9-19教师版七年(工程问题)
- 格式:doc
- 大小:162.00 KB
- 文档页数:6
冀教版七年级数学上册教学设计 5.4.2相遇、工程问题一. 教材分析本节课的主题是相遇、工程问题,这是冀教版七年级数学上册第五章第四节的内容。
相遇问题是初中的一个重要内容,也是实际生活中经常遇到的问题。
在教学过程中,我们需要让学生通过观察、分析、归纳等方法,理解相遇问题的实质,掌握解决相遇问题的基本方法,并能够灵活运用这些方法解决实际问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于图形的认识和简单的几何计算已经较为熟练。
但是,对于相遇问题这种实际应用性问题,他们可能还不太熟悉,解决起来可能会感到困惑。
因此,在教学过程中,我们需要注意引导他们从实际问题中抽象出数学模型,帮助他们理解和掌握相遇问题的解决方法。
三. 教学目标1.知识与技能:让学生理解相遇问题的实质,掌握解决相遇问题的基本方法,并能够灵活运用这些方法解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,让学生体验从实际问题中抽象出数学模型的过程,培养他们的抽象思维能力。
3.情感态度价值观:让学生感受数学与生活的紧密联系,增强他们对数学的兴趣和信心。
四. 教学重难点1.重点:相遇问题的实质,解决相遇问题的基本方法。
2.难点:从实际问题中抽象出数学模型,灵活运用解决方法解决实际问题。
五. 教学方法1.情境教学法:通过设置实际情境,让学生感受相遇问题的实际意义,激发他们的学习兴趣。
2.引导发现法:引导学生从实际问题中抽象出数学模型,发现解决相遇问题的方法。
3.讨论交流法:在课堂上学生进行小组讨论,促进他们之间的交流与合作,提高他们的解决问题的能力。
六. 教学准备1.教具准备:黑板、粉笔、多媒体设备。
2.教学素材:实际生活中的相遇问题案例,相关练习题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际生活中的相遇问题,如两个人同时从两个不同地点出发,相向而行,问他们何时相遇?让学生感受相遇问题的实际意义,激发他们的学习兴趣。
人教版七年级下册数学8.3实际问题与二元一次方程组(工程问题)训练一、单选题1.某污水处理厂库池里现有待处理的污水m 吨.另有从城区流入库池的待处理污水(新流入污水按每小时n 吨的定流量增加).若该厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组,需15小时处理完污水.若5小时处理完污水,则需同时开动的机组数为( )A .6台B .7台C .8台D .9台2.小文原本计划使用甲、乙两台影印机于10:00开始一起印制文件并持续到下午,但10:00时有人正在使用乙,于是他先使用甲印制,于10:05才开始使用乙一起印制,且到10:15时乙印制的总张数与甲相同,到10:45时甲、乙印制的总张数合计为2100张.若甲、乙的印制张数与印制时间皆成正比,则依照小文原本的计划,甲、乙印制的总张数会在哪个时间达到2100张?( )A .10:40B .10:41C .10:42D .10:433.甲、乙两个工人按计划一个月应生产680个零件,结果甲超额完成计划的20%,乙超额完成计划的15%,两人一共多生产118个零件,则原计划甲、乙各生产零件数为( )A .320,360B .360,320C .300,380D .380,3804.甲乙丙三人做一项工作,三人每天的工作效率分别为a 、b 、c ,若甲乙一天工作量和是丙2天的工作量,乙丙一天的工作量和是甲5天的工作量,下列结论正确的是( )A .甲的工作效率最高B .丙的工作效率最高C .c =3aD .b :c =3:25.为打造三墩五里塘河河道风光带,现有一段长为180米的河道整治任务,由A 、B 两个工程小组先后接力完成,A 工程小组每天整治12米,B 工程小组每天整治8米,共用时20天,设A 工程小组整治河道x 米,B 工程小组整治河道y 米,依题意可列方程组( )A .18020128x y x y +=⎧⎪⎨+=⎪⎩ B .20128180x y x y +=⎧⎨+=⎩ C .20180128x y x y +=⎧⎪⎨+=⎪⎩ D .18012820x y x y +=⎧⎪⎨+=⎪⎩6.在一块a 公顷的稻田上插秧,如果10个人插秧,要用m 天完成;如果一台插秧机工作,要比10个人插秧提前3天完成,一台插秧机的工作效率是一个人工作效率的( )倍.A .7a mB .3a m -C .103m m -D .310m m- 7.现有一段长为180米的河道整治任务,由A 、B 两个工程小组先后接力完成,A 工程小组每天整治12米,B 工程小组每天整治8米,共用时20天,设A 工程小组整治河道x 天,B 工程小组整治河道y 天,依题意可列方程组( )A.18020128x yx y+=⎧⎪⎨+=⎪⎩B.20128180x yx y+=⎧⎨+=⎩C.2020128x yx y+=⎧⎪⎨+=⎪⎩D.18081220x yx y+=⎧⎨+=⎩8.某工程队共有27人,每天每人可挖土4方,或运土5方,为使挖出的土及时运走,应分配挖土和运土的人分别是A.12人,15人B.14人,13人C.15人,12人D.13人,14人二、填空题9.甲、乙、丙三人在A、B两块地植树,其中甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B 地.已知甲、乙、丙每小时分别能植树10棵,8棵,12棵.若乙在A地植树12小时后立即转到B地,则两块地同时开始同时结束;若要两块地同时开始,但A地比B地早6小时完成,则乙应在A地植树______小时后立即转到B地.10.一水池有一个进水管和三个完全相同的出水管,现水池中有一定量的水,打开进水管(注水速度一致),若只打开一个出水管,则1小时正好能把水池中的水放完;若打开两个出水管,则20分钟正好能把水池中的水放完;问若打开三个出水管,则需要__________分钟恰好能把水池中的水放完.11.一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:甲、乙两组工作一天,商店各应付多少钱?设:甲组工作一天商店应付x元,乙组工作一天商店付y元.列二元一次方程组为__________.12.甲、乙两队筑一条路,甲队每天筑x千米,乙队每天筑y千米,甲队筑5天和乙队筑4天共完成110千米,甲队筑3天的路正好是乙队筑2天的路,可列方程组________.13.自来水厂的供水池有7个进出水口,每天早晨6点开始进出水,且此时水池中有水15%,在每个进出水口是匀速进出的情况下,如果开放3个进口和4个出口,5小时将水池注满;如果开放4个进口和3个出口,2小时将水池注满.若某一天早晨6点时水池中有水24%,又因为水管改造,只能开放3个进口和2个出口,则从早晨6点开始经过____小时水池的水刚好注满.14.某工程队承包了某段全长1800米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进,已知甲组比乙组平均每天多掘进2米,经过5天施工,两组共掘进了60米,为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进2米,乙组平均每天能比原来多掘进1米,按此施工进度,能够比原来少用______天完成任务.15.秋天的一个周末,王明的同学去帮王明家收梨子,上午大家全部摘梨,下午一半同学(包括王明)继续摘梨,一半同学把梨搬运到果园外的车上以备运走,结果梨都摘完了,而需搬运的梨还留下一个人二天的工作量.如果每个人每搬运两筐梨的时间就能摘一筐梨,那么王明和他的同学共__________人.16.永川区某工程公司积极参与“三城同创”建设,该工程公司下属的甲工程队、乙工程队分别承包了三城的A工程、B工程,甲工程队睛天需要14天完成,雨天工作效率下降30%;乙工程队晴天需15天完成,雨天工作效率下降20%,实际上两个工程队同时开工,同时完工,两个工程队各工作了______天.三、解答题17.甲、乙两工程队共同修建300km的公路,原计划30个月完工.实际施工时,甲队通过技术创新,施工效率提高了50%,乙队施工效率不变,结果提前5个月完工.甲、乙两工程队原计划平均每月分别修建多长的公路?18.列方程组解应用题:某车间10月份计划加工甲、乙两种零件共200个,由于采用新技术,实际产量为216个,其中甲零件超产10%,乙零件超产5%求,该车间10月份计划加工甲、乙零件各多少个?19.甲乙两人同时加工一批零件,前3小时两人共加工126件,后5小时中甲先花了1小时修理工具,之后甲每小时比以前多加工10件,结果在后5小时内,甲比乙多加工了10件.甲、乙两人原来每小时各加工多少件?20.甲、乙两工程队共同修建150km的公路,原计划30个月完工.实际施工时,甲队通过技术创新,施工效率提高了50%,乙队施工效率不变,结果提前5个月完工.甲、乙两工程队原计划平均每月分别修建多长?21.某货运公司要运输两批货物,需使用水陆两类交通工具.具体运输情况如下表所示:请你根据以上信息,计算每辆汽车和每艘轮船平均各装货物多少吨.22.在某外环公路改建工程中,某路段长6140米,现准备由甲、乙两个工程队拟在25天内(含25天)合作完成,已知两个工程队各有20名工人(设甲、乙两个工程队的工人全部参与生产,甲工程队每人每天工作量相同,乙工程队每人每天工作量相同),甲工程队1天、乙工程队2天共修路400米;甲工程队2天、乙工程队3天共修路700。
一元一次方程应用题之工程问题工程问题:工程问题的基本量有:工作量、工作效率、工作时间。
关系式为:①工作量=工作效率×工作时间。
②工作时间=工作效率工作量,③工作效率=工作时间工作量。
工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t ,则工作效率为t1。
常见的相等关系有两种:①如果以工作量作相等关系,部分工作量之和=总工作量。
②如果以时间作相等关系,完成同一工作的时间差=多用的时间。
例题:例1.一水池装有甲、乙、丙三个水管,加、乙是进水管,丙是排水管,甲单独开需10小时注满一池水,乙单独开需6小时注满一池水,丙单独开15小时放完一池水。
现在三管齐开,需多少时间注满水池?例2.一项工程,甲队单独做需要10天完成,乙队单独做需要20天完成,两队同时工作3天后,乙队采用新技术,工作效率提高了25%,自乙队采用新技术后,两队还需要同时工作多少天才能完成这项工程?针对练习:1.某中学的学生自己动手整修操场,如果让初一学生单独工作,需要7.5小时完成;如果让初二学生单独工作,需要5小时完成。
如果让初一、初二学生一起工作1小时,再由初二学生单独完成剩余部分,共需几小时完成?2.一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共花12天完成,问乙做了几天?3.整理一批图书,由一个人做要40小时完成。
现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。
假设这些人的工作效率相同,具体先安排多少人工作。
4.某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?5.整理一批数据,由一个人做需80小时完成任务。
现在计划由一些人先做2小时,再增加5人做8小时,完成任务这项工作的3/4。
怎样安排参与整理数据的具体人数? 行程问题行程问题中有三个基本量:路程、时间、速度。
人教版七年级上册数学一元一次方程应用题(工程问题)专题训练1.一项工作,如果由甲单独做,需7.5小时完成;如果由乙单独做.需要5小时完成.如7.整理一批图书,由一个人做要10小时完成.现计划由一部分人先做1小时,然后增加2人与他们一起做2小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?8.甲、乙两工程队共同承包了一段长4600米的排污管道铺设工程,计划由两工程队分别从两端相向施工.已知甲队平均每天可完成230米,乙队平均每天比甲队多完成115米.(1)若甲乙两队同时施工,共同完成全部任务需要几天?(2)若甲乙两队共同施工5天后,甲队被调离去支援其他工程,剩余的部分由乙队单独完成,则乙队需再施工多少天才能完成任务?9.一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天.(1)如果由这两个工程队从两端同时施工,需要多少天可以铺好这条管线?(2)如果先让甲乙工程队合作先施工(3)a +天,余下的工程再由甲工程队施工(42)+a 天,恰好完成该工程,求甲工程队一共参与了多少天?10.某项工程的承包合同规定:15天内完成这项工程,否则每超过1天罚款5000元.已知甲单独做30天完成,乙单独做20天完成,为此甲、乙两工程队商定共同承包这项工程.(1)若甲、乙两工程队全程合作,多少天能完成这项工程?(2)在两工程队合作完成这项工程的75%时,甲临时有其他任务被调走,余下的工程由乙单独完成,则这项工程能否在15天内完成?请说明理由.11.一段河道治理任务由A ,B 两个工程队完成.A 工程队单独治理该河道需16天完成,B 工程队单独治理该河道需24天完成,现在A 工程队单独做6天后,B 工程队加入合作完成剩下的工程,问B 工程队工作了多少天?17.某工厂有甲、乙两条加工相同原材料的生产线.甲生产线加工m吨原材料需要(2m+3)小时;乙生产线加工n吨原材料需要(3n+2)小时.(1)求甲生产线加工2吨原材料所需要的时间;(2)求乙生产线8小时能加工的原材料的吨数;(3)该企业把7吨原材料分配到甲、乙两条生产线,若两条生产线加工的时间相同,则分配到甲、乙生产线的吨数分别为多少?18.一项工程甲队单独做需要15天完成,乙队单独做需要30天完成.(1)求甲、乙两队合作完成该工程的天数;(2)现甲队先单独做3天,然后剩余工程由两个工程队合作完成.甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元,求最终需要分别向甲、乙两队支付工程款的钱数.(要求利用一元一次方程解决问题)19.课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天”就停住了.根据以上信息解答下列问题:(1)两人合作需要_____天完成.(2)李老师选了两位同学的问题,合起来在黑板上写出:现由徒弟先做1天,再两人合作,完成后共得到报酬450元,如果按各完成工作量计算报酬,那么该如何分配?20.某工厂要制作一块广告牌,请来三名工人,已知甲单独做12天可完成,乙单独做20天可完成,丙单独做15天可完成.现在甲和乙合做了4天,余下的工作乙和丙两人合作完成,(1)余下的工作乙和丙两人合作多少天才能完成?(2)完成后,工厂支付酬金4800元,如果按各人完成的工作量计算报酬,那么应如何分配?参考答案:(2)甲中途离开了10天16.原计划36天完成任务.17.(1)7小时(2)2吨(3)分配到甲、乙生产线的吨数分别为4吨和3吨.18.(1)10天(2)最终需要向甲队支付38.5万元工程款,向乙队支付16万元工程款19.(1)2.4(2)师傅和徒弟各分225元20.(1)余下的工作乙和丙两人合作4天才能完成;(2)甲的报酬为1600元,乙的报酬为1920元,丙的报酬为1280元.。
3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题教学目标:1.掌握产品配套问题、工程问题中常见的数量关系.2.掌握用一元一次方程解决实际问题的基本过程.教学重点:弄清题意,用列方程解决实际问题.教学难点:寻找实际问题中的等量关系,建立数学模型.教学过程:一、复习巩固解下列方程(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);(2)3(2-3x)-3[3(2x-3)+3]=5;(3)(x+1)+(x+2)-3=-(x+3).二、提出问题,探究新知问题1(课本P100例1):某车间有22名工人生产螺钉和螺母,每人每天平均生产螺钉1 200个或螺母2 000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该安排多少名工人生产螺钉,多少名工人生产螺母?练习1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?问题2:要用20张白卡纸做包装盒,每张白卡纸可以做盒身两个或者做盒底盖3个.如果一个盒身和两个盒底盖可以做成一个包装盒,那么能否把这白卡纸分成两部分,一部分做盒身,一部分做盒底盖,使做成的盒身和盒底盖正好配套?请设计一种分法.(想一想:如果一张白卡纸可以适当的剪裁出一个盒身和一个盒底盖,那么,怎样分这些白卡纸,才能既使做出的盒身和盒底盖配套,又能充分地利用白卡纸?)练习2:(1)用白铁皮做罐头盒,每张铁皮可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒.现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分地利用白铁皮?(2)某车间每天能生产甲种零件120个,或者乙种零件100个.甲、乙两种零件分别取3个、2个才能配成一套.要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?教学过程:问题3:课本P100例2:整理一批图书:由一个人做要40 h完成.现计划由一部分人先做4 h,然后增加2人与他们一起做8 h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?1.逐句阅读题目,熟悉题中已知条件,回答问题:(1)由一个人要做40小时完成,这句话的作用?(2)根据题意,整项工作分成几部分?(3)借助线段图进一步理解题意.2.根据线段图,题目反映的相等关系是什么?3.设未知数,列方程解答.4.例题变式练习:(1)整理一批图书,由一个人做要40 h完成,现计划由一部分人先做4 h,然后增加2人与他们一起做6 h,完成这项工作的,假设这些人的工作效率相同,具体应先安排多少人工作?(2)整理一批图书,由一个人做要40 h完成,现计划由2人先做4 h,然后增加若干人与他们一起又做4 h 完成了这项工作,问增加了多少人?三、归纳总结1.归纳:用一元一次方程解决实际问题的基本过程.2.学生独立练习:(有困难的个别指导)(1)课本P101练习第2题(2)货车早上6:40从A城出发,15:40到达B城,一辆客车上午8:00从A城出发,14:00到达B城.求客车追上货车是什么时刻?提示:①由已知条件如何表示出货车与客车的速度?②当客车在途中追上货车时,两车的行驶时间有什么关系?行驶路程有什么关系?③以什么量为未知数,什么量为相等关系列方程,求出方程的解后又如何求解题目问题.强调:弄清货车与客车出发时间的先后,与到达时间的先后,以理解题意.四、课时小结通过以下问题引导学生反思小结:1.通过这节课的学习,你有什么收获?2.在解决配套、分配等问题方面你获得了哪些经验?这些问题中的相等关系有什么特点?五、课堂作业课本P101练习第1题,P106习题3.4第2、3题.课本P106第4、5题.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒2.高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做包含的数学道理是( ) A .两点确定一条直线B .两点之间,线段最短C .两条直线相交,只有一个交点D .直线是向两个方向无限延伸的3.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ). A.3229x x -=+ B.3(2)29x x -=+ C.2932x x+=- D.3(2)2(9)x x -=+4.某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( )A .(1-10%)(1+15%)x 万元B .(1-10%+15%)x 万元C .(x -10%)(x +15%)万元D .(1+10%-15%)x 万元5.如图,题中图形是用棋子按照一定规律摆成的,按照这种摆法,第n 个图形中共有棋子( )A .2n 枚B .(n 2+1)枚C .(n 2-n )枚D .(n 2+n )枚6.鸡兔同笼问题是我国古代著名趣题之一. 大约在1500年前,《孙子算经》中就记载了这个有趣的问题. 书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?经计算可得( )A.鸡23只,兔12只B.鸡12只,兔23只C.鸡15只,兔20只D.鸡20只,兔15只 7.下列方程中,是一元一次方程的是( ) A.x 2-4x =3 B.3x -1=2x C.x +2y =1D.xy -3=58.下列结论正确的是( ) A .单项式223ab c 的次数是4B .单项式22πm n5-的系数是25-C .多项式2x y -的次数是3D .多项式325x 2x 1-+中,第二项是22x 9.计算25()77-+-的正确结果是( ) A.37B.-37C.1D.﹣110.-24的相反数是( ) A.-24B.24C.124-D.12411.如图,数轴上每两个相邻的点之间距离均为1个单位长度,数轴上的点Q ,R 所表示数的绝对值相等,则点P 表示的数为( )A.0B.3C.5D.712.如图是一个正方体的表面展开图,则这个正方体是( )A. B. C. D.二、填空题13.已知 A 、B 、C 三点在同一条直线上,M 、N 分别为线段 AB 、BC 的中点,且 AB=60,BC=40, 则 MN 的长为 ______14.一个角是它的余角的2倍,则这个角的补角的度数是_____. 15.将方程4x +3y =6变形成用x 的代数式表示y ,则y =____.16.把长为20,宽为a 的长方形纸片(10<a <20),如图那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n 次操作后,剩下的长方形为正方形,则操作停止.当n=3时,a 的值为________.17.根据下列各式的规律,在横线处填空:1111122+-=,111134212+-=,111156330+-=,111178456+-=,……, 1120172018+-______=_______. 18.如图,在3×3的“九宫格”中填数,要使每行每列及每条对角线上的三数之和都相等.则B 表示的数是________________.19.按图程序计算,若开始输入的值为9,则输出的结果为______.20.阅览室某一书架上原有图书20本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书________本. 三、解答题21.如图,O 为直线AB 上一点,∠AOC =50°,OD 平分∠AOC ,∠DOE =90° (1)请你数一数,图中有多少个小于平角的角; (2)求出∠BOD 的度数;(3)请通过计算说明OE 是否平分∠BOC .22.有两个大小完全一样的长方形OABC 和EFGH 重合放在一起,边OA 、EF 在数轴上,O 为数轴原点(如图1),长方形OABC 的边长OA 的长为6个坐标单位. (1)数轴上点A 表示的数为 . (2)将长方形EFGH 沿数轴所在直线水平移动①若移动后的长方形EFGH 与长方形OABC 重叠部分的面积恰好等于长方形OABC 面积的,则移动后点F 在数轴上表示的数为 .②若出行EFGH 向左水平移动后,D 为线段AF 的中点,求当长方形EFGH 移动距离x 为何值时,D 、E 两点在数轴上表示的数是互为相反数?23.(背景知识)数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离AB=|a –b|,线段AB 的中点表示的数为2a b+. (问题情境)如图,数轴上点A 表示的数为–2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动. 设运动时间为t 秒(t>0).(综合运用)(1)填空:①A 、B 两点间的距离AB=__________,线段AB 的中点表示的数为__________; ②用含t 的代数式表示:t 秒后,点P 表示的数为__________;点Q 表示的数为__________. (2)求当t 为何值时,P 、Q 两点相遇,并写出相遇点所表示的数; (3)求当t 为何值时,PQ=12AB ; (4)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.24.解方程25.一般情况下2323a b a b ++=+不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得2323a b a b++=+成立的一对数a ,b 为“相伴数对”,记为(a ,b ). (1)若(1,b )是“相伴数对”,求b 的值;(2)写出一个“相伴数对”(a ,b ),其中a≠0,且a≠1;(3)若(m,n)是“相伴数对”,求代数式m﹣223n﹣[4m﹣2(3n﹣1)]的值.26.先化简,再求值:(3a2-8a)+(2a3-13a2+2a)-2(a3-3),其中a=-4.27.计算133210 1.544⎛⎫⎛⎫-+-+-⎪ ⎪⎝⎭⎝⎭.28.(1)某文具店在一周的销售中,盈亏情况如下表(盈余为正,单位:元):表中星期六的盈亏数被墨水涂污了,请你算出星期六的盈亏数,并说明星期六是盈还是亏?盈亏是多少?(2)某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利 2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?【参考答案】***一、选择题1.B2.B3.B4.A5.D6.A7.B8.A9.D10.B11.C12.C二、填空题13.10或5014.120°15.- SKIPIF 1 < 0 x+2解析:-43x+216.12或1517. SKIPIF 1 < 0 SKIPIF 1 < 0解析:11009120172018⨯18.-401919.20.19三、解答题21.(1)9;(2)155°;(3)OE平分∠BOC.理由见解析.22.(1)6;(2)①2或10.②x=423.(1)①10,3;②-2+3t,8-2t;(2)当t=2时,P、Q相遇,相遇点表示的数为4;(3)t=1或3;(4)5.24.-13.25.(1)94b=-; (2)9(2,)2-(答案不唯一);(3)-2.26.-10a2-6a+6;-130.27.5.28.(1)星期六盈利,盈利38元;(2)这个公司去年全年盈利3.7万元.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图是某几何体的表面展开图,则该几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱2.如图所示,点N 在点O 的( )方向上.A.北偏西65°B.南偏东65°C.北偏西25°D.南偏西25°3.如图,AB ∥CD ,CD ⊥EF ,若∠1=125°,则∠2=( )A .25° B.35° C.55° D.65°4.一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是( ) A .7.5秒B .6秒C .5秒D .4秒5.按如图所示的运算程序,能使输出的结果为12的是( )A.3,3x y ==B.4,2x y =-=-C.2,4x y ==D.4,2x y ==6.下面计算步骤正确的是( )A.由2(2x -1)-3(x -3)=1,变形得4x -2-3x -9=1 .B.由2?3x =1+-32x ,变形得2(2-x )=1+3(x -3) .C.若α∠的补角是它的3倍,则α∠= 22.5°.D.若a 与b 互为倒数,则-34ab =-34. 7.下列计算正确的是( ) A .2a+a 2=3a 3B .a 6÷a 2=a 3C .(a 2)3=a 6D .3a 2-2a=a 28.现有五种说法:①-a 表示负数;②绝对值最小的有理数是0;③3×102x 2y 是5次单项式;④5x y-是多项式.其中正确的是( ) A.①③B.②④C.②③D.①④9.下列说法中正确的是( )A .2x y 4不是整式B .0是单项式C .22πab -的系数是2-D .223xy -的次数是510的相反数是( )B.C.2D.﹣211.根据图中箭头指向的规律,从2014到2015再到2016,箭头的方向( )A. B. C. D.12.下列各组数中互为相反数的是( )A.-2B.-2C.2与()2|二、填空题13.已知点B 位于点A 北偏东30°方向,点C 位于点A 北偏西30°方向,且AB=AC=8千米,那么 BC=________千米.14.若3324'α∠=︒,则α∠的余角度数为________°.(结果化成度)15.一件标价为600元的上衣,按8折销售仍可获利20元,设这件上衣的成本价为x 元,根据题意,下面所列的方程正确的是________________.16.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿,若每间住8人,则最后有一间宿舍不满也不空,则学生人数为______人. 17.下列各式中,3a+4b ,0,﹣a ,am+1,﹣xy , 1x ,x a ﹣1, 2x y+单项式有______个,多项式有_______个18.多项式________ 与m 2+m ﹣2的和是m 2﹣2m .19_____.20.若|x|=3,|y|=2,且xy <0,则x ﹣y=______.三、解答题21.某中学要在一块如图的三角形花圃里种植花草,同时学校还打算修建一条从A 点到BC 边的小路.(1)若要使修建的小路所用的材料最少..,请在图1画出小路AD ; (2)若要使小路两侧所种的花草面积相等....,请在图2画出小路AE ,其中E 点满足的条件是______. 22.如果两个角的差的绝对值等于90,就称这两个角互为反余角,其中一个角叫做另一个角的反余角,例如,1120∠=,230∠=,1290∠∠-=,则1∠和2∠互为反余角,其中1∠是2∠的反余角,2∠也是1∠的反余角.()1如图1.O 为直线AB 上一点,OC AB ⊥于点O ,OE OD ⊥于点O ,则AOE ∠的反余角是______,BOE ∠的反余角是______;()2若一个角的反余角等于它的补角的23,求这个角. ()3如图2,O 为直线AB 上一点,AOC 30∠=,将BOC ∠绕着点O 以每秒1角的速度逆时针旋转得DOE ∠,同时射线OP 从射线OA 的位置出发绕点O 以每秒4角的速度逆时针旋转,当射线OP 与射线OB 重合时旋转同时停止,若设旋转时间为t 秒,求当t 为何值时,POD ∠与POE ∠互为反余角(图中所指的角均为小于平角的角).23.解方程:(1)2976x x -=+;(2)332164x x +-=-. 24.列方程(组)解应用题扬州商城某店用2300元购进A 、B 两种型号的节能灯一共60盏,其中A 型节能灯的进价为30元/盏,B 型节能灯的进价为50元/盏.(1)求A 型节能灯、B 型节能灯各购进了多少盏;(2)若将B型节能灯的标价比进价提高了50%,再打折出售后利润率为20%,那么B型节能灯是打几折销售?25.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了的多项式,形式如下:﹣(a+2b)2=a2﹣4b2(1)求所捂的多项式;(2)当a=﹣1,26.数学问题:计算等差数列5,2,﹣1,﹣4……前n项的和.问题探究:为解决上面的问题,我们从最简单的问题进行探究.探究一:首先我们来认识什么是等差数列.数学上,称按一定顺序排列的一列数为数列,其中排在第一位的数称为第1项,用a1表示:排在第二位的数称为第2项,用a2表示……排在第n位的数称为第n项,用a n表示.一般地,如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差,公差通常用字母d表示.如:数列2,4,6,8,….为等差数列,其中a1=2,公差d=2.(1)已知等差数列5,2,﹣1,﹣4,…则这个数列的公差d=,第5项是.(2)如果一个数列a1,a2,a3,a4,…是等差数列,且公差为d,那么根据定义可得到:a2﹣a1=d,a3﹣a2=d,a4﹣a3=d,……a n﹣a n﹣1=d,所以a2=a1+d,a3=a2+d=a1+2d,a4=a1+3d,……:由此可得a n=(用a1和d的代数式表示)(3)对于等差数列5,2,﹣1,﹣4,…,a n=请判断﹣2020是否是此等差数列的某一项,若是,请求出是第几项:若不是,说明理由.探究二:二百多年前,数学王子高斯用他独特的方法快速计算出1+2+3+4+…+100的值.我们从这个算法中受到启发,用此方法计算数列1,2,3,…,n的前n项和:由121121(1)(1)(1)(1)n nn nn n n n++⋯+-++-+⋯+++++⋯++++可知(1) 1232n nn+⨯+++⋯+=(4)请你仿照上面的探究方式,解决下面的问题:若a1,a2,a3,…,a n为等差数列的前n项,前n项和S n=a1+a2+a3+…+a n.证明:S n=na1+(1)2n nd-.(5)计算:计算等差数列5,2,﹣1,﹣4…前n项的和S n(写出计算过程).27.数学魔术:如图所示,数轴上的点A、B、C、D分别表示131042--,,,,请回答下列问题:(1)在数轴上描出A、B、C、D四个点;(2)B、C两点间的距离是多少?A、D两点间的距离是多少?(3)现在把数轴的原点取在点B处,其余都不变,那么点A、B、C、D、分别表示什么数?28.计算:(-1)3-14×[2-(-3)2] .【参考答案】***一、选择题1.B2.B3.B4.D5.C6.D7.C8.B9.B10.B11.C12.A二、填空题13.814.6°15. SKIPIF 1 < 0解析:6000.820x ⨯-=16.4417.318.﹣3m+2.19. SKIPIF 1 < 0解析:20.5或﹣5.三、解答题21.(1)见解析;(2)点E 是BC 边的中点,图见解析22.(1)AOE ∠的反余角是AOD ∠,BOE ∠的反余角是BOD ∠(2)18或者126(3)当t 为40或者10时,POD ∠与POE ∠互为反余角23.(1)x=﹣3;(2)x=34. 24.(1)A 型节能灯购进35盏,则B 型节能灯购进25盏; (2)B 型节能灯的售价打8折销售.25.(1)2a 2+4ab ;(2)2﹣26.(1)﹣3,﹣7;(2)a n =a 1+(n ﹣1)d ;(3)﹣3n+8;(4)详见解析;(5)231322n n S n =-+27.(1)见解析;(2)B、C两点的距离为112,A、D两点的距离为7;(3)点A表示的数为﹣412,点B表示的数为0,点C表示的数为﹣112,点D表示的数为212.28.34.。
个性化教学辅导教案
学科:数学任课教师:佟老师授课时间: 2013年9月19 日 (星期四)16:00~18:00姓名年级七年性别男教学课题
教学
目标
教师版
重点
难点
课前
检查作业完成情况:优□良□中□差□建议__________________________________________
课
堂
教
学过程过
程
一元一次方程应用题---工程问题
一、列方程解应用题的一般步骤(解题思路)
(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.
(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.
(4)解——解方程:解所列的方程,求出未知数的值.
(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,
检验后写出答案.(注意带上单位)
二、工程问题基本关系式
①工作量=工作效率×工作时间,
②工作效率=工作量÷工作时间,
③工作时间=工作量÷工作效率;
④常把工作量看作单位1.
三、例题讲解:
1. 某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任
务,而且还比原计划多生产了60件,问原计划生产多少零件?
X
X
=
-
+60
24
*)5
26
() X=780
2 某工程,甲单独完成续20天,乙单独完成续12天,甲乙合干6天后,再由乙继续完成,
乙再做几天可以完成全部工程? 1 - 6(
12
1
20
1
+)=
12
1
X X=2.4
3 .已知甲、乙二人合作一项工程,甲25天独立完成,乙20天独立完成,甲、乙二人合
作5天后,甲另有事,乙再单独做几天才能完成?
1 - X
20
1
5
*
20
1
25
1
=
+)
(X=11
完成一项工程甲需要a天,乙需要b天,则二人合做需要的天数为
1/(
b
a
ab
b
a+
=
+)
1
1
()
某工人原计划每天生产a 个零件,现实际每天多生产b 个零件,则生产m 个零件提前的
天数为( )
(b a a bm b a m a m +=+- )。
4. 一个水池安有甲乙丙三个水管,甲单独开12h 注满水池,乙单独开8h 注满,丙单独开24h
可排掉满池的水,如果三管同开,多少小时后刚好把水池注满水?
124
1-81121=+X )( X=6 5 甲、乙两个水池共蓄水50t,甲池用去5t ,乙池又注入8t 后,甲池的水比乙池的水少3t ,问原来甲、乙两个水池各有多少吨水?
X-5+3=50-X+8 X=27 50-27=23
6 将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?
1-X )4
161(2161+=⨯ X=511 2小时12分 6. 工程问题:
工程问题中的三个量及其关系为:工作总量=工作效率×工作时间
经常在题目中未给出工作总量时,设工作总量为单位1。
例6. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?
分析设工程总量为单位1,等量关系为:
工程问题的基本关系:
工作量=工作效率×工作时间 ;工作效率=工作量÷工作时间 ;工作时间=工作量÷工作效率
注意:一般情况下把总工作量设为1,完成某项任务的各工作量的和=总工作量=1
1、做某件工作,甲单独做要8小时才能完成,乙单独做要12小时才能完成,
问:① 甲做1小时完成全部工作量的几分之几? 18
② 乙做1小时完成全部工作量的几分之几? 112
③ 甲、乙合做1小时完成全部工作量的几分之几? 11812+
④ 甲做x 小时完成全部工作量的几分之几? 18
x ⑤ 甲、乙合做x 小时完成全部工作量的几分之几? 11()812
x + ⑥ 甲先做2小时完成全部工作量的几分之几? 128
⨯ 乙后做3小时完成全部工作量的几分之几?1312
⨯
甲、乙再合做x 小时完成全部工作量的几分之几?11()812
x + 三次共完成全部工作量的几分之几? 结果完成了工作,则可列出方程:
111123()1812812
x ⨯+⨯++= 2、一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?
解:设还需要x 天完成,依题意,得111()41101515
x +⨯+= 解得x=5 答:还需要5天完成
3、食堂存煤若干吨,原来每天烧煤4吨,用去15吨后,改进设备,耗煤量改为原来的一
半,结果多烧了10天,求原存煤量.
解:设原存煤量为x 吨,依题意,得15151024
x x ---= 解得x=55 答:原存煤量为55吨
4、一水池,单开进水管3小时可将水池注满,单开出水管4小时可将满池水放完。
现对空
水池先打开进水管2小时,然后打开出水管,使进水管、出水管一起开放,问再过几小时可将水池注满?
解:设再过x 小时可将水池注满,依题意,得1112()1334
x ⨯+-= 解得x=4 答:再过4小时可将水池注满。
5、甲、乙两个工程队合做一项工程,乙队单独做一天后,由甲、乙两队合做两天后就完成了
全部工程.已知甲队单独做所需天数是乙队单独做所需天数的3
2,问甲、乙两队单独做,各需多少天?
答:常规解法:设乙队单独做要x 天完成,那么甲队单独做要23
X 天完成。
由题意得
巧解:设乙队每天完成的工作量为x ,那么甲队每天完成的工作量为,由题意得:
6、一项工程300人共做, 需要40天,如果要求提前10天完成,问需要增多少人?
解:由已知每人每天完成140300
⨯,设需要增x 人, 则列出方程为 140300
⨯()300301x +⨯= 解得 x=100 答:需要增100人
7、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务? 答:4
解:设甲、乙两个龙头齐开x 小时。
由已知得,甲每小时灌池子的12
,乙每小时灌池子
的13。
列方程:12×0.5+(12+13)x=23 , 14+56x=23 , 56x=512
x=12
=0.5 x+0.5=1(小时) 答:一共需要1小时。
8、一水池有一个进水管,4小时可以注满空池,池底有一个出水管,6小时可以放完满池的
水.如果两水管同时打开,那么经过几小时可把空水池灌满?
解:令水箱为1,进水管每小时注水14 , 出水管每小时放水16
, 设两水管同时打开 , 经过x 小时可把空水池灌满
则由题意列出方程为(14-16
)x=1 , 解得x=12 9、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?
(5)246026
X X +⋅-= , X=780 10、某工程,甲单独完成续20天,乙单独完成续12天,甲乙合干6天后,再由乙继续完
成,乙再做几天可以完成全部工程? 1 - 6(121201+)=12
1X X=2.4 11、已知甲、乙二人合作一项工程,甲25天独立完成,乙20天独立完成,甲、乙二人合
5天后,甲另有事,乙再单独做几天才能完成?
1 - 1115252020
X +⋅=() , X=11 12、① 完成一项工程甲需要a 天,乙需要b 天,则二人合做需要的天数为 1/(b
a a
b b a +=+)11( ② 某工人原计划每天生产a 个零件,现实际每天多生产b 个零件,则生产m 个零件提前的天
数为( )
(b a a bm b a m a m +=+- )。
13、一个水池安有甲乙丙三个水管,甲单独开12h 注满水池,乙单独开8h 注满,丙单独开24h 可排掉满池的水,如果三管同开,多少小时后刚好把水池注满水?
124
1-81121=+X )( X=6 14、甲、乙两个水池共蓄水50t,甲池用去5t ,乙池又注入8t 后,甲池的水比乙池的水少3t ,问原来甲、乙两个水池各有多少吨水?
X-5+3=50-X+8 X=27 50-27=23
15、将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?
1-X )4161(2161+=⨯ , X=5
11 , 2小时12分 课堂检测 听课及知识掌握情况反馈_________________________________________________________。
测试题(累计不超过20分钟)_______道;成绩_______;教学需:加快□;保持□;放慢□;增加内容□ 课后巩固
作业_____题; 巩固复习____________________ ; 预习布置_____________________ 签字 教学组长签字: 学习管理师:
老师 课后 赏识 评价
老师最欣赏的地方:
老师想知道的事情: 老师的建议:。