选择题的解法
- 格式:doc
- 大小:207.00 KB
- 文档页数:6
六年级实用数学解题技巧大全小学六年级数学各类题解法一、选择题的解法:选择题得分关键是考生能否精确、迅速地解答。
数学选择题的求解有两种思路:一是从题干出发考虑,探求结果;二是题干和选择的分支联合考虑或从选择的分支出发探求是否满足题干条件,由于答案在四个中找一个,随机分一定要拿到。
选择题解题的基本原则是:充分利用选择题的特点,小题尽量不要大做。
二、填空题的解法:填空题答案有着简短、明确、具体的`要求,解题基本原则是小题大做别马虎,特别是解的个数和形式是否满足题意,有没有漏解和不满足题目要求的解要认真区别对待。
数学填空题的分值增加许多,其得分情况对考试成绩大有影响,所以答题时要给予足够的精力和时间,填空的解法主要有:直接求解法、特例求解法、数形结合法,解题时灵活应用。
三、解答题的解法:解答题得分的关键是考生能否对所答题目的每个问题有所取舍,一般来说在解答题中总是有一定数量的数学难题(通常在每题的后半部分和最后一、两题中),如果不能判别出什么是自己能做的题,而在不会做的题上花太多的时间和精力,得分肯定不会高。
解答题解题时要注意:书写规范,各式各样的题型有各自不同的书写要求,答题的形式对了基本分也就得到了。
审题清晰,题读懂了解题才能得到分,要快速在短时间内审清题意,知道题目表达的意思,题目要解决的是什么问题,关键的字词是什么,特殊的情形有没有,不能一知半解,做了一半才发现漏了条件推翻重来,费了精力影响情绪。
附加题一般有2至3问,第一问,其实不难,你要有信心做出来,一般也就是个简单的理论的应用,不会刁难你,所以,你要作出来。
如果有第三问,那么第二问多半是中继作用,就是利用第一问的结论,然后第三问有要用到它自己。
这一问,比较难一点,但是,如果你时间允许,还是可以做出来的。
解答题中,由于是按步给分,应特别注意过程步骤的严谨和规范,追求表达的准确、考虑的周密、书写的规范、语言的科学,写清得分点,清楚地呈现自己的思维层次。
数学选择题满分技巧
数学选择题满分技巧包括以下几点:
1. 排除法:通过排除一些明显错误的选项,来缩小选择范围,提高答题的正确率。
2. 推理法:通过对题目中的信息进行逻辑推理,推导出正确的答案。
3. 验证法:将选项代入题干进行验证,看是否符合题目的条件。
4. 特例法:通过举出一些特殊的例子来验证选项的正确性。
5. 观察法:通过观察选项中的数字、图形、表达式等特征,来快速找到正确的答案。
以上方法仅供参考,建议根据实际情况选择合适的方法。
同时,要想在数学选择题上获得满分,还需要具备扎实的数学基础和全面的思维能力。
2019年高考数学答题技巧:选择题十大解法查字典数学网整理了2019年高考数学答题技巧:选择题十大解法,帮助广大高中学生学习数学知识!高考数学选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。
选择题的解题思想,渊源于选择题与常规题的联系和区别。
它在一定程度上还保留着常规题的某些痕迹。
而另一方面,选择题在结构上具有自己的特点,即至少有一个答案(若一元选择题则只有一个答案)是正确的或合适的。
因此可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支。
选择题中的错误支具有两重性,既有干扰的一面,也有可利用的一面,只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速作出判断。
由于我多年从事高考试题的研究,尤其对选择题我有自己的一套考试技术,我知道无论是什么科目的选择题,都有它固有的漏洞和具体的解决办法,我把它总结为:6大漏洞、8大法则。
6大漏洞是指:有且只有一个正确答案;不问过程只问结果;题目有暗示;答案有暗示;错误答案有严格标准;正确答案有严格标准;8大原则是指:选项唯一原则;范围最大原则;定量转定性原则;选项对比原则;题目暗示原则;选择项暗示原则;客观接受原则;语言的精确度原则。
经过我的培训,很多的学生的选择题甚至1分都不丢。
下面是一些实例:1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为A.-5/4B.-4/5C.4/5D.25/5解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。
题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。
实例解析高考数学选择题十大解法高考数学选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。
选择题的解题思想,渊源于选择题与常规题的联系和区别。
它在一定程度上还保留着常规题的某些痕迹。
而另一方面,选择题在结构上具有自己的特点,即至少有一个答案(若一元选择题则只有一个答案)是正确的或合适的。
因此可充分利用题目提供的信息,排除困惑支的干扰,正确、合理、迅速地从选择支中选出正确支。
选择题中的错误支具有两重性,既有干扰的一面,也有可利用的一面,只有通过认确实观看、分析和摸索才能揭露其潜在的暗示作用,从而从反面提供信息,迅速作出判定。
由于我多年从事高考试题的研究,专门对选择题我有自己的一套考试技术,我明白不管是什么科目的选择题,都有它固有的漏洞和具体的解决方法,我把它总结为:6大漏洞、8大法则。
“6大漏洞”是指:有且只有一个正确答案;不问过程只问结果;题目有暗示;答案有暗示;错误答案有严格标准;正确答案有严格标准;“8大原则”是指:选项原则;范畴较大原则;定量转定性原则;选项对比原则;题目暗示原则;选择项暗示原则;客观同意原则;语言的准确度原则。
通过我的培训,专门多的学生的选择题甚至1分都不丢。
下面是一些实例:1.特值检验法:关于具有一样性的数学问题,我们在解题过程中,能够将问题专门化,利用问题在某一专门情形下不真,则它在一样情形下不真这一原理,达到去伪存确实目的。
例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为A.-5/4B.-4/5C.4/5D.2√5/5解析:因为要求k1k2的值,由题干暗示可明白k1k2的值为定值。
题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有须要去求解,通过简单的画图,就可取容易运算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,如此直截了当确认交点,可将问题简单化,由此可得,故选B。
中考数学选择题和填空题解题技巧选择题解法大全方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做解答题时大部分都是采用这种方法。
例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元 B、128元 C 、120元 D、 88元方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。
方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
方法八:枚举法列举所有可能的情况,然后作出正确的判断。
例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种B.6种C.8种D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。
方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
方法十:不完全归纳法当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。
一、选择题的解法1、直接法:根据选择题的题设条件,通过计算、推理或判断,最后得到题目的所求。
2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。
3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。
4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。
5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
二、常用的数学思想方法1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
高考数学答题技巧:选择题十大解法查字典数学网整理了2021年高考数学答题技巧:选择题十大解法,协助广阔高中先生学习数学知识!高考数学选择题从难度上讲是比其他类型标题降低了,但知识掩盖面广,要求解题熟练、准确、灵敏、快速。
选择题的解题思想,渊源于选择题与惯例题的联络和区别。
它在一定水平上还保管着惯例题的某些痕迹。
而另一方面,选择题在结构上具有自己的特点,即至少有一个答案(假定一元选择题那么只要一个答案)是正确的或适宜的。
因此可充沛应用标题提供的信息,扫除迷惑支的搅扰,正确、合理、迅速地从选择支中选出正确支。
选择题中的错误支具有两重性,既有搅扰的一面,也有可应用的一面,只要经过仔细的观察、剖析和思索才干揭露其潜在的暗示作用,从而从反面提供信息,迅速作出判别。
由于我多年从事高考试题的研讨,尤其对选择题我有自己的一套考试技术,我知道无论是什么科目的选择题,都有它固有的破绽和详细的处置方法,我把它总结为:6大破绽、8大法那么。
6大破绽是指:有且只要一个正确答案;不问进程只问结果;标题有暗示;答案有暗示;错误答案有严厉规范;正确答案有严厉规范;8大原那么是指:选项独一原那么;范围最大原那么;定量转定性原那么;选项对比原那么;标题暗示原那么;选择项暗示原那么;客观接受原那么;言语的准确度原那么。
经过我的培训,很多的先生的选择题甚至1分都不丢。
下面是一些实例:1.特值检验法:关于具有普通性的数学效果,我们在解题进程中,可以将效果特殊化,应用效果在某一特殊状况下不真,那么它在普通状况下不真这一原理,到达去伪存真的目的。
例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,那么k1k2的值为A.-5/4B.-4/5C.4/5D.25/5解析:由于要求k1k2的值,由题干暗示可知道k1k2的值为定值。
题中没有给定A、B、C三点的详细位置,由于是选择题,我们没有必要去求解,经过复杂的画图,就可取最容易计算的值,无妨令A、B区分为椭圆的长轴上的两个顶点,C 为椭圆的短轴上的一个顶点,这样直接确认交点,可将效果复杂化,由此可得,应选B。
董老师化学工作室选择题难题最有效的七种解法极端假设法有时候我们解题时可能因为数据不足而感到无从下手,此时采用极端假设的方法可以使一些抽象的复杂问题具体化、简单化,可达到事半功倍之效果。
原理:根据计算的需要,取两个计算的极端,分析两个极端之间的值。
1.镁在空气中燃烧不仅生产氧化镁,还有部分与氮气化合(生产物中氮显负三价),由此可以推知12克镁在空气中燃烧后所得产物的质量为()A、等于20克B、小于20克C、大于20克D、以上情况都可能2.某一氧化碳气体中混有下列气体中的一种气体,经测定该混合气体中氧的质量分数为55%,则其混杂的气体可能是()A.SO2B.CO2C.NO2D.H2O(气体)3.某不纯的MnO2的粉末,测在其中含氧38.5%,且只有一种杂质,则此杂质可能是()A.铜粉B.铁粉C.氧化铜D.二氧化硅4.某不纯的氯化铵样品中,测得其中氮元素的质量分数为28%,则混有的一种杂质可能是()①NH4HCO3 ②(NH4)2SO4 ③NH4NO3④CO(NH2)2A.只有①B.①③C.②③D.无法确定5.由MgO和另一种金属氧化物组成的混合物4g,已知含有氧元素1.8g,则另一种氧化物可能是()A.CuO B.Fe2O3 C.Al2O3 D.CaO6.1.8g Mg、A1混合物与足量的稀盐酸完全反应后,生成氢气的质量可能为( )A 0.15gB 大于0.15g但小于0.2gC 0.2gD 无法确定7.某学生用高锰酸钾制取氧气,收集到他所需要的氧气后停止加热,高锰酸钾未完全分解,剩余固体混合物中锰元素与氧元素的质量比不可能是( )A 55:45B 55:50C 55:58D 55:626、5.85g含杂质的NaCI样品跟足量的AgN03反应,得到沉淀14.4g,则其中杂质可能是A. KCl、BaCl2B.CaCl2、MgCl2C. KCl、BaCl2D. KCl、MgCl27.CaC03中可能含有MgC03、Na2C03、BaC03中一种或几种杂质。
初中数学选择题、填空题解法方法归纳选择题十大解法方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做解答题时大部分都是采用这种方法。
例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元 B、128元 C 、120元 D、 88元方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。
方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
方法八:枚举法列举所有可能的情况,然后作出正确的判断。
例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种B.6种C.8种D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。
方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
方法十:不完全归纳法当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。
选择题解题方法
一、中考专题诠释
选择题是中考必考题型之一,命题设置上,选择题的数目为12个题,这说明选择题有它不可替代的重要性.
选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养.
二、解题策略与解法精讲
选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做.
解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.
三、中考典例剖析
一:直接法
从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。
运用此种方法解题需要扎实的数学基础.
例1 当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A. 7 B. 3 C. 1 D.﹣7
对应训练
1.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有()A.7队 B.6队 C.5队 D.4队
2.若有意义,则()。
3.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:
①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),
其中正确结论的个数是()A.4个B.3个C. 2个D. 1个
二:特例法(特殊值法)
运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。
用特例法解选择题时,特例取得愈简单、愈特殊愈好.
例2、如图,AB是⊙O的直径,且AB=10,弦MN的长为8,若弦MN的两端在圆周上滑动,始终与AB相交.记点A,B到MN的距离为h1,h2.则|h1-h2|等于()A.5 B.6 C.7 D.8
对应训练
2.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()
3、若a<0,-1<b<0,则()
第4题
4.如图,已知点A,C在反比例函数y= a x(a>0)的图象上,点B,D在反比例函数y= b x (b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a-b的值是。
三:排除法(也叫筛选法、淘汰法)
分运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件与各选择支的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设相矛盾的干扰支逐一排除,从而获得正确结论的方法。
使用筛选法的前提是“答案唯一”,即四个选项中有且只有一个答案正确.
例3、如图,在半径为6cm 的⊙O 中,点A 是劣弧的中点,点D 是优弧上一点,且∠D =30°,下列
四个结论:①OA ⊥BC ;②BC =6;③sin ∠AOB =;④四边形ABOC 是菱形. 其中正确结论的序号是( )
对应训练1.已知函数y =(x ﹣m )(x ﹣n )(其中m <n )的图象如图所示,则一次函数y =mx +n 与反比例函数y =
的图象可能是( )
A .
B
C D .
2.如果ab >0,a +b <0,那么下面各式:①=
,②
•
=1,③÷
=﹣b ,其中正确的是( )
3.如图,在矩形ABCD 中,
点E ,
F 分别在边AB ,BC 上,且AE =AB ,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF =2BE ;②PF =2PE ;③FQ =4EQ ;④△PBF 是等边三角形.其中正确的是( )
四:逆推代入法
将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法. 在运用验证法解题时,若能据题意确定代入顺序,则能较大提高解题速度. 例4下列各点中在反比例函数)0(6
≠=k k x
y 为常数,的图象上的是( ) A .(-2,-3) B .(-3,2) C .(3,-2) D .(6,-1)对应训练
5.方程
的解是( )
A. 3
B. 2
C. 1
D.3/7 五. 图解法
利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正确答案的方法。
这种解法贯穿数形结合思想,每年中考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速.
例5如图是二次函数2y x 2x 4=-++的图象,使y 1≤成立的x 的取值范围是【 】A .1x 3-≤≤ B .x 1≤- C .x 1≥ D .x 1≤-或x 3≥
对应训练
5.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应值如下表:
下列结论:
(1)ac <0;(2)当x >1时,y 的值随x 值的增大而减小.(3)3是方程ax 2+(b ﹣1)x +c =0的一个根; (4)当﹣1<x <3时,ax 2+(b ﹣1)x +c >0.其中正确的个数为( ) A .4个
B . 3个
C . 2个
D . 1个
例. 二元一次方程组的解的情况是( )
A. x 、y 均为正数
B. x 、y 均为负数
C. x 、y 异号
D. 无解
解:将两个二元一次方程分别看作两个一次函数和,在直角坐标平面内画出图象,
由于直线与平行,所以选D 。
点拨:图解法就是根据数形结合的原理,先画出示意图,再通过观察图象的特征作出选择的方法。
6、已知二次函数y=a (x ﹣h )2
+k (a >0),其图象过点A (0,2),B (8,3),则h 的值可以是( )A . 6 B . 5 C . 4 D . 3 六:动手操作法
与剪、折操作有关或者有些关于图形变换的试题是各地中考热点题型,只凭想象不好确定,处理时要根据剪、折顺序动手实践操作一下,动手可以直观得到答案,往往能达到快速求解的目的.
1.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是 ( )
练习.将圆柱形纸筒沿母线AB 剪开铺平,得到一个矩形(如图).如果将这个纸筒沿线路B M A →→剪开铺平,得到的图形是( )
A .矩形
B . 半圆
C .三角形
D . 平行四边形
四、中考真题演练
1.有一根长40mm 的金属棒,欲将其截成x 根
7mm 长的小段和
y 根
9mm 长的小段,剩余部分作废料处理,若使废料最少,则正整数
x ,y 应分别为( ) A .
x=1,y=3 B
. x=3
,y=2 C . x=4,y=1 D .
x=2,y=3
2.若a >b >0,则下列不等式不一定成立的是( )
A .
B .
C .
D .
B
)A ()B
10题图
10.将一张正方形纸片,按如图步骤①,②,沿虚线对着两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是( )
.
.
.
.
(第9题图)。