高等数学教材资料完整
- 格式:doc
- 大小:1.48 MB
- 文档页数:96
高等数学上下册完整版教材高等数学是大学数学的一门基础课程,旨在培养学生的数学思维能力和解决实际问题的能力。
下面是《高等数学上下册完整版教材》的内容概述:第一章导数与微分1.1 导数的定义与几何意义1.2 基本求导法则1.3 函数的微分1.4 高阶导数与高阶微分1.5 隐函数与参数方程的导数1.6 微分中值定理与导数的应用第二章不定积分2.1 定积分的概念2.2 不定积分与不定积分的性质2.3 基本不定积分法2.4 特殊函数的不定积分2.5 不定积分的应用第三章定积分3.1 定积分的定义与几何意义3.2 定积分的性质3.3 定积分的计算方法3.4 牛顿-莱布尼茨公式3.5 定积分的应用第四章微分方程4.1 微分方程的概念与分类4.2 一阶微分方程4.3 高阶线性微分方程4.4 变量可分离的方程4.5 齐次线性微分方程4.6 非齐次线性微分方程4.7 常系数线性齐次微分方程4.8 微分方程的应用第五章多元函数的微分学5.1 多元函数的极限5.2 多元函数的偏导数5.3 多元复合函数的偏导数5.4 隐函数与参数方程的偏导数5.5 高阶偏导数5.6 多元函数的全微分5.7 多元函数的极值与最值第六章重积分与曲线积分6.1 二重积分的概念与性质6.2 二重积分的计算方法6.3 极坐标下的二重积分6.4 三重积分的概念与性质6.5 三重积分的计算方法6.6 曲线积分的概念与性质6.7 曲线积分的计算方法6.8 曲线积分在物理学中的应用第七章曲面积分与格林公式7.1 曲面积分的概念与性质7.2 曲面积分的计算方法7.3 散度与无源场7.4 格林公式的推广与应用第八章空间解析几何与向量代数8.1 空间直角坐标系与向量8.2 空间曲线与曲面8.3 向量的运算与坐标表示8.4 点、直线与平面的方程8.5 空间向量的夹角与投影8.6 空间点、直线与平面的位置关系8.7 空间曲线与曲面的位置关系第九章广义与特殊函数9.1 广义积分的概念9.2 常数项一般项相消法9.3 幂函数、指数函数与对数函数9.4 三角函数与反三角函数9.5 常见特殊函数第十章数项级数10.1 级数概念与性质10.2 收敛级数的判定方法10.3 常见级数的和10.4 绝对收敛与条件收敛10.5 幂级数与泰勒展开10.6 常见函数的泰勒展开第十一章函数级数11.1 函数列与函数项级数11.2 函数列极限与函数项级数的一致收敛11.3 函数列极限的性质11.4 一致收敛级数的和函数的性质11.5 函数项级数的逐项积分与逐项求导11.6 Fourier级数以上是《高等数学上下册完整版教材》的内容概述。
高等数学教材内容目录表1. 函数与极限1.1 函数的基本概念1.2 极限的定义与性质1.3 极限运算法则1.4 无穷小与无穷大1.5 函数的连续性2. 导数与微分2.1 导数的概念与计算2.2 导数的几何意义与物理意义2.3 高阶导数与导数的简单应用2.4 微分的概念与计算3. 微分中值定理与应用3.1 罗尔定理与拉格朗日中值定理3.2 函数的单调性与极值3.3 中值定理的应用3.4 泰勒公式与泰勒展开式3.5 参数方程与极坐标系4. 不定积分4.1 不定积分的定义与基本性质 4.2 基本积分公式与通积分法 4.3 分部积分与换元积分法4.4 定积分与定积分的计算5. 定积分与微积分基本定理5.1 定积分的定义与性质5.2 牛顿—莱布尼茨公式5.3 组合中的定积分5.4 广义积分与无穷级数6. 常微分方程6.1 一阶常微分方程6.2 高阶线性常微分方程6.3 非齐次线性微分方程6.4 变量可分离微分方程6.5 齐次线性微分方程6.6 常系数线性微分方程7. 多元函数微分学7.1 二元函数与二元函数的极限 7.2 二元函数偏导数与全微分7.3 隐函数与隐函数的偏导数7.4 多元函数的极值与条件极值8. 重积分8.1 二重积分的概念与性质8.2 三重积分的概念与性质8.3 球坐标与柱坐标下的积分计算8.4 重积分的应用9. 曲线积分与曲面积分9.1 曲线积分的定义与计算9.2 曲线积分的应用9.3 曲面积分的定义与计算9.4 曲面积分的应用10. 傅里叶级数10.1 傅里叶系数与傅里叶级数10.2 傅里叶级数的收敛性与展开性质10.3 定义域上的奇偶延拓与周期延拓11. 选修内容(根据学校及课程安排进行确定)。
高等数学教材全套第一章:函数与极限1.1 函数的概念与性质高等数学教材的第一章,介绍了函数的基本概念和性质。
函数是一种数学关系,将一个集合的元素映射到另一个集合的元素。
函数的性质包括定义域、值域、单调性等等。
1.2 极限的概念与性质极限是高等数学中的重要概念,用来描述函数在某一点上的趋势。
本节讲解了极限的定义和性质,如左极限、右极限、无穷大极限等。
第二章:导数与微分2.1 导数的概念与计算导数是函数变化率的度量,描述了函数在某一点上的斜率或变化速度。
本节介绍了如何计算函数的导数,并讲解了常用的求导法则。
2.2 微分的概念与计算微分是导数的一个重要应用,它描述了函数在某一点附近的局部线性近似。
本节讨论了微分的定义和计算方法。
第三章:积分与常微分方程3.1 定积分的概念与性质定积分是通过对函数曲线下的面积进行求和来描述曲线与坐标轴之间的关系。
本节讲解了定积分的概念、性质和计算方法。
3.2 不定积分的概念与性质不定积分是定积分的逆运算,可以用来求解函数的原函数。
本节介绍了不定积分的定义和计算方法。
3.3 常微分方程的基本概念与解法常微分方程是描述自然现象中变化规律的数学模型。
本节讨论了常微分方程的基本概念和解法,包括一阶线性微分方程、高阶微分方程等。
第四章:级数与幂级数4.1 数列极限的概念与性质数列是由一串有序的数按照一定规律排列而成的,数列的极限描述了数列随着项数增加而趋于的值。
本节介绍了数列极限的概念和性质。
4.2 级数的概念与性质级数是将数列的各项按照一定的顺序进行求和得到的数列之和。
本节讨论了级数的概念、性质和判敛法则。
4.3 幂级数的概念与性质幂级数是一种特殊的级数,它将各项幂次递增的多项式按照一定的顺序进行求和得到的函数。
本节讲解了幂级数的概念和性质。
第五章:多元函数微积分学5.1 多元函数的概念与性质多元函数是包含多个自变量的函数,它描述了多个变量之间的关系。
本节介绍了多元函数的定义、性质和图像表示法。
大学高等数学教材课本目录一、导言1. 数学的定义和作用2. 数学的基本概念和符号二、函数与极限1. 函数的定义与性质2. 极限的概念和性质3. 无穷小量与无穷大量4. 极限运算法则5. 常用极限三、导数与微分1. 导数的定义与性质2. 高阶导数与高阶微分3. 微分中值定理与导数的应用4. 隐函数与参数方程的导数5. 函数的凹凸性与极值四、积分与定积分1. 不定积分与积分表2. 定积分的概念与性质3. 定积分的计算方法4. 牛顿—莱布尼茨公式与反常积分五、常微分方程1. 方程与解的概念2. 一阶常微分方程的解法3. 高阶常微分方程的解法4. 常微分方程的应用六、向量代数与空间解析几何1. 向量的基本运算2. 线性相关与线性无关3. 空间直线与平面的方程4. 空间曲线与曲面的方程七、多元函数微分学1. 多元函数的极限与连续性2. 偏导数与全微分3. 方向导数与梯度4. 隐函数与参数方程的偏导数5. 多元函数的极值与最值八、多元函数积分学1. 二重积分的概念与性质2. 二重积分的计算方法3. 三重积分的概念与性质4. 三重积分的计算方法5. 曲线与曲面的曲线积分与曲面积分九、无穷级数1. 级数的概念与性质2. 通项、部分和与级数的收敛性3. 正项级数4. 幂级数与函数展开十、常微分方程初步1. 高阶线性微分方程的解法2. 非齐次线性微分方程的解法3. 常系数线性微分方程的解法4. 欧拉方程和常微分方程的应用十一、数值方法1. 函数插值2. 数值微分与数值积分3. 常微分方程的数值解法以上是《大学高等数学教材》的目录内容。
希望本教材能够对大学生的数学学习提供有力的帮助,引导他们从基本概念和符号入手,系统地学习数学的各个领域和章节,掌握数学的基本理论和方法,为日后的专业学习和实践打下坚实的基础。
目录一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (8)9、函数的极限 (10)10、函数极限的运算规则 (11)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑵、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
高等数学教材系列目录引言:高等数学作为大学本科的基础课程之一,对于培养学生的数学思维和分析问题的能力具有重要意义。
为了满足学生对高等数学教材的需求,本文将探讨高等数学教材系列的目录,并介绍每本教材的内容和特点。
第一册:微积分导论1. 函数与极限1.1 函数的概念与性质1.2 函数的极限及其计算方法1.3 极限存在准则与极限运算法则1.4 极限的无穷性与无穷小2. 导数与微分2.1 导数的概念与性质2.2 基本初等函数的导数2.3 导数的计算法则2.4 高阶导数与隐函数的导数3. 微分中值定理与导数的应用3.1 微分中值定理与罗尔定理3.2 导数的应用之极值与最值3.3 导数的应用之曲线的凹凸性与拐点 3.4 泰勒公式与函数的近似计算第二册:多元函数与微分学1. 多元函数的极限与连续性1.1 多元函数的极限的定义与性质1.2 二重极限的计算方法1.3 多元函数的连续性与连续函数的性质1.4 多元函数的间断点与可去间断点2. 偏导数与全微分2.1 多元函数的偏导数与偏导数的计算 2.2 高阶偏导数与混合偏导数2.3 多元复合函数的偏导数与链式法则2.4 全微分与全微分近似计算3. 多元函数的极值与条件极值3.1 多元函数的极值与最值的概念3.2 多元函数的极值判定条件3.3 条件极值与拉格朗日乘数法3.4 多元函数的条件极值的应用第三册:重积分与曲线积分1. 二重积分与三重积分1.1 二重积分的概念与性质1.2 二重积分的计算方法(直角坐标与极坐标) 1.3 三重积分的概念与性质1.4 三重积分的计算方法(直角坐标与柱面坐标)2. 重积分的应用2.1 质量、质心与转动惯量2.2 二重积分中的面积与变量替换2.3 三重积分中的体积与变量替换2.4 重积分在物理问题中的应用3. 曲线积分与曲面积分3.1 第一类曲线积分与第二类曲线积分3.2 曲线积分的计算方法3.3 曲面积分的概念与性质3.4 曲面积分的计算方法(参数表示与一般参数)结语:高等数学教材系列的目录旨在系统地介绍高等数学的各个分支领域,帮助学生全面理解数学的概念与方法,并培养分析问题与解决问题的能力。
高等数学教材完整一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数一 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (8)9、函数的极限 (9)10、函数极限的运算规则 (11)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
目录一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (3)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (5)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (8)9、函数的极限 (9)10、函数极限的运算规则 (11)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
【最新整理,下载后即可编辑】高等数学教材完整一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数一 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (8)9、函数的极限 (9)10、函数极限的运算规则 (11)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N。
⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A 的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
目录一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (8)9、函数的极限 (9)10、函数极限的运算规则 (11)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
高等数学系列教材目录第一册:微积分基础1.数集与函数1.1 数集的表示与运算1.2 函数的定义与性质1.3 常用函数及其图像2.极限与连续2.1 数列与极限2.2 函数的极限2.3 连续函数与间断点3.导数与微分3.1 导数的定义与计算3.2 微分的概念与应用3.3 高阶导数与高阶微分4.一元函数的应用4.1 函数的单调性与极值4.2 函数的凹凸性与拐点4.3 泰勒公式及其应用第二册:多元函数微积分1.二元函数与偏导数1.1 二元函数的定义与性质1.2 偏导数与全微分1.3 隐函数与参数方程求导2.多元函数的极值与条件极值2.1 多元函数的极值2.2 隐函数极值与参数方程极值2.3 条件极值与拉格朗日乘子法3.重积分3.1 二重积分的计算3.2 三重积分的计算3.3 积分次序与坐标变换4.曲线与曲面积分4.1 曲线积分的计算4.2 曲面积分的计算4.3 斯托克斯定理与高斯公式第三册:级数与常微分方程1.级数的收敛性与性质1.1 数项级数的概念与性质1.2 正项级数的审敛法1.3 交错级数与绝对收敛2.幂级数与函数展开2.1 幂级数的收敛域与收敛半径 2.2 幂级数的运算与逐项求导2.3 函数的泰勒级数展开3.常微分方程基础3.1 微分方程的基本概念3.2 一阶线性微分方程3.3 高阶线性微分方程4.常微分方程应用4.1 古典物理问题的建模与求解 4.2 生物、经济与工程领域的应用4.3 相图与稳定性分析第四册:向量与解析几何1.向量代数基础1.1 向量的定义与运算1.2 向量的线性相关性与线性无关性1.3 向量的内积与外积2.空间直线与平面2.1 三维空间的点、直线与平面2.2 直线的方向向量与法向量2.3 空间直线与平面的位置关系3.空间曲线与曲面3.1 曲面的参数方程与一阶偏导数 3.2 流形与曲率3.3 空间曲线、曲面与切线法向第五册:数学分析基础1.度量空间与拓扑1.1 度量空间的定义与性质1.2 拓扑空间的概念与特征1.3 开集、闭集与连通性2.泛函分析2.1 功能空间与泛函空间2.2 线性算子与线性泛函2.3 无穷维空间与紧性理论3.微分流形3.1 流形的定义与性质3.2 曲线与曲面的切空间3.3 切向量场与流形上的积分4.测度论基础4.1 测度空间的定义与测度函数4.2 测度的可测性与测度的完备性4.3 测度函数与积分运算这是《高等数学系列教材》的目录,详细介绍了每一册的章节内容。
大学高等数学教材目录第一章前言1.1 数学教材的重要性1.2 数学教材的组成要素第二章函数与极限2.1 函数的概念与性质2.1.1 函数的定义2.1.2 函数的图像与性质2.2 极限的概念与性质2.2.1 极限的定义2.2.2 无穷小量与无穷大量2.3 一元函数的极限2.3.1 极限的运算法则2.3.2 连续函数与间断点2.4 多元函数的极限2.4.1 多元函数的定义与性质2.4.2 多元函数的极限计算2.5 极限存在准则与极限运算法则 2.5.1 极限存在准则2.5.2 极限运算法则的应用第三章导数与微分3.1 导数的概念与性质3.1.1 导数的定义与解释3.1.2 导数的几何意义与物理意义 3.2 导数运算法则3.2.1 导数的四则运算3.2.2 链式法则与复合函数的导数 3.3 高阶导数与隐函数求导3.3.1 高阶导数的定义3.3.2 隐函数求导的方法3.4 微分与微分近似3.4.1 微分的定义与计算3.4.2 微分近似与局部线性化第四章积分与定积分4.1 不定积分与反导函数4.1.1 不定积分的概念与性质4.1.2 基本积分公式与换元积分法4.2 定积分的概念与性质4.2.1 定积分的定义与几何意义4.2.2 定积分的计算方法4.3 定积分的应用4.3.1 几何应用:曲线长度与曲面面积 4.3.2 物理应用:质量、质心与弧长 4.4 微积分基本定理及其应用4.4.1 第一型与第二型微积分基本定理 4.4.2 牛顿-莱布尼茨公式的推广第五章一元函数的级数5.1 数项级数5.1.1 数项级数的概念与性质5.1.2 数项级数的敛散性判定5.2 幂级数与函数展开5.2.1 幂级数的收敛半径5.2.2 幂级数的基本性质与展开5.3 函数项级数5.3.1 函数项级数的概念与性质5.3.2 函数项级数的一致收敛性5.4 泰勒级数与傅里叶级数5.4.1 泰勒级数的定义与应用5.4.2 傅里叶级数的定义与计算第六章多元函数与偏导数6.1 多元函数的概念与性质6.1.1 多元函数的定义6.1.2 多元函数的极限与连续性6.2 偏导数与全微分6.2.1 偏导数的定义与计算6.2.2 全微分与多元函数的微分近似 6.3 多元复合函数与隐函数求导6.3.1 多元复合函数的偏导数6.3.2 多元隐函数的求导方法6.4 梯度与方向导数6.4.1 多元函数的梯度6.4.2 方向导数与梯度的应用第七章多元函数的积分学7.1 二重积分的概念与性质7.1.1 二重积分的定义与几何意义 7.1.2 二重积分的计算方法7.2 二重积分的应用7.2.1 几何应用:面积与质心7.2.2 物理应用:质量与矩7.3 三重积分的概念与性质7.3.1 三重积分的定义与几何意义 7.3.2 三重积分的计算方法7.4 三重积分的应用7.4.1 几何应用:体积与质心7.4.2 物理应用:质量与转动惯量7.5 曲线与曲面积分7.5.1 第一型曲线积分7.5.2 第二型曲线积分与曲面积分第八章常微分方程8.1 微分方程的基本概念8.1.1 微分方程的定义与分类8.1.2 初值问题与解的存在唯一性 8.2 一阶常微分方程8.2.1 可分离变量方程8.2.2 一阶线性方程8.3 二阶线性常系数齐次微分方程 8.3.1 特征方程与通解形式8.3.2 边值问题与特解法8.4 高阶线性常系数齐次微分方程 8.4.1 特征方程与通解形式8.4.2 边值问题与特解法8.5 常微分方程的应用8.5.1 骨架曲线与特解的选择8.5.2 物理领域中的应用第九章向量代数与空间解析几何9.1 向量的基本概念与运算9.1.1 向量的定义与性质9.1.2 向量的线性运算与数量积9.2 空间直线与平面9.2.1 空间直线的参数方程9.2.2 空间平面的法向量与标准方程 9.3 空间曲线与曲面9.3.1 曲线的参数方程与切向量9.3.2 曲面的方程与切平面9.4 空间解析几何的应用9.4.1 空间中的曲线运动问题9.4.2 几何体的性质与计算第十章空间向量与向量函数微积分10.1 空间向量的运算10.1.1 空间向量的定义与基本性质10.1.2 空间向量的线性运算与向量积 10.2 空间向量的微积分10.2.1 向量函数的极限与连续性10.2.2 向量函数的导数与曲率10.3 曲线与曲面的向量微积分10.3.1 参数曲线的弧长与切向量10.3.2 向量场与曲面积分第十一章多元函数与多元积分11.1 多元复合函数与链式法则11.1.1 高阶导数的定义与计算11.1.2 链式法则与复合函数的高阶导数 11.2 多元函数的积分11.2.1 多元函数的定积分11.2.2 重积分的计算方法11.3 极坐标与球面坐标系下的积分11.3.1 极坐标系下的二重积分11.3.2 球面坐标系下的三重积分11.4 多元积分的应用11.4.1 几何应用:质心与转动惯量 11.4.2 物理应用:质量、通量与功率第十二章向量场与曲线积分12.1 向量场的基本概念和性质12.1.1 向量场的定义与性质12.1.2 向量场的流线与发散度12.2 曲线积分的概念与性质12.2.1 曲线积分的定义12.2.2 曲线积分的计算方法12.3 格林公式与环量12.3.1 格林公式的表述与应用12.3.2 环量与全微分12.4 曲面积分的概念与性质12.4.1 曲面积分的定义与计算12.4.2 流量与高斯公式12.5 散度与环量12.5.1 散度的定义与计算12.5.2 散度与高斯公式的应用第十三章曲线曲面积分与斯托克斯公式 13.1 曲线积分的类型与计算13.1.1 第一型与第二型曲线积分13.1.2 曲线积分计算方法13.2 曲面积分的类型与计算13.2.1 第一型与第二型曲面积分13.2.2 曲面积分计算方法13.3 散度定理与高斯公式13.3.1 散度定理的表述与应用13.3.2 高斯公式与流量计算13.4 斯托克斯定理与环量13.4.1 斯托克斯定理的表述与应用 13.4.2 环量计算与应用第十四章常微分方程数值解14.1 常微分方程初值问题的数值解法14.1.1 欧拉方法与改进的欧拉方法14.1.2 龙格-库塔方法14.2 常微分方程边值问题的数值解法14.2.1 二点边值问题与分段线性插值14.2.2 有限差分方法与微分方程的离散化14.3 常微分方程数值解的误差估计14.3.1 局部截断误差与全局截断误差14.3.2 稳定性与收敛性的分析结语15.1 数学学科的重要性与发展15.2 高等数学教材的应用与拓展15.3 数学学科对于人类社会的贡献本教材将大学高等数学知识进行系统整理和归纳,以便帮助读者更好地学习和理解数学的基本概念、原理和应用。
第一章 函数与极限函数和极限都是高等数学中最重要、最基本的概念,极值方法是最基本的方法,一切内容都将从这二者开始。
§1、 函 数一、集合、常量与变量1、集合:集合是具有某种特定性质的事物所组成的全体。
通常用大写字母A 、B 、C ……等来表示,组成集合的各个事物称为该集合的元素。
若事物a 是集合M 的一个元素,就记a ∈M (读a 属于M );若事物a 不是集合M 的一个元素,就记a ∉M 或a ∈M (读a 不属于M );集合有时也简称为集。
注 1:若一集合只有有限个元素,就称为有限集;否则称为无限集。
2:集合的表示方法:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧===+++======等。
中在点;为我校的学生;须有此性质。
如:中的元素必中,且,即:有此性质的必在所具有的某种性质合可表示为:,那么该集若知其元素有某种性质不到元素规律的集合,、列不出全体元素或找为全体偶数集;,,,然数集,为全体自,,,写出,如:元素的规律,也可类似、对无限集,若知道其;鸡一只猫,一只狗,一只的方法来表示,如:可用列举出其全体元素、若集合为有限集,就枚举法}),(),{(}{}0375{}{)(}642{}321{)(}{},10,,3,2,1{)(23D y x y x C x x B x x x x A A A x x A iii B A ii B A i ΛΛΛΛΛΛ 3:全体自然数集记为N,全体整数的集合记为Z,全体有理数的集合记为Q,全体实数的集合记为R 。
以后不特别说明的情况下考虑的集合均为数集。
4:集合间的基本关系:若集合A 的元素都是集合B 的元素,即若有A x ∈,必有B x ∈,就称A 为B 的子集,记为B A ⊂,或A B ⊃(读B 包含A)。
显然:R Q Z N ⊂⊂⊂.若B A ⊂,同时A B ⊂,就称A 、B 相等,记为A=B 。
5:当集合中的元素重复时,重复的元素只算一次.如:{1,2,2,3}={1,2,3}。
高等数学教材内容目录一、极限与连续性1. 实数与数集A. 实数与数轴B. 有理数与无理数C. 数集的表示与性质2. 极限与数列A. 无穷大与无穷小B. 极限的定义与性质C. 数列极限存在的条件3. 函数的极限A. 函数极限的定义与性质B. 极限运算法则C. 极限存在的条件4. 连续与间断A. 连续函数的定义与性质B. 连续函数的运算法则C. 间断点的分类与判定5. 无穷小与无穷大的比较A. 无穷小的比较与性质B. 无穷大与无穷小的比较二、导数与微分1. 导数与导函数A. 导数的定义与性质B. 导数的计算C. 导函数的定义与性质2. 常用函数的导数A. 幂函数的导数B. 指数函数与对数函数的导数C. 三角函数与反三角函数的导数3. 高阶导数与高阶导数的计算A. 高阶导数的定义与性质B. 高阶导数的计算方法4. 隐函数与参数方程的导数A. 隐函数导数的计算B. 参数方程导数的计算5. 微分与微分近似A. 微分的定义与性质B. 微分的应用C. 微分近似与误差估计三、函数的应用1. 极值与最值A. 极值的定义与性质B. 极值的求解方法2. 曲率与曲率圆A. 曲率的定义与性质B. 曲率圆的定义与性质3. 函数的变化率与最速上升问题A. 函数的变化率与平均变化率B. 最速上升问题的解决方法4. 泰勒展开与函数逼近A. 泰勒展开公式的推导B. 泰勒展开与函数逼近的应用5. 方程的近似解与牛顿法A. 近似解的定义与性质B. 牛顿法的原理与步骤四、定积分与不定积分1. 定积分的概念与性质A. 定积分的定义与性质B. 定积分的计算方法2. 定积分的应用A. 几何应用:面积与弧长B. 物理应用:质量、重心与静力学3. 不定积分与原函数A. 不定积分的定义与性质B. 原函数的定义与性质4. 常用函数的不定积分A. 幂函数的不定积分B. 指数函数与对数函数的不定积分C. 三角函数与反三角函数的不定积分5. 定积分和不定积分的关系A. 牛顿-莱布尼茨公式的推导B. 定积分与不定积分的应用五、微分方程1. 微分方程的基本概念A. 微分方程的定义与分类B. 微分方程的解与特解2. 一阶微分方程A. 可分离变量的一阶微分方程B. 齐次方程与一阶线性微分方程3. 高阶线性微分方程A. 二阶线性齐次微分方程B. 二阶线性非齐次微分方程4. 常系数线性微分方程A. 特征方程与解的形式B. 非齐次方程的特解5. 微分方程的应用A. 物理应用:振动与波动B. 生物应用:人口增长模型六、多元函数微分学1. 二元函数及其极限A. 二元函数的定义与性质B. 二元函数的极限与连续性2. 多元函数的偏导数A. 偏导数的定义与性质B. 偏导数的计算方法3. 高阶偏导数与混合偏导数A. 高阶偏导数的定义与性质B. 混合偏导数的计算方法4. 全微分与导数矩阵A. 全微分的定义与性质B. 导数矩阵的定义与性质5. 隐函数与参数方程的偏导数A. 隐函数偏导数的计算B. 参数方程偏导数的计算七、多元函数的极值与条件极值1. 多元函数的极值与最值A. 多元函数的极值的定义与性质B. 多元函数的最值的求解方法2. 边界极值与内部极值A. 边界点与内部点的概念与性质B. 边界极值与内部极值的判定3. 拉格朗日乘数法A. 无条件极值与条件极值的区别B. 拉格朗日乘数法的原理与应用4. 多元函数的应用A. 几何应用:曲面与方向导数B. 物理应用:约束问题与分布问题八、重积分与曲线积分1. 重积分的概念与性质A. 二重积分的定义与性质B. 三重积分的定义与性质2. 重积分的计算方法A. 二重积分的直角坐标法B. 二重积分的极坐标法C. 三重积分的柱面坐标法与球面坐标法3. 重积分的应用A. 几何应用:立体体积与质量B. 物理应用:质心与转动惯量4. 曲线积分的概念与应用A. 第一类曲线积分的定义与性质B. 第二类曲线积分的定义与性质九、曲面积分与梯度、散度、旋度1. 曲面积分的概念与性质A. 曲面积分的定义与性质B. 曲面积分的计算方法2. 曲面积分的应用A. 几何应用:曲面面积与质量B. 物理应用:流量与电通量3. 梯度、散度与旋度的定义与计算A. 梯度的定义与性质B. 散度的定义与性质C. 旋度的定义与性质4. 矢量场与场的运算A. 矢量场的定义与性质B. 场的运算:散度、梯度、旋度的关系十、无穷级数1. 级数的概念与性质A. 数项级数的定义与性质B. 收敛级数与发散级数2. 正项级数与一般级数的比较A. 正项级数的性质与判别法B. 一般级数的比较判别法3. 幂级数的收敛区间A. 幂级数的定义与性质B. 幂级数的收敛区间与收敛半径4. 函数展开与泰勒级数A. 函数展开的定义与应用B. 泰勒级数的定义与应用5. 级数的应用A. 级数求和与函数逼近B. 级数在物理与工程中的应用。
高等数学教材完整版一、引言高等数学是大学数学系列中的重要学科之一,它是为理工科学生提供数学分析、微积分和线性代数等基础知识的学科。
本教材旨在全面介绍高等数学的相关内容,帮助学生掌握数学分析的基本概念和理论,以及运用数学方法解决实际问题的能力。
二、函数与极限1. 函数的概念与性质1.1 函数定义1.2 基本初等函数介绍2. 极限与连续性2.1 极限的定义与性质2.2 无穷小量与无穷大量2.3 连续性的概念与判定方法三、微积分基础1. 导数与微分3.1 导数的概念与几何意义3.2 导数的计算法则3.3 高阶导数与隐函数求导2. 微分中值定理与泰勒展开3.4 中值定理的证明与应用3.5 泰勒展开的推导与应用四、多元函数与多元微积分1. 多元函数的概念与性质4.1 二元函数的定义与图像4.2 多元函数的极值与最值2. 偏导数与全微分4.3 偏导数的定义与计算法则 4.4 全微分的概念与计算方法4.5 隐函数的偏导数与全微分五、重积分与曲线积分1. 二重积分与三重积分5.1 二重积分的定义与计算方法 5.2 三重积分的定义与计算方法2. 曲线积分与曲面积分5.3 曲线积分的计算与应用5.4 曲面积分的计算与应用六、常微分方程1. 基本概念与常微分方程的类型6.1 常微分方程的基本概念6.2 一阶常微分方程与二阶线性常微分方程2. 解常微分方程的基本方法6.3 可分离变量方程与线性方程6.4 齐次方程与一般线性方程的解法七、线性代数基础1. 线性方程组与矩阵7.1 线性方程组的高斯消元法7.2 矩阵的基本概念与运算法则2. 向量空间与线性变换7.3 向量空间的定义与基本性质7.4 线性变换的定义与矩阵表示法八、特征值与特征向量1. 矩阵的特征值与特征向量8.1 特征值与特征向量的定义8.2 特征多项式与特征方程2. 对角化与相似矩阵8.3 对角化与相似矩阵的性质8.4 矩阵的Jordan标准型九、常微分方程与线性代数的应用1. 同解与齐次线性方程组9.1 齐次线性方程组解的性质与分类9.2 矩阵指数与齐次线性方程组解的表示2. 非齐次线性方程组与常微分方程的应用9.3 非齐次线性方程组解的表示9.4 线性差分方程与常微分方程的关系十、总结与展望本教材通过对高等数学的系统讲解,使学生能够全面了解数学分析与微积分的相关理论与应用。
高等数学教材的目录部分高等数学教材目录:第一章:函数与极限1.1 函数的概念与性质1.2 极限的定义1.2.1 数列极限1.2.2 函数极限1.3 极限的运算法则1.4 连续和间断第二章:导数与微分2.1 导数的概念与性质2.2 基本导数公式2.3 高阶导数2.4 隐函数与参数方程的导数2.5 微分的定义与性质2.6 导数的应用第三章:不定积分与定积分3.1 不定积分的概念与性质3.2 基本积分公式与常用积分法3.3 定积分的概念与性质3.4 定积分的计算方法3.5 牛顿-莱布尼茨公式与定积分的应用第四章:微分方程4.1 微分方程的概念与基本术语4.2 一阶常微分方程4.3 二阶常微分方程4.4 高阶线性微分方程4.5 变量可分离的微分方程4.6 微分方程的应用第五章:无穷级数5.1 数列极限与无穷级数的概念5.2 级数的敛散性5.3 正项级数的审敛法5.4 幂级数的收敛域与常见函数展开第六章:多元函数与偏导数6.1 多元函数的概念与性质6.2 偏导数的定义与计算6.3 高阶偏导数与混合偏导数6.4 隐函数的偏导数6.5 多元函数的极值与条件极值第七章:重积分与曲线积分7.1 重积分的概念与性质7.2 二重积分的计算方法7.3 三重积分的计算方法7.4 曲线积分的概念与计算方法7.5 曲面积分的概念与计算方法7.6 广义积分的概念与收敛性第八章:多元函数的积分学8.1 多元函数的概念与性质回顾8.2 参数方程下的曲线积分8.3 曲面积分的参数化与计算8.4 向量场与格林公式8.5 散度与无源场8.6 旋度与无旋场8.7 斯托克斯公式与高斯公式第九章:常微分方程的数值解法9.1 常微分方程初值问题的数值解法概述9.2 欧拉方法与改进欧拉方法9.3 二阶龙格-库塔法9.4 多步法与预测校正法9.5 常微分方程边值问题的数值解法以上是高等数学教材的目录部分,这些章节覆盖了高等数学的核心内容,从函数与极限到常微分方程的数值解法等方面进行了全面而深入的讲述。
大学高等数学教材上下册第一章:导数与微分导论本章介绍一、导数的概念与求法1.1 导数的定义1.2 导数的几何意义1.3 函数的微分1.4 导数的四则运算法则二、常用初等函数的导数2.1 幂函数的导数2.2 指数函数的导数2.3 对数函数的导数2.4 三角函数的导数2.5 反三角函数的导数2.6 常数函数、常函数的导数三、隐函数与参数方程求导3.1 隐函数与隐式求导3.2 参数方程与参数方程求导四、高阶导数与高阶微分4.1 高阶导数定义4.2 高阶导数求法4.3 高阶微分及其应用第二章:微分学中值定理导论本章介绍一、罗尔中值定理1.1 罗尔中值定理的形式及证明1.2 罗尔中值定理的应用二、拉格朗日中值定理2.1 拉格朗日中值定理的形式及证明2.2 拉格朗日中值定理的几何意义2.3 拉格朗日中值定理的应用三、柯西中值定理3.1 柯西中值定理的形式及证明3.2 柯西中值定理的应用四、达布中值定理4.1 达布中值定理的形式及证明4.2 达布中值定理的应用第三章:不定积分与定积分导论本章介绍一、不定积分的定义与基本性质1.1 不定积分的定义1.2 不定积分的基本性质二、计算不定积分2.1 凑微分法2.2 换元积分法2.3 分部积分法2.4 有理分式积分法三、定积分的定义与性质3.1 定积分的定义3.2 定积分的性质四、定积分的计算4.1 几何意义与物理意义4.2 表达定积分的基本性质4.3 定积分的计算方法第四章:定积分的应用导论本章介绍一、定积分的几何应用1.1 曲线与曲线长度1.2 旋转体的体积与曲面积二、定积分的物理应用2.1 质量、质心与转动惯量2.2 引力与万有引力定律三、定积分的经济应用3.1 总收入、净利润与平均收入3.2 生产函数、收益函数与边际产量总结通过学习上下册的大学高等数学教材,我们对导数与微分、微分学中值定理、不定积分与定积分以及定积分的应用等知识进行了系统的学习与掌握。
这些内容不仅仅是数学知识的学习,更是应用到实际问题中的重要工具。
大学数学系列教材高等数学大学数学系列教材:高等数学第一章:数列与极限1.1 数列的定义与性质1.1.1 数列的基本概念1.1.2 数列的有界性与无界性1.2 数列极限的定义与性质1.2.1 数列极限的定义1.2.2 数列极限的性质1.3 数列极限的计算方法1.3.1 收敛数列的四则运算1.3.2 单调有界数列的极限1.4 数列极限的应用1.4.1 利用定理求极限1.4.2 利用极限判断数列性质第二章:函数与极限2.1 函数的定义与性质2.1.1 函数的基本概念2.1.2 函数的性质与分类2.2 函数的极限2.2.1 函数极限的定义2.2.2 函数极限的性质2.3 函数的连续性与间断点2.3.1 函数的连续性定义2.3.2 连续函数的性质与判定2.4 函数的一致连续性2.4.1 一致连续性的定义与性质2.4.2 一致连续性的应用第三章:导数与微分3.1 导数的概念与性质3.1.1 导数的定义与基本性质3.1.2 高阶导数3.2 函数的微分3.2.1 微分的定义与性质3.2.2 微分中值定理3.3 函数的求导法则3.3.1 基本导数公式3.3.2 链式法则与隐函数求导3.4 函数的应用3.4.1 函数的极值与最值3.4.2 曲线的凹凸性与拐点第四章:定积分4.1 定积分的概念与性质4.1.1 定积分的定义4.1.2 定积分的性质4.2 定积分的计算方法4.2.1 定积分的基本公式4.2.2 积分换元法与分部积分法4.3 曲线下面积与定积分4.3.1 几何意义与计算方法4.3.2 定积分的应用4.4 不定积分与定积分的关系4.4.1 不定积分的定义与性质4.4.2 牛顿-莱布尼茨公式第五章:微分方程5.1 微分方程的基本概念与分类5.1.1 微分方程的定义与基本形式5.1.2 微分方程的分类与阶数5.2 一阶与二阶微分方程5.2.1 一阶线性微分方程5.2.2 二阶线性常系数齐次微分方程5.3 高阶微分方程与线性微分方程组5.3.1 n阶线性齐次微分方程5.3.2 一阶线性非齐次微分方程5.4 微分方程的应用5.4.1 生物学模型与人口增长模型5.4.2 物理学模型与振动系统第六章:多元函数与偏导数6.1 多元函数的定义与性质6.1.1 多元函数的基本概念6.1.2 多元函数的性质与分类6.2 偏导数的定义与性质6.2.1 偏导数的基本概念6.2.2 偏导数的性质与计算方法6.3 高阶偏导数与全微分6.3.1 高阶偏导数的定义与性质6.3.2 全微分的定义与性质6.4 隐函数与显函数的求导6.4.1 隐函数关系的偏导数计算6.4.2 参数方程与极坐标系的求导第七章:多元函数的极值与条件极值7.1 多元函数的极值与最值7.1.1 多元函数的极值与最值的定义7.1.2 多元函数的极值与最值的判定7.2 多元函数的条件极值7.2.1 拉格朗日乘子法的基本思想7.2.2 欧拉条件与拓展形式7.3 函数的泰勒展开与极值判定7.3.1 函数的泰勒展开7.3.2 极值点判定的应用7.4 二重积分的应用与经济学模型7.4.1 面积与质量的二重积分7.4.2 经济学模型与区域产量第八章:重积分与曲线积分8.1 三重积分的计算方法8.1.1 三重积分的直角坐标计算8.1.2 三重积分的柱坐标计算8.2 三重积分的几何意义与物理应用8.2.1 体积与质心的三重积分8.2.2 物理应用与质点系的力矩8.3 曲面积分的计算与应用8.3.1 第一类曲面积分的计算8.3.2 第二类曲面积分的计算8.4 曲线积分的计算与应用8.4.1 标量场的线积分计算8.4.2 向量场的线积分计算结语:通过对大学「高等数学」科目的全面学习,我们可以系统地理解和掌握数列与极限、函数与极限、导数与微分、定积分、微分方程、多元函数与偏导数、多元函数的极值与条件极值、重积分与曲线积分等内容。
高等数学必备教材目录1. 高等数学教材介绍1.1 《高等数学》第一册1.2 《高等数学》第二册1.3 《高等数学》第三册2. 基本概念与定理2.1 实数与复数2.2 极限与连续2.3 函数与导数2.4 微分与微分方程2.5 积分与积分应用3. 数列与级数3.1 数列极限的概念3.2 数列极限的性质3.3 数列极限存在准则3.4 常见数列类型3.5 数值级数的概念与性质3.6 收敛级数的判别法4. 一元函数微分学4.1 可导函数与导数4.2 高阶导数与高阶导数的应用4.3 隐函数与相关变化率4.4 微分学基本定理与中值定理4.5 泰勒展开与函数的局部性质5. 一元函数积分学5.1 定积分与不定积分5.2 积分的运算法则5.3 定积分的几何应用5.4 不定积分的基本公式5.5 牛顿-莱布尼茨公式与换元积分法6. 无穷级数6.1 幂级数的性质与收敛域6.2 幂级数的运算法则6.3 函数展开成幂级数的应用6.4 泰勒级数与麦克劳林级数6.5 收敛级数的特殊判定法7. 线性代数基础7.1 行列式与矩阵7.2 矩阵的运算与逆矩阵7.3 向量空间与线性相关性 7.4 线性方程组与解的存在性7.5 特征值与特征向量8. 空间解析几何8.1 空间中的点与向量8.2 平面与直线的方程8.3 空间中的曲面方程8.4 空间中的曲线参数方程8.5 空间解析几何的应用9. 多元函数微分学9.1 多元函数的极限与连续 9.2 偏导数与全微分9.3 隐函数与方向导数9.4 梯度与极值问题9.5 多元函数的泰勒公式10. 多元函数积分学10.1 二重积分的概念与性质 10.2 二重积分的计算方法10.3 三重积分的概念与性质 10.4 三重积分的计算方法10.5 曲线积分与曲面积分11. 常微分方程11.1 常微分方程的基本概念 11.2 一阶线性微分方程11.3 可降阶的高阶微分方程 11.4 常系数齐次线性微分方程11.5 非齐次线性微分方程12. 线性代数进阶12.1 线性空间与线性变换12.2 线性变换与矩阵12.3 特征值与特征向量12.4 正交变换与二次型12.5 特征值的计算方法以上是高等数学必备教材的目录,涵盖了基本概念与定理、数列与级数、一元函数微分学、一元函数积分学、无穷级数、线性代数基础、空间解析几何、多元函数微分学、多元函数积分学、常微分方程、线性代数进阶等内容。
高等数学教材完整一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数一 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (9)9、函数的极限 (10)10、函数极限的运算规则 (12)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a∉A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A⊆B(或B⊇A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作∅,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
即A⊆A②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。
记作A ∪B。
(在求并集时,它们的公共元素在并集中只能出现一次。
)即A∪B={x|x∈A,或x∈B}。
⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。
记作A ∩B。
即A∩B={x|x∈A,且x∈B}。
⑶、补集:①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。
通常记作U。
②补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U 的补集。
简称为集合A的补集,记作C U A。
即C U A={x|x∈U,且x A}。
集合中元素的个数⑴、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
⑵、用card来表示有限集中元素的个数。
例如A={a,b,c},则card(A)=3。
⑶、一般地,对任意两个集合A、B,有card(A)+card(B)=card(A∪B)+card(A∩B)我的问题:1、学校里开运动会,设A={x|x是参加一百米跑的同学},B={x|x是参加二百米跑的同学},C ={x|x是参加四百米跑的同学}。
学校规定,每个参加上述比赛的同学最多只能参加两项,请你用集合的运算说明这项规定,并解释以下集合运算的含义。
⑴、A∪B;⑵、A∩B。
2、在平面直角坐标系中,集合C={(x,y)|y=x}表示直线y=x,从这个角度看,集合D={(x,y)|方程组:2x-y=1,x+4y=5}表示什么?集合C、D之间有什么关系?请分别用集合语言和几何语言说明这种关系。
3、已知集合A={x|1≤x≤3},B={x|(x-1)(x-a)=0}。
试判断B是不是A的子集?是否存在实数a使A =B成立?4、对于有限集合A、B、C,能不能找出这三个集合中元素个数与交集、并集元素个数之间的关系呢?5、无限集合A={1,2,3,4,…,n,…},B={2,4,6,8,…,2n,…},你能设计一种比较这两个集合中元素个数多少的方法吗?2、常量与变量⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。
注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。
⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。
在数轴上来说,区间是指介于某两点之间的线段上点的全体。
区间的名称区间的满足的不等式区间的记号区间在数轴上的表示闭区间a≤x≤b[a,b]开区间a<x<b (a,b)半开区间a<x≤b或a≤x<b (a,b]或[a,b)以上我们所述的都是有限区间,除此之外,还有无限区间:[a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞;(-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b;(-∞,+∞):表示全体实数,也可记为:-∞<x<+∞注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。
⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。
变量x的变化范围叫做这个函数的定义域。
通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。
注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。
这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。
如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。
这里我们只讨论单值函数。
⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。
由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。
⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。
例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。
例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。
c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。
一般用横坐标表示自变量,纵坐标表示因变量。
例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为:3、函数的简单性态⑴、函数的有界性:如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。
注:一个函数,如果在其整个定义域内有界,则称为有界函数例题:函数cosx在(-∞,+∞)内是有界的.⑵、函数的单调性:如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调增加的。
如果函数在区间(a,b)内随着x增大而减小,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调减小的。
例题:函数=x2在区间(-∞,0)上是单调减小的,在区间(0,+∞)上是单调增加的。
⑶、函数的奇偶性如果函数对于定义域内的任意x都满足=,则叫做偶函数;如果函数对于定义域内的任意x都满足=-,则叫做奇函数。
注:偶函数的图形关于y轴对称,奇函数的图形关于原点对称。
⑷、函数的周期性对于函数,若存在一个不为零的数l,使得关系式对于定义域内任何x值都成立,则叫做周期函数,l是的周期。
注:我们说的周期函数的周期是指最小正周期。
例题:函数是以2π为周期的周期函数;函数tgx是以π为周期的周期函数。
4、反函数⑴、反函数的定义:设有函数,若变量y在函数的值域内任取一值y0时,变量x在函数的定义域内必有一值x0与之对应,即,那末变量x是变量y的函数.这个函数用来表示,称为函数的反函数.注:由此定义可知,函数也是函数的反函数。
⑵、反函数的存在定理:若在(a,b)上严格增(减),其值域为R,则它的反函数必然在R 上确定,且严格增(减).注:严格增(减)即是单调增(减)例题:y=x2,其定义域为(-∞,+∞),值域为[0,+∞).对于y取定的非负值,可求得x=±.若我们不加条件,由y的值就不能唯一确定x的值,也就是在区间(-∞,+∞)上,函数不是严格增(减),故其没有反函数。
如果我们加上条件,要求x≥0,则对y≥0、x=就是y=x2在要求x≥0时的反函数。
即是:函数在此要求下严格增(减).⑶、反函数的性质:在同一坐标平面内,与的图形是关于直线y=x对称的。
例题:函数与函数互为反函数,则它们的图形在同一直角坐标系中是关于直线y=x对称的。
如右图所示:5、复合函数复合函数的定义:若y是u 的函数:,而u又是x 的函数:,且的函数值的全部或部分在的定义域内,那末,y通过u的联系也是x 的函数,我们称后一个函数是由函数及复合而成的函数,简称复合函数,记作,其中u叫做中间变量。
注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。
例题:函数与函数是不能复合成一个函数的。
因为对于的定义域(-∞,+∞)中的任何x值所对应的u值(都大于或等于2),使都没有定义。
6、初等函数⑴、基本初等函数:我们最常用的有五种基本初等函数,分别是:指数函数、对数函数、幂函数、三角函数及反三角函数。
下面我们用表格来把它们总结一下:函数名称函数的记号函数的图形函数的性质指数函数a):不论x为何值,y总为正数;b):当x=0时,y=1.对数函数a):其图形总位于y轴右侧,并过(1,0)点b):当a>1时,在区间(0,1)的值为负;在区间(-,+∞)的值为正;在定义域内单调增.幂函数a为任意实数这里只画出部分函数图形的一部分。
令a=m/na):当m为偶数n为奇数时,y是偶函数;b):当m,n都是奇数时,y是奇函数;c):当m奇n偶时,y在(-∞,0)无意义.三角函数(正弦函数)这里只写出了正弦函数a):正弦函数是以2π为周期的周期函数b):正弦函数是奇函数且反三角函数(反正弦函数)这里只写出了反正弦函数a):由于此函数为多值函数,因此我们此函数值限制在[-π/2,π/2]上,并称其为反正弦函数的主值.⑵、初等函数:由基本初等函数与常数经过有限次的有理运算及有限次的函数复合所产生并且能用一个解析式表出的函数称为初等函数.例题:是初等函数。