,具有高磁能积(Br ≥1T,Hc≥80kA/m)、价格低廉的钕铁硼(NdFeB)永磁材料的出现,使永磁同步电动机得到了很大的发展,世界各国(以德国和日本为首)掀起了一股研制和生产永磁同步电动机及其伺服控制器的热潮,尤其在数控机床,工业机器人等小功率的应用场合,永磁同步伺服电机是主要发展趋势。
1.2永磁同步电机伺服系统的国内外发展现状最早对永磁同步电机的研究主要集中在固定频率供电的永磁同步电机运行特性方面,尤其是对稳态特性和直接起动性能方面的研究。
从80年代开始,国外开始对逆变器供电的永磁同步电动机进行研究。
逆变器供电的永磁同步电机与直接起动的永磁同步电机的结构基本相同,但在大多数情况下无阻尼绕组。