中考数学试卷(含答案) (2)
- 格式:doc
- 大小:349.50 KB
- 文档页数:7
2024浙江省中考数学真题试卷一、选择题(每题3分)1.以下四个城市中某天中午12时气温最低的城市是( ).A.北京B.济南C.太原D.郑州2.5个相同正方体搭成的几何体主视图为()A. B.C. D.3.2024年浙江经济一季度GDP 为201370000万元,其中201370000用科学记数法表示为( ) A.920.13710⨯B.80.2013710⨯C.92.013710⨯D.82.013710⨯4.下列式子运算正确的是( ) A.325x x x +=B.326x x x ⋅=C.329()x x =D.624x x x ÷=5.有5位学生参加志愿者,服务次数为:7,7,8,10,13.则这5位学生志愿服务次数的中位数为( ) A.7B.8C.9D.106.如图,在平面直角坐标系中,△ABC 与'''A B C ∆是位似图形,位似中心为点O .若点(3,1)A -的对应点为'(6,2)A -,则点B (-2,4)的对应点'B 的坐标为( )A.(-4,8)B.(8,-4)C.(-8,4)D.(4,-8)7.不等式组2113(2)6x x -≥⎧⎨->-⎩的解集在数轴上表示为( )A.B.C. D.8.如图,正方形ABCD 由四个全等的直角三角形(△ABE ,△BCF ,△CDG ,△DAH )和中间一个小正方形EFGH 组成,连接DE .若AE=4,BE =3,则DE=( )A.5B.6 17 D.49.反比例函数4y x=的图象上有12(,),(4,)P t y Q t y +两点.下列正确的选项是( ) A.当4t <-时,210y y << B.当40t -<<时,210y y << C.当40t -<<时,120y y <<D.当0t >时,120y y <<10.如图,在▱ABCD 中,AC ,BD 相交于点,2,3O AC BD ==过点A 作AE BC ⊥的垂线交BC 于点E ,记BE 长为x ,BC 长为y .当x ,y 的值发生变化时,下列代数式的值不变的是( )A.x y +B.x y -C.xyD.22x y +二、填空题(每题3分)11.因式分解:27a a -=____________. 12.若211x =-,则x =____________. 13.如图,AB 是O 的直径,AC 与O 相切,A 为切点,连接BC .已知050ACB ∠=,则B ∠的度数为___________.14.有8张卡片,上面分别写着数1,2,3,4,5,6,7,8.从中随机抽取1张,该卡片上的数是4的整数倍的概率是_________.15.如图,D ,E 分别是△ABC 边AB ,AC 的中点,连接BE ,DE .若,2AED BED DE ∠=∠=,则BE 的长为_______________.16.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,53AC BD =.线段AB 与''A B 关于过点O 的直线l 对称,点B 的对应点'B 在线段OC 上,''A B 交CD 于点E ,则△'B CE 与四边形'OB ED 的面积比为___________.三、解答题(17-21每题8分,22,23每题10分,24题12分)17.计算:11()54--18.解方程组:254310x y x y -=⎧⎨+=-⎩.19.如图,在△ABC 中,AD ⊥BC ,AE 是BC 边上的中线,AB =10,AD =6,tan 1ACB ∠=. (1)求BC 的长 (2)求sin DAE ∠的值.20.某校开展科学活动.为了解学生对活动项目的喜爱情况,随机抽取部分学生进行问卷调查.调查问卷和统计结果描述如下:根据以上信息.解答下列问题:(1)本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”有多少人?(2)菜鸡学校共有1200名学生,根据统计信息,估计该校最喜爱“科普讲座”的学生人数. 21.尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2.以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦……我明白了!(1)证明AF∥CE(2)指出小丽作法中存在的问题.22.小明和小丽在跑步机上慢跑锻炼.小明先跑,10分钟后小丽才开始跑,小明跑步时中间休息了两次.跑步机上C档比B档快40米/分,B档比A档快40米/分.小明与小丽的跑步相关信息如表所示,跑步累计里程s(米)与小明跑步时间t(分)的函数关系如图所示.时间 里程分段 速度档 跑步里程 小明16:00~16:50不分段 A 档 4000米 小丽 16:10~16:50 第一段B 档 1800米第一次休息第二段 B 档 1200米第二次休息第三段C 档 1600米(1)求A ,B ,C 各档速度(单位:米/分) (2)求小丽两次休息时间的总和(单位:分)(3)小丽第二次休息后,在a 分钟时两人跑步累计里程相等,求a 的值.23.已知二次函数2y x bx c =++(b ,c 为常数)的图象经过点(2,5)A -,对称轴为直线12x =-.(1)求二次函数的表达式(1)若点(1,7)B 向上平移2个单位长度,向左平移(0)m m >个单位长度后,恰好落在2y x bx c =++的图象上,求m 的值(3)当2≤a ≤n 时,二次函数2y x bx c =++的最大值与最小值的差为94,求n 的取值范围. 24.如图,在圆内接四边形ABCD 中,AD<AC ,ADC BAD ∠<∠,延长AD 至点E ,使AE=AC ,延长BA 至点F ,连结EF ,使AFE ADC ∠=∠.(1)若60O AFE ∠=,CD 为直径,求ABD ∠的度数.(2)求证:①EF ∥BC ②EF=BD .2024浙江省中考数学真题试卷答案一、选择题二、填空题 三、解答题. 17.【答案】718.【答案】124x y ⎧=⎪⎨⎪=-⎩19.【答案】(1)14 (2)3720.【答案】(1)32 (2)324 21.【答案】证明略22.【答案】(1)80米/分,120米/分,160米/分 (2)5分 (3)42.523.【答案】(1)23y x x =++ (2)4m = (3)112n -≤≤。
2024年吉林省中考数学真题试卷一、单项选择题(每小题2分,共12分)1. 若()3-⨯的运算结果为正数,则内的数字可以为( ) A. 2 B. 1 C. 0 D. 1-2. 长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A. 102.0410⨯B. 92.0410⨯C. 820.410⨯D. 100.20410⨯3. 葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是( )A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 主视图、左视图与俯视图都相同 4. 下列方程中,有两个相等实数根的是( )A. ()221x -=-B. ()220x -= C. ()221x -= D. ()222x -= 5. 如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为( )A. ()4,2--B. ()4,2-C. ()2,4D. ()4,26. 如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A. 50︒B. 100︒C. 130︒D. 150︒二、填空题:本题共4小题,每小题5分,共20分.7. 当分式11x +的值为正数时,写出一个满足条件的x 的值为______. 8. 因式分解:23a a -=_______.9. 不等式组2030x x ->⎧⎨-<⎩的解集为______. 10. 如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是______.11. 正六边形的每个内角等于______________°.12. 如图,正方形ABCD 的对角线AC BD ,相交于点O,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒,则EF BC的值为______.13. 图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图①,其中AB AB '=,AB B C '⊥于点C,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为______.14. 某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A,D .1m OA =,10m OB =,40AOD ∠=︒,则阴影部分的面积为______2m (结果保留π).三、解答题(每小题5分,共20分)15. 先化简,再求值:()()2111a a a +-++,其中a =16. 吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率.17. 如图,在ABCD中,点O是AB的中点,连接CO并延长,交DA的延长线于点E,求证:=.AE BC18. 钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.四、解答题(每小题7分,共28分)19. 图①,图①均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A,B,C,D,E,O均在格点上.图①中已画出四边形ABCD,图①中已画出以OE为半径的O,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD的一条对称轴.(2)在图①中,画出经过点E的O的切线.20. 已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.-年全国居民人均可支配收入及其增长速度情况如图所示.21. 中华人民共和国20192023根据以上信息回答下列问题:-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多少(1)20192023元?-年全国居民人均可支配收入的中位数.(2)直接写出20192023(3)下列判断合理的是______(填序号).-年全国居民人均可支配收入里逐年上升趋势.①20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5年①20192023中,2020年全国居民人均可支配收入最低.22. 图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图①,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin370.60︒=,cos370.80︒=,tan370.75︒=)五、解答题(每小题8分,共16分)23. 综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题.【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图①所示.板凳的结构设计体现了数学的对称美.【收集数据】小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x ,凳面的宽度为mm y ,记录如下:【分析数据】如图①,小组根据表中x,y的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm时,以对称轴为基准向两边各取相同的长度是多少?24. 小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB BC =,BD AC ⊥,垂足为点D .若2CD =,1BD =,则ABC S =______.(2)如图①,在菱形A B C D ''''中,4''=A C ,2B D ''=,则A B C D S ''''=菱形______.(3)如图①,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,3FH =,则EFGH S =四边形______;若EG a =,FH b =,猜想EFGH S 四边形与a,b 的关系,并证明你的猜想.【理解运用】(4)如图①,在MNK △中,3MN =,4KN =,5MK =,点P 为边MN 上一点.小明利用直尺和圆规分四步作图:(①)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R,I.(①)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I '.(①)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧.(①)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ .请你直接写出MPKQ S 四边形的值.六、解答题(每小题10分,共20分)25. 如图,在ABC 中,90C ∠=︒,30B ∠=︒,3cm AC =,AD 是ABC 的角平分线.动点P 从点A 出发,/s 的速度沿折线AD DB -向终点B 运动.过点P 作PQ AB ∥,交AC 于点Q,以PQ 为边作等边三角形PQE ,且点C,E 在PQ 同侧,设点P 的运动时间为()()s 0t t >,PQE 与ABC 重合部分图形的面积为()2cm S .(1)当点P 在线段AD 上运动时,判断APQ △的形状(不必证明),并直接写出AQ 的长(用含t 的代数式表示).(2)当点E 与点C 重合时,求t 的值.(3)求S 关于t 的函数解析式,并写出自变量t 的取值范围.26. 小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2).①.当y 随x 的增大而增大时,求x 的取值范围.①.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围. ①.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.2024年吉林省中考数学真题试卷答案一、单项选择题.1. 【答案】D2. 【答案】B3. 【答案】A4. 【答案】B5. 【答案】C6. 【答案】C二、填空题.7. 【答案】0(答案不唯一)8. 【答案】(3)a a -9. 【答案】23x <<10. 【答案】两点之间,线段最短.11. 【答案】12012. 【答案】12【解析】解:①正方形ABCD 的对角线AC BD ,相交于点O①45OAD ∠=︒,AD BC =①点E 是OA 的中点 ①12OE OA = ①45FEO ∠=︒①EF AD ∥①OEF OAD △∽△ ①12EF OE AD OA ==,即12EF BC = 故答案为:12.13. 【答案】()22220.5x x +=+【解析】解:设AC 的长度为x 尺,则0.5AB AB x '==+①AB B C '⊥由勾股定理得:222AC B C AB ''+=①()22220.5x x +=+故答案为:()22220.5x x +=+.14. 【答案】11π【解析】解:由题意得:()224010111360S ππ-==阴影故答案为:11π.三、解答题.15. 22a ,616. 【答案】13 17. 【答案】证明见解析证明:①四边形ABCD 是平行四边形①AD BC ∥①OAE OBC OCB E ==∠∠,∠∠①点O 是AB 的中点①OA OB =①()AAS AOE BOC △≌△①AE BC =.18. 【答案】白色琴键52个,黑色琴键36个【解析】解:设黑色琴键x 个,则白色琴键()16x +个由题意得:()1688x x ++=解得:36x =①黑色琴键由:361652+=(个)答:白色琴键52个,黑色琴键36个.四、解答题.19. 【答案】(1)见解析 (2)见解析【小问1详解】解:如图所示,取格点E,F,作直线EF ,则直线EF 即为所求.易证明四边形ABCD 是矩形,且E,F 分别为AB CD ,的中点.【小问2详解】解:如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求.易证明四边形OGTH 是正方形,点E 为正方形OGTH 的中心,则OE GH ⊥.20. 【答案】(1)36I R=(2)12A【小问1详解】 解:设这个反比例函数的解析式为()0U I U R=≠ 把()94,代入()0U I U R=≠中得:()409U U =≠ 解得36U = ①这个反比例函数的解析式为36I R=. 【小问2详解】解:在36I R =中,当3R =Ω时,3612A 3I == ①此时的电流I 为12A .21. 【答案】(1)8485元(2)35128元(3)①【小问1详解】解:39218307338485-=元答:20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多8485元.【小问2详解】解:20192023-年这五年的全国居民人均可支配收入分别为30733元,32189元,35128元,36883元,39218元①20192023-年全国居民人均可支配收入的中位数为35128元.【小问3详解】解:由统计图可知20192023-年全国居民人均可支配收入里逐年上升趋势,故①正确. 由统计图可知20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.但这5年中,2019年全国居民人均可支配收入最低,故①错误.故答案为:①.22. 【答案】218.3m【解析】解:延长DC 交AE 于点G,由题意得873m AB DG ==,90DGA ∠=︒在Rt GAD 中,45EAD ∠=︒ ①873tan DG AG DG EAD===∠ 在Rt GAC △中,37EAC ∠=︒①tan 8730.75654.75CG AG EAC =⋅∠=⨯=①873654.75218.3m CD DG CG =-=-≈答:吉塔的高度CD 约为218.3m .五、解答题.23. 【答案】(1)在同一条直线上,函数解析式为:533y x =+ (2)36mm【解析】【小问1详解】解:设函数解析式为:()0y kx b k =+≠①当16.5,115.5x y ==,23.1,148.5x y ==①16.5115.523.1148.5k b k b +=⎧⎨+=⎩解得:533k b =⎧⎨=⎩①函数解析式为:533y x =+经检验其余点均在直线533y x =+上①函数解析式为533y x =+,这些点在同一条直线上.【小问2详解】解:把213y =代入533y x =+得:533213x +=解得:36x =①当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度为36mm . 24. 【答案】(1)2,(2)4,(3)152,12EFGH ab S =四边形,证明见详解,(4)10 【详解】(1)①在ABC 中,AB BC =,BD AC ⊥,2CD =①2AD CD ==①4AC = ①122ABC S AC BD =⨯⨯= 故答案为:2.(2)①在菱形A B C D ''''中,4''=A C ,2B D ''=①142A B C D S B D A C ''''''''=⨯⨯=菱形 故答案为:4.(3)①EG FH ⊥ ①12EFG S EG FO =⨯⨯,12EHG S EG HO =⨯⨯ ①EFG EHG EFGH S S S =+四边形 ①()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形 ①()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形 ①5EG =,3FH = ①11522EFGH S EG FH =⨯⨯=四边形 故答案为:152猜想:12EFGH ab S =四边形 证明:①EG FH ⊥ ①12EFG S EG FO =⨯⨯,12EHG S EG HO =⨯⨯ ①EFG EHG EFGH S S S =+四边形 ①()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形 ①()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形 ①EG a =,FH b = ①12EFGH ab S =四边形. (4)根据尺规作图可知:QPM MKN ∠=∠ ①在MNK △中,3MN =,4KN =,5MK = ①222MK KN MN =+①MNK △是直角三角形,且90MNK ∠=︒ ①90NMK MKN ∠+∠=︒①QPM MKN ∠=∠①90NMK QPM ∠+∠=︒①MK PQ ⊥①4PQ KN ==,5MK =①根据(3)的结论有:1102MPKQ S MK PQ =⨯⨯=四边形. 六、解答题.25. 【答案】(1)等腰三角形,AQ t = (2)32t = (3))2223,0423221,24S t t S t S t t ⎧=<≤⎪⎪⎪⎪=+-<<⎨⎪⎪=-≤<⎪⎪⎩【小问1详解】解:过点Q 作QH AD ⊥于点H,由题意得:AP =①90C ∠=︒,30B ∠=︒①60BAC ∠=︒①AD 平分BAC ∠①30PAQ BAD ∠=∠=︒①PQ AB ∥①30APQ BAD ∠=∠=︒①PAQ APQ =∠∠①QA QP =①APQ △为等腰三角形①QH AP ⊥①122HA AP == ①在Rt AHQ △中,cos AH AQ t PAQ==∠. 【小问2详解】解:如图①PQE 为等边三角形①QE QP =由(1)得QA QP =①QE QA =即223AE AQ t === ①32t =.【小问3详解】解:当点P 在AD 上,点E 在AC 上,重合部分为PQE ,过点P 作PG QE ⊥于点G①30PAQ ∠=︒①122PG AP == ①PQE 是等边三角形①QE PQ AQ t ===①2124S QE PG =⋅= 由(2)知当点E 与点C 重合时,32t =①23042S t ⎛⎫=<≤ ⎪⎝⎭. 当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F,此时重合部分为四边形FPQC ,如图①PQE 是等边三角形①60E ∠=︒而23CE AE AC t =-=-①)tan 23CF CE E t =⋅∠=-①()))21123232322FCE S CE CF t t t =⋅=--=-①)2223234PQE FCES S S t =-=-=+当点P 与点D 重合时,在Rt ADC 中,cos AC AD AP DAC ====∠ ①2t =①2322S t ⎫=+<<⎪⎭. 当点P 在DB 上,重合部分为PQC △,如图①30DAC ∠=︒90DCA ∠=︒由上知DC =①AD =①此时PD =-①)1PC CD PD t =+==- ①PQE 是等边三角形①60PQE ∠=︒①1tan PC QC PC t PQC ===-∠①)2112S QC PC t =⋅=- ①30B BAD ∠=∠=︒①DA DB ==①当点P 与点B 重合时AD DB =+=解得:4t =①)()2124S t t =-≤< 综上所述:)2223,04232421,24S t t S t S t t ⎧=<≤⎪⎪⎪⎪=-+-<<⎨⎪⎪=-≤<⎪⎪⎩. 26. 【答案】(1)1,1,2k a b ===-(2)①:0x ≤或1x ≥;①:2t <或11t ≥;①:10m -≤≤或12m ≤≤【小问1详解】解:①20x =-<①将2x =-,1y =代入3y kx =+得:231k -+=解得:1k =①20,30x x =>=>①将2,3x y ==,3,6x y ==代入23y ax bx =++得:42339336a b a b ++=⎧⎨++=⎩解得:12a b =⎧⎨=-⎩. 【小问2详解】解:①,①1,1,2k a b ===-①一次函数解析式为:3y x ,二次函数解析式为:223y x x =-+ 当0x >时,223y x x =-+,对称为直线1x =,开口向上①1x ≥时,y 随着x 的增大而增大.当0x ≤时,3y x ,10k =>①0x ≤时,y 随着x 的增大而增大综上,x 的取值范围:0x ≤或1x ≥.①,①230ax bx t ++-=①23ax bx t ++=,在04x <<时无解①问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点 ①对于223y x x =-+,当1x =时,2y =①顶点为()1,2,如图:①当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点 ①当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点. 当4x =,168311y =-+=①当11t =时,抛物线223y x x =-+与直线y t =在04x <≤时正好一个交点 ①当11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点①当2t <或11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点 即:当2t <或11t ≥时,关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解. ①:①,1P Q x m x m ==-+①()1122m m +-+= ①点P,Q 关于直线12x =对称 当1x =,1232y =-+=最小值,当0x =时,3y =最大值①当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时,3y =,=1x -时,2y =①①当12m >,如图:由题意得:11012m m -≤-+≤⎧⎨≤≤⎩①12m ≤≤.①当12m <,如图:由题意得:10112m m -≤≤⎧⎨≤-+≤⎩①10m -≤≤综上:10m -≤≤或12m ≤≤.。
2024年辽宁省中考数学试卷(附答案解析)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图是由5个相同的小立方块搭成的几何体,这个几何体的俯视图是()A .B .C .D .【解答】解:从上边看,底层左边是一个小正方形,上层是两个小正方形,左齐.故选:A .2.(3分)亚洲、欧洲、非洲和南美洲的最低海拔如表:大洲亚洲欧洲非洲南美洲最低海拔/m﹣415﹣28﹣156﹣40其中最低海拔最小的大洲是()A .亚洲B .欧洲C .非洲D .南美洲【解答】解:∵﹣415<﹣156<﹣40<﹣28,∴海拔最低的是亚洲.故选:A .3.(3分)越山向海,一路花开.在5月24日举行的2024辽宁省高品质文体旅融合发展大产业招商推介活动中,全省30个重大文体旅项目进行集中签约,总金额达532亿元.将53200000000用科学记数法表示为()A .532×108B .53.2×109C .5.32×1010D .5.32×1011【答案】C .4.(3分)如图,在矩形ABCD 中,点E 在AD 上,当△EBC 是等边三角形时,∠AEB 为()A.30°B.45°C.60°D.120°【分析】根据平行线的性质和等边三角形的性质即可解答.【解答】证明:∵△EBC是等边三角形,∴∠CBE=60°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEB=∠CBE=60°.故选:C.【点评】本题考查矩形的性质,等边三角形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(3分)下列计算正确的是()A.a2+a3=2a5B.a2•a3=a6C.(a2)3=a5D.a(a+1)=a2+a【答案】D.6.(3分)一个不透明袋子中装有4个白球,3个红球,2个绿球,1个黑球,每个球除颜色外都相同.从中随机摸出一个球,则下列事件发生的概率为的是()A.摸出白球B.摸出红球C.摸出绿球D.摸出黑球【分析】分别求得各个事件发生的概率,即可得出答案.【解答】解:∵一个不透明袋子中装有4个白球,3个红球,2个绿球,1个黑球,共有10个球,∴从中随机摸出一个球,摸出白球的概率为=,摸出红球的概率为,摸出绿球的概率为=,摸出黑球的概率为.故选:B.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.(3分)纹样是我国古代艺术中的瑰宝.下列四幅纹样图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】一个平面内,如果一个图形沿一条直线折叠,若直线两旁的图形能够完全重合,那么这个图形即为轴对称图形;一个平面内,如果一个图形绕某个点旋转180°,若旋转后的图形与原来的图形完全重合,那么这个图形即为中心对称图形;据此进行判断即可.【解答】解:A中图形既不是轴对称图形,也不是中心对称图形,则A不符合题意;B中图形既是轴对称图形,也是中心对称图形,则B符合题意;C中图形是轴对称图形,但不是中心对称图形,则C不符合题意;D中图形不是轴对称图形,但它是中心对称图形,则D不符合题意;故选:B.【点评】本题考查轴对称图形,中心对称图形,熟练掌握其定义是解题的关键.8.(3分)我国古代数学著作《孙子算经》中有“雉兔同笼”问题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”其大意是:鸡兔同笼,共有35个头,94条腿,问鸡兔各多少只?设鸡有x只,兔有y只,根据题意可列方程组为()A.B.C.D.【分析】根据“上有35个头,下有94条腿”,即可列出关于x,y的二元一次方程组,此题得解.【解答】解:∵上有35个头,∴x+y=35;∵下有94条腿,∴2x+4y=94.∴根据题意可列方程组.故选:D.【点评】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.9.(3分)如图,▱ABCD的对角线AC,BD相交于点O,DE∥AC,CE∥BD,若AC=3,BD=5,则四边形OCED的周长为()A.4B.6C.8D.16【分析】根据平行四边形对角线互相平分得出OC、OD的长,再证明四边形OCED是平行四边形即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴OC=,OD=,∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∴四边形OCED的周长=2(OC+OD)=2×()=8,故选:C.【点评】本题考查了平行四边形的判定与性质,熟记平行四边形的判定与性质是解题的关键.10.(3分)如图,在平面直角坐标系xOy中,菱形AOBC的顶点A在x轴负半轴上,顶点B在直线上,若点B的横坐标是8,则点C的坐标为()A.(﹣1,6)B.(﹣2,6)C.(﹣3,6)D.(﹣4,6)【分析】利用一次函数图象上点的坐标特征,可求出点B的坐标,利用两点间的距离公式,可求出OB 的长,结合菱形的性质,可得出BC的长及BC∥x轴,再结合点B的坐标,即可得出点C的坐标.【解答】解:当x=8时,y=×8=6,∴点B的坐标为(8,6),∴OB==10.∵四边形AOBC是菱形,且AO在x轴上,∴BC=OB=10,且BC∥x轴,∴点C的坐标为(8﹣10,6),即(﹣2,6).故选:B.【点评】本题考查了一次函数图象上点的坐标特征以及菱形的性质,利用一次函数图象上点的坐标特征及菱形的性质,求出点B的坐标及BC的长是解题的关键.二、填空题(本题共5小题,每小题3分,共15分)11.(3分)方程的解为x=3.【分析】先把分式方程变形成整式方程,求解后再检验即可.【解答】解:,方程的两边同乘(x+2),得5=x+2,解得:x=3,经检验x=3是分式方程的解,所以原分式方程的解为x=3.故答案为:x=3.【点评】本题考查了解分式方程,掌握解分式方程的一般步骤是解决本题的关键.12.(3分)在平面直角坐标系中,线段AB的端点坐标分别为A(2,﹣1),B(1,0),将线段AB平移后,点A的对应点A′的坐标为(2,1),则点B的对应点B′的坐标为(1,2).【分析】根据点A及点A对应点的坐标,得出平移的方向和距离,据此可解决问题.【解答】解:因为点A坐标为(2,﹣1),且平移后对应点A′的坐标为(2,1),所以2﹣2=0,1﹣(﹣1)=2,所以1+0=1,0+2=2,所以点B的对应点B′的坐标为(1,2).故答案为:(1,2).【点评】本题主要考查了坐标与图形变化﹣平移,熟知图形平移的性质是解题的关键.13.(3分)如图,AB∥CD,AD与BC相交于点O,且△AOB与△DOC的面积比是1:4,若AB=6,则CD的长为12.【分析】根据AB∥CD,得出△AOB和△DOC相似,从而得出,由此得出CD的长.【解答】解:∵AB∥CD,∴△AOB∽△DOC,∴,∴,∵AB=6,∴,∴DC=12,故答案为:12.【点评】本题考查了相似三角形的性质与判定,掌握相似三角形面积之比等于相似比的平方是解题的关键.14.(3分)如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴相交于点A,B,点B的坐标为(3,0),若点C(2,3)在抛物线上,则AB的长为4.【分析】依据题意,由抛物线y=ax2+bx+3过B(3,0),C(2,3),可得,求出a,b后可得抛物线的解析式,再求得对称轴,依据对称性可得A的坐标,进而可以判断得解.【解答】解:由题意,∵抛物线y=ax2+bx+3过B(3,0),C(2,3),∴.∴.∴抛物线为y=﹣x2+2x+3.∴抛物线的对称轴是直线x=﹣=1.∵抛物线与x轴的一交点为B(3,0),∴另一交点为A(1﹣2,0),即A(﹣1,0).∴AB=3﹣(﹣1)=4.故答案为:4.【点评】本题主要考查了二次函数图象上点的坐标特征、抛物线与x轴的交点,解题时要熟练掌握并能灵活运用二次函数的性质是关键.15.(3分)如图,四边形ABCD中,AD∥BC,AD>AB,AD=a,AB=10,以点A为圆心,以AB长为半径作弧,与BC相交于点E,连接AE.以点E为圆心,适当长为半径作弧,分别与EA,EC相交于点M,N,再分别以点M,N为圆心,大于的长为半径作弧,两弧在∠AEC的内部相交于点P,作射线EP,与AD相交于点F,则FD的长为a﹣10(用含a的代数式表示).【分析】利用基本作图得到AE=AB=10,EF平分∠AEC,接着证明∠AEF=∠AFE得到AF=AE=10,然后利用FD=AD﹣AF求解.【解答】解:由作法得AE=AB=10,EF平分∠AEC,∴∠AEF=∠CEF,∵AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AF=AE=10,∴FD=AD﹣AF=a﹣10.故答案为:a﹣10.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了列代数式、平行线的性质和角平分线的定义.三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分)(1)计算:;(2)计算:.【分析】(1)先算乘方、化简二次根式,再化简绝对值算除法,最后加减;(2)先算分式乘法,再算加法.【解答】解:(1)=16﹣10+2+3﹣=9+;(2)=•+=+==1.【点评】本题考查了实数的混合运算及分式的混合运算,掌握实数的运算法则和绝对值的意义及分式的运算法则是解决本题的关键.17.(8分)甲、乙两个水池注满水,蓄水量均为36m3.工作期间需同时排水,乙池的排水速度是8m3/h.若排水3h,则甲池剩余水量是乙池剩余水量的2倍.(1)求甲池的排水速度.(2)工作期间,如果这两个水池剩余水量的和不少于24m3,那么最多可以排水几小时?【分析】(1)设甲池的排水速度是x m3/h,根据“36﹣3×甲池的排水速度=2×(36﹣3×乙池的排水速度)”列方程并求解即可;(2)设排水t小时,根据“t小时后这两个水池剩余水量的和≥24”列关于t的一元一次不等式并求解即可.【解答】解:(1)设甲池的排水速度是x m3/h.根据题意,得36﹣3x=2(36﹣3×8),解得x=4,∴甲池的排水速度是4m3/h.(2)设排水t小时.根据题意,得36×2﹣(4+8)t≥24,解得t≤4,∴最多可以排水4小时.【点评】本题考查一元一次方程和一元一次不等式的应用,根据题意列一元一次方程和一元一次不等式并求解是解题的关键.18.(8分)某校为了解七年级学生对消防安全知识掌握的情况,随机抽取该校七年级部分学生进行测试,并对测试成绩进行收集、整理、描述和分析(测试满分为100分,学生测试成绩x均为不小于60的整数,分为四个等级:D:60≤x<70,C:70≤x<80,B:80≤x<90,A:90≤x≤100),部分信息如下:信息一:信息二:学生成绩在B等级的数据(单位:分)如下:80,81,82,83,84,84,84,86,86,86,88,89.请根据以上信息,解答下列问题;(1)求所抽取的学生成绩为C等级的人数;(2)求所抽取的学生成绩的中位数;(3)该校七年级共有360名学生,若全年级学生都参加本次测试,请估计成绩为A等级的人数.【分析】(1)用B等级组人数除以40%可得样本容量,再用样本容量减去其它三个等级的人数可得C 等级的人数;(2)根据中位数的定义解答即可;(3)用360乘样本中成绩为A等级的人数所占比例即可.【解答】解:(1)样本容量为:12÷40%=30,30﹣1﹣12﹣10=7(人),即所抽取的学生成绩为C等级的人数为7人;(2)所抽取的学生成绩为C等级的人数为=85;(3)360×=120(人),答:该校七年级估计成绩为A等级的人数大约为120人.【点评】本题考查中位数以及用样本估计总体,解题的关键是熟练掌握基本知识,属于中考常考题型.19.(8分)某商场出售一种商品,经市场调查发现,日销售量y(件)与每件售价x(元)之间满足一次函数关系,部分数据如表所示:每件售价x/元…455565…日销售量y/件…554535…(1)求y与x之间的函数关系式(不要求写出自变量x的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价;如果不能,说明理由.【分析】(1)依据题意,设一次函数的关系式为y=kx+b,又结合表格数据图象过(45,55),(55,45),可得,求出k,b即可得解;(2)依据题意,销售额=x(﹣x+100)=﹣x2+100x,又销售额是2600元,从而可得x2﹣100x+2600=0,又Δ=(﹣100)2﹣4×2600=﹣400<0,进而可以判断得解.【解答】解:(1)由题意,设一次函数的关系式为y=kx+b,又结合表格数据图象过(45,55),(55,45),∴.∴.∴所求函数关系式为y=﹣x+100.(2)由题意,销售额=x(﹣x+100)=﹣x2+100x,又销售额是2600元,∴2600=﹣x2+100x.∴x2﹣100x+2600=0.∴Δ=(﹣100)2﹣4×2600=10000﹣10400=﹣400<0.∴方程没有解,故该商品日销售额不能达到2600元.【点评】本题主要一元二次方程的应用、一次函数的应用,解题时要熟练掌握并能灵活运用是关键.20.(8分)如图1,在水平地面上,一辆小车用一根绕过定滑轮的绳子将物体竖直向上提起.起始位置示意图如图2,此时测得点A到BC所在直线的距离AC=3m,∠CAB=60°,停止位置示意图如图3,此时测得∠CDB=37°(点C,A,D在同一直线上,且直线CD与地面平行),图3中所有点在同一平面内.定滑轮半径忽略不计,运动过程中绳子总长不变.(1)求AB的长;(2)求物体上升的高度CE(结果精确到0.1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈ 1.73)【分析】(1)在Rt△ABC中,由∠CAB的度数求出∠ABC=30°,利用30°角所对的直角边等于斜边的一半求出AB的长即可;(2)EC的长即为BD﹣BA的长,求出BD,在Rt△BCD中,利用锐角三角函数定义求出BD的长,由(1)得到AB的长,上升高度CE即为AB变为BD的长,即CE=BD﹣BA,求出即可.【解答】解:(1)如图2,在Rt△ABC中,AC=3m,∠CAB=60°,∴∠ABC=30°,∴AB=2AC=6m,则AB的长为6m;(2)在Rt△ABC中,AB=6m,AC=3m,根据勾股定理得:BC===3m,在Rt△BCD中,∠CDB=37°,sin37°≈0.60,≈1.73,∴sin∠CDB=,即≈0.60,∴BD≈8.65m,∴CE=BD﹣BA=8.65﹣6=2.65≈2.7(m),则物体上升的高度CE约为2.7m.【点评】此题考查了解直角三角形的应用,锐角三角函数定义,勾股定理,熟练掌握各自的性质是解本题的关键.21.(8分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,点D在上,,点E在BA的延长线上,∠CEA=∠CAD.(1)如图1,求证:CE是⊙O的切线;(2)如图2,若∠CEA=2∠DAB,OA=8,求的长.【分析】(1)连接OC,根据三角形外角的性质证得∠DAB=∠ACE,根据同弧所对的圆周角相等得出∠ABC=∠DAB,根据直径所对的圆周角是直角得出∠ACB=90°,即可得出∠ABC+∠OAC=90°,再证∠OAC=∠OCA,即可得出∠ACE+∠OCA=90°,于是问题得证;(2)连接OD,设∠DAB=x,则∠CEA=∠CAD=2x,根据同弧所对的圆周角相等得出∠ABC=∠DAB =x,根据直径所对的圆周角是直角得出∠ACB=90°,即可得出x+2x+x=90°,从而求出x的值,最后根据弧长公式即可得解.【解答】(1)证明:如图1,连接OC,∵∠CAO是△ACE的一个外角,∴∠CAO=∠CEA+∠ACE,即∠CAD+∠DAB=∠CEA+∠ACE,∵∠CEA=∠CAD.∴∠DAB=∠ACE,∵,∴∠ABC=∠DAB,∴∠ABC=∠ACE,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠OAC=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ABC+∠OCA=90°,∴∠ACE+∠OCA=90°,即∠OCE=90°,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)解:如图2,连接OD,设∠DAB=x,∵∠CEA=2∠DAB,∴∠CEA=2x,∵∠CEA=∠CAD,∴∠CAD=2x,∵,∴∠ABC=∠DAB=x,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∴x+2x+x=90°,∴x=22.5°,即∠DAB=22.5°,∴∠BOD=2∠DAB=45°,∵OA=8,∴的长为=2π.【点评】本题考查了切线的判定与性质,圆周角定理及推论,弧长公式,熟练掌握这些知识点是解题的关键.22.(12分)如图,在△ABC中,∠ABC=90°,∠ACB=α(0°<α<45°).将线段CA绕点C顺时针旋转90°得到线段CD,过点D作DE⊥BC,垂足为E.(1)如图1,求证:△ABC≌△CED.(2)如图2,∠ACD的平分线与AB的延长线相交于点F,连接DF,DF的延长线与CB的延长线相交于点P,猜想PC与PD的数量关系,并加以证明.(3)如图3,在(2)的条件下,将△BFP沿AF折叠,在α变化过程中,当点P落在点E的位置时,连接EF.①求证:点F是PD的中点;②若CD=20,求△CEF的面积.【分析】(1)可证得∠D+∠DCE=90°,∠DCE+∠ACB=90°,从而∠ACB=∠D,进而证得△ABC ≌△CED;(2)可证得△ACF≌△DCF,从而∠A=∠PDC,进而证得∠PDC=∠DCE,从而得出PC=PD;(3)①由折叠得PF=EF,∠P=∠PEF,可证得∠PEF+∠DEF=90°,∠P+∠PDE=90°,从而∠PDE=∠DEF,从而得出EF=DF,进而得出PF=DF;②设CE=a,BC=DE=b,从而BE=BC﹣CE=b﹣a,可证得△PBF∽△PED,=,在Rt△∴,从而得出PE=2BE=2(b﹣a),BF=DE=,从而S△CEFPED中,根据勾股定理得出∠PED=90°,b2+[2(b﹣a)]2=(2b﹣a)2,从而得出b=3a,由∠DEC =90°得出a2+b2=202,从而得出a2+(3a)2=400,进一步得出结果.【解答】(1)证明:∵DE⊥BC,∴∠DEC=90°,∴∠D+∠DCE=90°,∵∠ABC=90°,∴∠ABC=∠DEC,∵线段CA绕点C顺时针旋转90°得到线段CD,∴∠ACD=90°,AC=CD,∴∠DCE+∠ACB=90°,∴∠ACB=∠D,∴△ABC≌△CED(AAS);(2)PC=PD,理由如下:∵CF是∠ACD的平分线,∴∠ACF=∠DCF,由(1)知,AC=CD,△ABC≌△CED,∴∠A=∠DCE,∵CF=CF,∴△ACF≌△DCF(SAS),∴∠A=∠PDC,∴∠PDC=∠DCE,∴PC=PD;(3)①∵△BFP沿AF折叠,点P落在点E,∴PF=EF,∠P=∠PEF,∵DE⊥BC,∴∠PED=90°,∴∠PEF+∠DEF=90°,∠P+∠PDE=90°,∴∠PEF+∠PDE=90°,∴∠PDE=∠DEF,∴EF=DF,∴PF=DF,∴点F是PD的中点;②解:设CE=a,BC=DE=b,∴BE=BC﹣CE=b﹣a,由①知,点F是PD的中点,∴PF=PD,∵∠ABC=∠PED=90°,∴BF∥DE,∴△PBF∽△PED,∴,∴PE=2BE=2(b﹣a),BF=DE=b,==,∴S△CEF∵∠PED=90°,DE=b,PE=2(b﹣a),PD=PC=PE+CE=2(b﹣a)+a=2b﹣a,∴b2+[2(b﹣a)]2=(2b﹣a)2,化简得,3a2﹣4ab+b2=0,∴b=a或b=3a,∵0°<α<45°,∴a=b舍去,∴b=3a,==,∴S△CEF∵∠DEC=90°,∴a2+b2=202,∴a2+(3a)2=400,∴a2=40,=,∴S△CEF∴△CEF的面积是30.【点评】本题考查了等腰三角形的判定和性质,相似三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识,解决问题的关键是熟练掌握有关基础知识.23.(13分)已知y1是自变量x的函数,当y2=xy1时,称函数y2为函数y1的“升幂函数”.在平面直角坐标系中,对于函数y1图象上任意一点A(m,n),称点B(m,mn)为点A“关于y1的升幂点”,点B在函数y1的“升幂函数”y2的图象上.例如:函数y1=2x,当时,则函数是函数y1=2x的“升幂函数”.在平面直角坐标系中,函数y1=2x的图象上任意一点A(m,2m),点B(m,2m2)为点A“关于y1的升幂点”,点B在函数y1=2x的“升幂函数”的图象上.(1)求函数的“升幂函数”y2的函数表达式.(2)如图1,点A在函数的图象上,点A“关于y1的升幂点”B在点A上方,当AB =2时,求点A的坐标.(3)点A在函数y1=﹣x+4的图象上,点A“关于y1的升幂点”为点B,设点A的横坐标为m.①若点B与点A重合,求m的值;②若点B在点A的上方,过点B作x轴的平行线,与函数y1的“升幂函数”y2的图象相交于点C,以AB,BC为邻边构造矩形ABCD,设矩形ABCD的周长为y,求y关于m的函数表达式;③在②的条件下,当直线y=t1与函数y的图象的交点有3个时,从左到右依次记为E,F,G,当直线y=t2与函数y的图象的交点有2个时,从左到右依次记为M,N,若EF=MN,请直接写出t2﹣t1的值.【分析】(1)根据题意直接列出式子即可;(2)根据条件得出y2=3,再根据AB=2建立方程即可;(3)①将A、B坐标用含有m的式子表示出,再根据AB重合时,横纵坐标相等建立关于m的方程,进而求解即可;②根据题意画出图形,再将线段用m表示出来,需要注意的是分类讨论;③第一种情况:如果EF和MN平行且相等,那这两条平行线间得距离等于两个顶点之间的竖直高度,或者等于P、Q两点间的竖直高度,分别令m=2和4得解,第二种情况:点M是抛物线y=﹣2m2+6m 的顶点,由M坐标推出N坐标,进而求出MN的长度,再通过MN=EF得出F的坐标,即可求解.【解答】(1),图象如图2所示.(2)如图3,∵,设,B(m,3).因为点B在点A的上方,当AB=2时,解得m=3.所以A(3,1).(3)①因为,所以A(m,﹣m+4),B(m,﹣m2+4m).如果点B与点A重合,那么﹣m+4=﹣m2+4m.整理,得m2﹣5m+4=0.解得m=1,或m=4.②由①可知,直线y=﹣x+4与抛物线y=﹣x2+4x有两个交点(1,3)和(4,0),如图4所示,函数的图象是开口向下的抛物线,对称轴是直线x=2.因为BC∥x轴,所以B、C两点关于直线x=2对称.如图4,当点B在点C右侧时,2<m<4,BC=2(m﹣2)=2m﹣4,如图5,当点B在点C左侧时,1<m<2,BC=2(2﹣m)=4﹣2m,由点B在点A的上方,得BA=(﹣m2+4m)﹣(﹣m+4)=﹣m2+5m﹣4,当2<m<4时,y=2[(2m﹣4)+(﹣m2+5m﹣4)]=﹣2m2+14m﹣16,当1<m<2时,y=2[(4﹣2m)+(﹣m2+5m﹣4)]=﹣2m2+6m.综上,y=2m2+14m﹣16或=﹣2m2+6m.③情形一:如图7,如果EF和MN平行且相等,那这两条平行线间得距离等于两个顶点之间的竖直高度,或者等于P、Q两点间的竖直高度.当m=2时,y=﹣2m2+6m=4,所以P(2,4).当m=4时,y=﹣2m2+14m﹣16=8,所以Q(4,8).所以t2﹣t1=8﹣4=4.情形2,如图7(局部,变形处理),点M是抛物线y=﹣2m2+6m的顶点.由,得,所以,第21页(共21页)所以点F 的横坐标,于是可得,所以.综上,t 2﹣t 1=4或3﹣2.。
2024年河南省普通高中招生考试试卷数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的)1. 如图,数轴上点P 表示的数是( )A. 1−B. 0C. 1D. 2 【答案】A【解析】【分析】本题考查了数轴,掌握数轴的定义是解题的关键.根据数轴的定义和特点可知,点P 表示的数为1−,从而求解.【详解】解:根据题意可知点P 表示的数为1−,故选:A .2. 据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为( )A. 8578410×B. 105.78410×C. 115.78410×D. 120.578410× 【答案】C【解析】【分析】本题考查了用科学记数法表示绝对值较大的数,一般形式为10n a ×,其中110a ≤<,确定a 和n 的值是解题的关键.用科学记数法表示绝对值较大的数时,一般形式为10n a ×,其中110a ≤<,且n 比原来的整数位数少1,据此判断即可.【详解】解:5784亿11578400000000 5.78410=×.故选:C .3. 如图,乙地在甲地的北偏东50°方向上,则∠1的度数为( )A. 60°B. 50°C. 40°D. 30°【答案】B【解析】【分析】本题主要考查了方向角,平行线的性质,利用平行线的性质直接可得答案.【详解】解:如图,由题意得,50BAC ∠=°,AB CD ∥,∴150BAC ∠=∠=°,故选:B .4. 信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为()A. B.C. D.【答案】A【解析】【分析】本题主要考查简单几何体的三视图,根据主视图的定义求解即可. 从正面看,在后面的部分会被遮挡,看见的为矩形,注意有两条侧棱出现在正面.【详解】解:主视图从前往后看(即从正面看)时,能看得见的棱,则主视图中对应为实线,且图形为矩形,左右两边各有一个小矩形;故选A .5. 下列不等式中,与1x −>组成的不等式组无解的是( )A. 2x >B. 0x <C. <2x −D. 3x >− 【答案】A【解析】【分析】本题考查的是解一元一次不等式组,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.根据此原则对选项一一进行判断即可.【详解】根据题意1x −>,可得1x <−,A 、此不等式组无解,符合题意;B 、此不等式组解集为1x <−,不符合题意;C 、此不等式组解集为<2x −,不符合题意;D 、此不等式组解集为31x −<<−,不符合题意;故选:A6. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,点E 为OC 的中点,EF AB ∥交BC 于点F .若4AB =,则EF 的长为( )A 12 B. 1 C. 43 D. 2【答案】B【解析】【分析】本题考查了相似三角形判定与性质,平行四边形的性质等知识,利用平行四边形的性质、线段中点定义可得出14CE AC =,证明CEF CAB ∽△△,利用相似三角形的性质求解即可. 【详解】解∶∵四边形ABCD 是平行四边形,.的∴12OC AC =, ∵点E 为OC 的中点, ∴1124CE OC AC ==, ∵EF AB ∥,∴CEF CAB ∽△△, ∴EF CE AB AC =,即144EF =, ∴1EF =,故选:B .7. 计算3···a a a a个的结果是( ) A. 5aB. 6aC. 3a a +D. 3a a 【答案】D【解析】【分析】本题考查的是乘方的含义,幂的乘方运算的含义,先计算括号内的运算,再利用幂的乘方运算法则可得答案.【详解】解:()()333···a a a a a a a a == 个,故选D8. 豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( ) A. 19 B. 16 C. 15 D. 13【答案】D【解析】【分析】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图得到所有的等可能的结果数.根据题意,利用树状图法将所有结果都列举出来,然后根据概率公式计算解决即可.【详解】解:把3张卡片分别记为A 、B 、C ,画树状图如下:共有9种等可能的结果,其中两次抽取的卡片正面相同的结果有3种, ∴两次抽取的卡片图案相同的概率为3193=. 故选∶D .9. 如图,O 是边长为ABC 的外接圆,点D 是 BC的中点,连接BD ,CD .以点D 为圆心,BD 的长为半径在O 内画弧,则阴影部分的面积为( )A. 8π3B. 4πC. 16π3D. 16π【答案】C【解析】【分析】过D 作DE BC ⊥于E ,利用圆内接四边形的性质,等边三角形的性质求出120BDC ∠=°,利用弧、弦的关系证明BD CD =,利用三线合一性质求出12BE BC ==,1602BDE BDC ∠=∠=°,在Rt BDE △中,利用正弦定义求出BD ,最后利用扇形面积公式求解即可.【详解】解∶过D 作DE BC ⊥于E ,∵O 是边长为的等边三角形ABC 的外接圆,∴BC =,60A ∠=°,180∠+∠=°BDC A , ∴120BDC ∠=°,∵点D 是 BC的中点, ∴ BDCD =, ∴BD CD =,∴12BE BC ==,1602BDE BDC ∠=∠=°,∴4sin BE BD BDE ==∠, ∴21204163603ππS ⋅==阴影, 故选:C .【点睛】本题考查了圆内接四边形的性质,等边三角形的性质,等腰三角形的性质,扇形面积公式,解直角三角形等知识,灵活应用以上知识是解题的关键.10. 把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I 与使用电器的总功率P 的函数图象(如图1),插线板电源线产生的热量Q 与I 的函数图象(如图2).下列结论中错误的是( )A. 当440W P =时,2A I =B. Q 随I 的增大而增大C. I 每增加1A ,Q 的增加量相同D. P 越大,插线板电源线产生的热量Q 越多【答案】C【解析】 【分析】本题考查了函数的图象,准确从图中获取信息,并逐项判定即可.【详解】解∶根据图1知:当440W P =时,2A I =,故选项A 正确,但不符合题意;根据图2知:Q 随I 的增大而增大,故选项B 正确,但不符合题意;根据图2知:Q 随I 的增大而增大,但前小半段增加的幅度小,后面增加的幅度大,故选项C 错误,符合题意;根据图1知:I 随P 的增大而增大,又Q 随I 的增大而增大,则P 越大,插线板电源线产生的热量Q 越多,故选项D 正确,但不符合题意;故选:C .二、填空题(每小题3分,共15分)11. 请写出2m 的一个同类项:_______.【答案】m (答案不唯一)【解析】【分析】本题考查的是同类项的含义,根据同类项的定义直接可得答案.【详解】解:2m 的一个同类项为m ,故答案为:m12. 2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”.某校组织各班围绕这个主题开展板报宣传活动,并对各班的宣传板报进行评分,得分情况如图,则得分的众数为___________分.【答案】9【解析】【分析】本题考查了众数的概念,解题的关键是熟知相关概念,出现次数最多的数叫做众数.根据众数的概念求解即可.【详解】解:根据得分情况图可知:9分数的班级数最多,即得分的众数为9.故答案:9.13. 若关于x 的方程2102x x c −+=有两个相等的实数根,则c 的值为___________. 【答案】12##0.5【解析】【分析】本题考查一元二次方程根与判别式的关系.掌握一元二次方程()200ax bx c a ++=≠的根的判别式为24b ac ∆=−,且当0∆>时,该方程有两个不相等的实数根;当Δ0=时,该方程有两个相等的实数根;当Δ0<时,该方程没有实数根是解题关键.根据一元二次方程根与其判别式的关系可得:()21Δ1402c =−−×=,再求解即可. 【详解】解∶∵方程2102x x c −+=有两个相等的实数根, ∴()21Δ1402c =−−×=, ∴12c =, 故答案为:12.14. 如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为___________.【答案】()3,10【解析】【分析】设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,先判断四边形AOGD 是矩形,得出OG AD a ==,DG AO =,90EGF ∠=°,根据折叠的性质得出BF BC a ==,CE FE =,在Rt BOF △中,利用勾股定理构建关于a 的方程,求出a 的值,在Rt EGF 中,利用勾股定理构建关于CE 的方程,求出CE 的值,即可求解.【详解】解∶设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,为则四边形AOGD 是矩形,∴OG AD a ==,DG AO =,90EGF ∠=°, ∵折叠,∴BF BC a ==,CE FE =,∵点A 的坐标为()20−,,点F 的坐标为()06,, ∴2AO =,6FO =,∴2BO AB AO a =−=−,在Rt BOF △中,222BO FO BF +=,∴()22226a a −+=,解得10a =,∴4FG OG OF =−=,8GE CD DG CE CE =−−=−,在Rt EGF 中,222GE FG EF +=,∴()22284CE CE −+=,解得5CE =,∴3GE =,∴点E 的坐标为()3,10,故答案为:()3,10.【点睛】本题考查了正方形的性质,坐标与图形,矩形的判定与性质,折叠的性质,勾股定理等知识,利用勾股定理求出正方形的边长是解题的关键.15. 如图,在Rt ABC △中,90ACB ∠=°,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 的垂线,交射线AD 于点E .若1CD =,则AE 的最大值为_________,最小值为_________.【答案】 ①. 1+##1+②. 1−##1−+【解析】【分析】根据题意得出点D 在以点C 为圆心,1为半径的圆上,点E 在以AB 为直径的圆上,根据cos AE AB BAE =⋅∠,得出当cos BAE ∠最大时,AE 最大,cos BAE ∠最小时,AE 最小,根据当AE 与C 相切于点D ,且点D 在ABC 内部时,BAE ∠最小,AE 最大,当AE 与C 相切于点D ,且点D 在ABC 外部时,BAE ∠最大,AE 最小,分别画出图形,求出结果即可.【详解】解:∵90ACB ∠=°,3CA CB ==, ∴190452BAC ABC ∠=∠=×°=°, ∵线段CD 绕点C 在平面内旋转,1CD =,∴点D 在以点C 为圆心,1为半径的圆上,∵BE AE ⊥, ∴90AEB ∠=°, ∴点E 在以AB 为直径的圆上,在Rt ABE △中,cos AE AB BAE =⋅∠,∵AB 为定值,∴当cos BAE ∠最大时,AE 最大,cos BAE ∠最小时,AE 最小,∴当AE 与C 相切于点D ,且点D 在ABC 内部时,BAE ∠最小,AE 最大,连接CD ,CE ,如图所示:则CD AE ⊥,∴90ADE CDE ∠=∠=°,∴AD =∵ AC AC=, ∴45CED ABC ==°∠∠,∵90CDE ∠=°,∴CDE 为等腰直角三角形,∴1DE CD ==,∴1AE AD DE =+=+,即AE 的最大值为1+;当AE 与C 相切于点D ,且点D 在ABC 外部时,BAE ∠最大,AE 最小,连接CD ,CE ,如图所示:则CD AE ⊥,∴90CDE ∠=°,∴AD =∵四边形ABCE 为圆内接四边形,∴180135CEA ABC =°−=°∠∠,∴18045CED CEA =°−=°∠∠,∵90CDE ∠=°,∴CDE 为等腰直角三角形,∴1DE CD ==,∴1AE AD DE =−=−,即AE 的最小值为1−;故答案为:1+;1−.【点睛】本题主要考查了切线的性质,圆周角定理,圆内接四边形的性质,勾股定理,等腰三角形的性质,解直角三角形的相关计算,解题的关键是作出辅助线,熟练掌握相关的性质,找出AE 取最大值和最小值时,点D 的位置.三、解答题(本大题共8个小题,共75分)16. (1(01−; (2)化简:231124a a a + +÷ −− . 【答案】(1)9(2)2a +【解析】【分析】本题考查了实数的运算,分式的运算,解题的关键是:(1)利用二次根式的乘法法则,二次根式的性质,零指数幂的意义化简计算即可;(2)先把括号里的式子通分相加,然后把除数的分母分解因式,再把除数分子分母颠倒后与前面的结果相乘,最后约分化简即可.【详解】解:(1)原式1−101=−9=;(2)原式()()3212222a a a a a a −+ =+÷ −−+− ()()22121a a a a a +−+⋅−+ 2a =+.17. 为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表队员平均每场得分平均每场篮板平均每场失误甲26.5 8 2乙26 10 3根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________(填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为________分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误()1×−,且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.【答案】(1)甲 29(2)甲(3)乙队员表现更好【解析】【分析】本题考查了折线统计图,统计表,中位数,加权平均数等知识,解题的关键是∶(1)根据折线统计图的波动判断得分更稳定的球员,根据中位数的定义求解即可;(2)根据平均每场得分以及得分的稳定性求解即可;(3)分别求出甲、乙的综合得分,然后判断即可.【小问1详解】解∶从比赛得分统计图可得,甲的得分上下波动幅度小于乙的的得分上下波动幅度,∴得分更稳定的队员是甲,乙的得分按照从小到大排序为14,20,28,30,32,32,最中间两个数为28,30,∴中位数为2830292+=, 故答案为∶乙,29;【小问2详解】解∶ 因为甲的平均每场得分大于乙的平均每场得分,且甲的得分更稳定,所以甲队员表现更好;【小问3详解】解∶甲的综合得分为()26.518 1.52136.5×+×+×−=, 乙的综合得分为()26110 1.53138×+×+×−=, ∵36.538<,∴乙队员表现更好.18. 如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0k y x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________.【答案】(1)6y x= (2)见解析 (3)92【解析】 【分析】本题考查了待定系数法求反比例函数解析,画反比例函数图象,平移的性质等知识,解题的关键是: (1)利用待定系数法求解即可;(2)分别求出1x =,2x =,6x =对应的函数值,然后描点、连线画出函数图象即可;(3)求出平移后点E 对应点的坐标,利用平移前后对应点的横坐标相减即可求解.【小问1详解】 解:反比例函数k y x =的图象经过点()3,2A , ∴23k =, ∴6k =, ∴这个反比例函数的表达式为6y x =; 【小问2详解】解:当1x =时,6y =,当2x =时,3y =,当6x =时,1y =, ∴反比例函数6y x=的图象经过()1,6,()2,3,()6,1, 画图如下:【小问3详解】解:∵()6,4E 向左平移后,E 在反比例函数的图象上,∴平移后点E 对应点的纵坐标为4,当4y =时,64x=, 解得32x =, ∴平移距离为39622−=. 故答案为:92. 19. 如图,在Rt ABC △中,CD 是斜边AB 上的中线,∥B E D C 交AC 的延长线于点E .(1)请用无刻度的直尺和圆规作ECM ∠,使ECM A ∠=∠,且射线CM 交BE 于点F (保留作图痕迹,不写作法).(2)证明(1)中得到的四边形CDBF 是菱形【答案】(1)见解析 (2)见解析【解析】【分析】本题考查了尺规作图,菱形的判定,直角三角形斜边中线的性质等知识,解题的关键是: (1)根据作一个角等于已知角的方法作图即可;(2)先证明四边形CDBF 是平行四边形,然后利用直角三角形斜边中线的性质得出12CDBD AB ==,最后根据菱形的判定即可得证.【小问1详解】解:如图,;【小问2详解】证明:∵ECM A ∠=∠,∴CM AB ∥,∵∥B E D C ,∴四边形CDBF 是平行四边形,∵在Rt ABC △中,CD 是斜边AB 上的中线,∴12CD BD AB ==, ∴平行四边形CDBF 是菱形.20. 如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30°,在点P 处看塑像顶部点A 的仰角APE ∠为60°,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m 1.73≈). 【答案】(1)见解析 (2)塑像AB 的高约为6.9m【解析】【分析】本题考查了圆周角定理,三角形外角的性质,解直角三角形的应用等知识,解题的关键是: (1)连接BM ,根据圆周角定理得出AMB APB ∠=∠,根据三角形外角的性质得出AMB ADB ∠>∠,然后等量代换即可得证;(2)在Rt AHP 中,利用正切的定义求出AH ,在Rt BHP △中,利用正切的定义求出BH ,即可求解.【小问1详解】证明:如图,连接BM .则AMB APB ∠=∠.∵AMB ADB ∠>∠,∴APB ADB ∠>∠.【小问2详解】解:在Rt AHP 中,60APH ∠=°,6PH =. ∵tan AH APH PH∠=,∴tan 606AH PH ⋅° ∵30APB ∠=°,∴603030BPH APH APB ∠=∠−∠=°−°=°.在Rt BHP △中,tan BHBPH PH∠=,∴tan 306BH PH ⋅°.∴()4 1.73 6.9m ABAH BH =−=−≈×≈. 答:塑像AB 的高约为6.9m .21. 为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A ,B 两种食品作为午餐.这两种食品每包质量均为50g ,营养成分表如下.(1)若要从这两种食品中摄入4600kJ 热量和70g 蛋白质,应选用A ,B 两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g ,且热量最低,应如何选用这两种食品?【答案】(1)选用A 种食品4包,B 种食品2包(2)选用A 种食品3包,B 种食品4包【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,解题的关键是:(1)设选用A 种食品x 包,B 种食品y 包,根据“从这两种食品中摄入4600kJ 热量和70g 蛋白质”列方程组求解即可;(2)设选用A 种食品a 包,则选用B 种食品()7−a 包,根据“每份午餐中的蛋白质含量不低于90g ”列不等式求解即可.小问1详解】解:设选用A 种食品x 包,B 种食品y 包,根据题意,得7009004600,101570.x y x y += +=解方程组,得4,2.x y = =答:选用A 种食品4包,B 种食品2包.【小问2详解】解:设选用A 种食品a 包,则选用B 种食品()7−a 包,根据题意,得()1015790a a +−≥.∴3a ≤.设总热量为kJ w ,则()70090072006300w a a a =+−=−+. ∵2000−<,∴w 随a 的增大而减小.∴当3a =时,w 最小.∴7734a −=−=.答:选用A 种食品3包,B 种食品4包.22. 从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =−+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示). (2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.【【答案】(1)010v (2)()20m /s(3)小明的说法不正确,理由见解析【解析】【分析】本题考查了二次函数的应用,解题的关键是:(1)把函数解析式化成顶点式,然后利用二次函数的性质求解即可; (2)把010v t =,20h =代入205h t v t =−+求解即可; (3)由(2),得2520h t t =−+,把15h =代入,求出t 的值,小问1详解】解:205h t v t =−+ 220051020v v t =−−+ , ∴当010v t =时,h 最大, 故答案为:010v ; 【小问2详解】解:根据题意,得 当010v t =时,20h =, ∴20005201010v v v −×+×=, ∴()020m /s v =(负值舍去);【小问3详解】解:小明的说法不正确.理由如下:由(2),得2520h t t =−+,当15h =时,215520t t =−+,解方程,得11t =,23t =,∴两次间隔的时间为312s −=, 【∴小明的说法不正确.23. 综合与实践在学习特殊四边形的过程中,我们积累了一定的研究经验,请运用已有经验,对“邻等对补四边形”进行研究定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.(1)操作判断用分别含有30°和45°角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有________(填序号).(2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质.如图2,四边形ABCD 是邻等对补四边形,AB AD =,AC 是它的一条对角线.①写出图中相等的角,并说明理由;②若BC m =,DC n =,2BCD θ∠=,求AC 的长(用含m ,n ,θ的式子表示). (3)拓展应用如图3,在Rt ABC △中,90B ∠=︒,3AB =,4BC =,分别在边BC ,AC 上取点M ,N ,使四边形ABMN 是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出BN 的长.【答案】(1)②④ (2)①ACD ACB ∠=∠.理由见解析;②2cos m n θ+(3 【解析】【分析】(1)根据邻等对补四边形的定义判断即可;(2)①延长CB 至点E ,使BE DC =,连接AE ,根据邻等对补四边形定义、补角的性质可得出ABE D ∠=∠,证明()SAS ABE ADC ≌,得出E ACD ∠=∠,AE AC =,根据等边对等角得出E ACB ∠=∠,即可得出结论;②过A 作AF EC ⊥于F ,根据三线合一性质可求出2m n CF +=,由①可得ACD ACB θ∠=∠=,在Rt AFC △中,根据余弦的定义求解即可;(3)分AB BM =,AN AB =,MN AN =,BM MN =四种情况讨论即可.【小问1详解】解:观察图知,图①和图③中不存在对角互补,图2和图4中存在对角互补且邻边相等,故图②和图④中四边形是邻等对补四边形,故答案为:②④;【小问2详解】解:①ACD ACB ∠=∠,理由:延长CB 至点E ,使BE DC =,连接AE ,∵四边形ABCD 是邻等对补四边形,∴180ABC D ∠+∠=°,∵180ABC ABE ∠+∠=°,∴ABE D ∠=∠,∵AB AD =,∴()SAS ABE ADC ≌,∴E ACD ∠=∠,AE AC =,∴E ACB ∠=∠,∴ACD ACB ∠=∠;②过A 作AF EC ⊥于F ,∵AE AC =, ∴()()1112222m n CF CE BC BE BC DC +==+=+=, ∵2BCD θ∠=,∴ACD ACB θ∠=∠=,在Rt AFC △中,cos CF θAC=, ∴cos 2cos CF m n AC θθ+==; 【小问3详解】解:∵90B ∠=︒,3AB =,4BC =,∴5AC ,∵四边形ABMN 是邻等对补四边形,∴180ANM B ∠+∠=°,∴90ANM =°,当AB BM =时,如图,连接AM ,过N 作NH BC ⊥于H ,∴22218AM AB BM =+=,在Rt AMN 中222218MN AM AN AN =−=−,在Rt CMN 中()()22222435MN CM CN AN =−=−−−,∴()()22218435AN AN −=−−−,解得 4.2AN =, ∴45CN =, ∵90NHC ABC ∠=∠=°,C C ∠=∠, ∴NHC ABC ∽ , ∴NC NH CH AC AB CB ==,即45534NH CH ==, ∴1225NH =,1625CH =, ∴8425BH =,∴BN ; 当AN AB =时,如图,连接AM ,∵AM AM =,∴Rt Rt ABM ANM ≌,∴BM NM =,故不符合题意,舍去;当AN MN =时,连接AM ,过N 作NH BC ⊥于H ,∵90MNC ABC ∠=∠=°,C C ∠=∠, ∴CMN CAB ∽△△, ∴CN MN BC AB =,即543CN CN −=,解得207CN =, ∵90NHC ABC ∠=∠=°,C C ∠=∠, ∴NHC ABC ∽ , ∴NC NH CH AC AB CB ==,即207534NH CH ==, ∴127NH =,167CH =, ∴127BH =,∴BN ; 当BM MN =时,如图,连接AM ,∵AM AM =,∴Rt Rt ABM ANM ≌,∴AN AB =,故不符合题意,舍去;综上,BN . 【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,解直角三角形,勾股定理等知识,明确题意,理解新定义,添加合适辅助线,构造全等三角形、相似三角形是解题的关键.。
2024年河北省中考数学真题试卷一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A. B.C.D. 2. 下列运算正确的是( )A. 734a a a -=B. 222326a a a ⋅=C. 33(2)8a a -=-D. 44a a a ÷=3. 如图,AD 与BC 交于点O,ABO 和CDO 关于直线PQ 对称,点A,B 的对称点分别是点C,D .下列不一定正确的是( )A. AD BC ⊥B. AC PQ ⊥C. ABO CDO △≌△D. AC BD ∥4. 下列数中,能使不等式516x -<成立的x 的值为( )A. 1B. 2C. 3D. 45. 观察图中尺规作图的痕迹,可得线段BD 一定是ABC ∆的( )A. 角平分线B. 高线C. 中位线D. 中线6. 如图是由11个大小相同的正方体搭成的几何体,它的左视图是( )A. B. C. D.7. 节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是( )A. 若5x =,则100y =B. 若125y =,则4x =C. 若x 减小,则y 也减小D. 若x 减小一半,则y 增大一倍 8. 若a,b 是正整数,且满足8282222222a b a a a b b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯个相加个相乘,则a 与b 的关系正确的是( )A. 38a b +=B. 38a b =C. 83a b +=D. 38a b =+9. 淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ( )A. 1B. 1C. 1D. 1110. 下面是嘉嘉作业本上的一道习题及解答过程: ABC 中,ABC 的外角,连接CD .四边形ABCD 是平行四边形.AC =,∵∠ABC =∠+2∠,1∠=∠.又∵45∠=∠,MA MC =∵MAD MCB △≌△(∵______).∵MD MB =.∵四边形ABCD 是平行四边形.若以上解答过程正确,∵,∵应分别为( )A. 13∠=∠,AASB. 13∠=∠,ASAC. 23∠∠=,AASD. 23∠∠=,ASA11. 直线l 与正六边形ABCDEF 的边,AB EF 分别相交于点M,N,如图所示,则a β+=( )A. 115︒B. 120︒C. 135︒D. 144︒12. 在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是( )A. 点AB. 点BC. 点CD. 点D13. 已知A 为整式,若计算22A y xy y x xy -++的结果为x y xy-,则A =( )A. xB. yC. x y +D. x y -14. 扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为120︒时,扇面面积为S ,该折扇张开的角度为n ︒时,扇面面积为n S ,若n m SS =,则m 与n 关系的图象大致是( )A. B. C. D.15. “铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是( )A. “20”左边的数是16B. “20”右边的“□”表示5C. 运算结果小于6000D. 运算结果可以表示为41001025a +16. 平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则点Q 的坐标为( )A. ()6,1或()7,1B. ()15,7-或()8,0C. ()6,0或()8,0D. ()5,1或()7,1二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分) 17. 某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为______.18. 已知a,b,n 均为正整数.(1)若1n n <<+,则n =______.(2)若1,1n n n n -<<<<+,则满足条件的a 的个数总比b 的个数少______个.19. 如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为______.(2)143B C D △的面积为______.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤) 20. 如图,有甲、乙两条数轴.甲数轴上的三点A,B,C 所对应的数依次为4-,2,32,乙数轴上的三点D,E,F 所对应的数依次为0,x ,12.(1)计算A,B,C 三点所对应的数的和,并求AB AC的值.(2)当点A 与点D 上下对齐时,点B,C 恰好分别与点E,F 上下对齐,求x 的值.21. 甲、乙、丙三张卡片正面分别写有,2,a b a b a b ++-,除正面的代数式不同外,其余均相同.(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当1,2a b ==-时,求取出的卡片上代数式的值为负数的概率.(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率. 22. 中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P 恰好看到一颗星星,此时淇淇距窗户的水平距离4m BQ =,仰角为α;淇淇向前走了3m 后到达点D,透过点P 恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ 的距离 1.6m ==AB CD ,点P 到BQ 的距离2.6m PQ =,AC 的延长线交PQ 于点E .(注:图中所有点均在同一平面)(1)求β的大小及tan α的值.(2)求CP 的长及sin APC ∠的值.23. 情境图1是由正方形纸片去掉一个以中心O为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线EF,GH裁剪,将该纸片剪成∵,∵,∵三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF的长.(2)直接写出图3中所有与线段BE相等的线段,并计算BE的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的BC边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段PQ)的位置,并直接写出BP的长.24. 某公司为提高员工的专业能力,定期对员工进行技能测试,考虑多种因素影响,需将测试的原始成绩x (分)换算为报告成绩y (分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下: 当0x p ≤<时,80x y p =.当150p x ≤≤时,()2080150x p y p-=+-. (其中p 是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)公司规定报告成绩为80分及80分以上(即原始成绩为p 及p 以上)为合格.(1)甲、乙的原始成绩分别为95分和130分,若100p =,求甲、乙的报告成绩.(2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p 的值:(3)下表是该公司100名员工某次测试的原始成绩统计表:∵直接写出这100名员工原始成绩的中位数.∵若∵中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.25. 已知O的半径为3,弦MN=,ABC中,90,3,∠=︒==.在平面上,先将ABC AB BCABC和O按图1位置摆放(点B与点N重合,点A在O上,点C在O内),随后移动ABC,使点=.B在弦MN上移动,点A始终在O上随之移动,设BN x∥时,如图2,求点B到OA的距离,并求此时(1)当点B与点N重合时,求劣弧AN的长.(2)当OA MNx的值.(3)设点O到BC的距离为d.∵当点A在劣弧MN上,且过点A的切线与AC垂直时,求d的值.∵直接写出d的最小值.26. 如图,抛物线21:2C y ax x =-过点(4,0),顶点为Q .抛物线22211:()222C y x t t =--+-(其中t 为常数,且2t >),顶点为P .(1)直接写出a 的值和点Q 的坐标. (2)嘉嘉说:无论t 为何值,将1C 的顶点Q 向左平移2个单位长度后一定落在2C 上. 淇淇说:无论t 为何值,2C 总经过一个定点. 请选择其中一人的说法进行说理. (3)当4t =时∵求直线PQ 的解析式.∵作直线l PQ ∥,当l 与2C 的交点到x 轴的距离恰为6时,求l 与x 轴交点的横坐标.(4)设1C 与2C 的交点A,B 的横坐标分别为,A B x x ,且A B x x <.点M 在1C 上,横坐标为()2B m m x ≤≤.点N 在2C 上,横坐标为()A n x n t ≤≤.若点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,直接用含t 和m 的式子表示n.2024年河北省中考数学真题试卷答案一、选择题.1. 【答案】A2. 【答案】C3. 【答案】A4. 【答案】A5. 【答案】B6. 【答案】D7. 【答案】C8. 【答案】A【解析】解:由题意得:()8822a b⨯= ∵38222a b ⨯=∵38a b +=故选:A .9. 【答案】C【解析】解:由题意得:221a a +=解得:1x =1x =-故选:C .10. 【答案】D【解析】证明:∵AB AC =,∵3ABC ∠=∠.∵3CAN ABC ∠=∠+∠,12CAN ∠=∠+∠,12∠=∠ ∵∵23∠=∠.又∵45∠=∠,MA MC =∵MAD MCB △≌△(∵ASA ).∵MD MB =.∵四边形ABCD 是平行四边形.故选:D .11. 【答案】B【解析】解:正六边形每个内角为:()621801206-⨯︒=︒ 而六边形MBCDEN 的内角和也为()62180720-⨯︒=︒∵720B C D E ENM NMB ∠+∠+∠+∠+∠+∠=︒∵7204120240ENM NMB ∠+∠=︒-⨯︒=︒∵1802360ENM NMB βα+∠++∠=︒⨯=︒∵360240120αβ+=︒-︒=︒故选:B .12. 【答案】B【解析】解:设(),A a b ,AB m =,AD n =∵矩形ABCD∵AD BC n ==,AB CD m ==∵(),D a b n +,(),B a m b +,(),C a m b n ++ ∵b b b n a m a a +<<+,而b b n a m a m+<++ ∵该矩形四个顶点中“特征值”最小的是点B.故选:B .13. 【答案】A【解析】解:∵22A y xy y x xy -++的结果为x y xy- ∵22y x y A x xy xy xy y -+=++ ∵()()()()()2222x y x y y x x A xy x y xy x y xy x y xy y xy y -++===+++++ ∵A x =故选:A .14. 【答案】C【解析】解:设该扇面所在圆的半径为R221203603R R S ππ==∵23R S π=∵该折扇张开的角度为n ︒时,扇面面积为n S ∵223360360360120n R S R n n n nS S π=⨯⨯===π ∵1120120120n S m n S nSn S ==== ∵m 是n 的正比例函数∵0n ≥∵它的图像是过原点的一条射线.故选:C .15. 【答案】D【解析】解:设一个三位数与一个两位数分别为10010x y z ++和10m n +则由题意得:20,5,2,mz nz ny nx a ==== ∵4mz nz=,即4=m n ∵当2,1n y ==时, 2.5z =不是正整数,不符合题意,故舍.当1,2n y ==时,则4,5,m z x a === ∵A.“20”左边的数是248⨯=,故本选项不符合题意.B.“20”右边的“□”表示4,故本选项不符合题意.∵a 上面的数应为4a∵运算结果可以表示为:()1000411002541001025a a a +++=+∵D 选项符合题意当2a =时,计算的结果大于6000,故C 选项不符合题意故选:D .16. 【答案】D【解析】解:由点()32,2P 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到()42,3P ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到()41,3P ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则按照“和点”16Q 反向运动16次求点Q 坐标理解,可以分为两种情况:∵16Q 先向右1个单位得到()150,9Q ,此时横、纵坐标之和除以3所得的余数为0,应该是15Q 向右平移1个单位得到16Q ,故矛盾,不成立.∵16Q 先向下1个单位得到()151,8Q -,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到16Q ,故符合题意,那么点16Q 先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()17,98-+-,即()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1.故选:D .二、填空题.17. 【答案】8918. 【答案】 ∵. 3 ∵. 2【解析】解:(1)∵34<<,而1n n <+∵3n =.故答案为:3.(2)∵a,b,n 均为正整数.∵n 1-,n ,1n +为连续的三个自然数,而1,1n n n n -<<<+<<<<观察0,1,2,3,4,5,6,7,8,9,而200=,211=,224=,239=,2416=∵()21n -与2n 之间的整数有()22n -个 2n 与()21n +之间的整数有2n 个∵满足条件的a 的个数总比b 的个数少()2222222n n n n --=-+=(个)故答案为:2.19. 【答案】 ∵. 1 ∵. 7【解析】解:(1)连接11B D ,12B D ,12B C ,13B C ,33C D∵ABC 的面积为2,AD 为BC 边上的中线∵112122ABD ACD ABC S S S △△△∵点A ,1C ,2C ,3C 是线段4CC 的五等分点 ∵1122334415AC AC C C C C C C CC =====∵点A ,1D ,2D 是线段3DD 的四等分点 ∵11223314AD AD D D D D DD ====∵点A 是线段1BB 的中点 ∵1112AB AB BB == 在11AC D △和ACD 中1111AC AC C AD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∵()11SAS AC D ACD ≌∵111AC D ACD S S ==△△,11C D A CDA ∠=∠∵11AC D △的面积为1故答案为:1.(2)在11AB D 和ABD △中1111AB AB B AD BAD AD AD =⎧⎪∠=∠⎨⎪=⎩∵()11SAS AB D ABD ≌∵111AB D ABD S S ==△△,11B D A BDA ∠=∠∵180BDA CDA ∠+∠=︒∵1111180B D A C D A ∠+∠=︒∵1C ,1D ,1B 三点共线∵111111112AB C AB D AC D S S S △△△∵1122334AC C C C C C C ===∵14114428AB C AB C S S △△∵11223AD D D D D ==,111AB D S =△∵13113313AB D AB D S S ==⨯=△△在33AC D △和ACD 中 ∵333AC AD AC AD==,33C AD CAD ∠=∠ ∵33C AD CAD △∽△ ∵3322339C AD CAD SAC S AC ⎛⎫=== ⎪⎝⎭ ∵339919C AD CAD S S ==⨯=△△∵1122334AC C C C C C C ===∵43334491233AC D C AD S S ==⨯=△△ ∵41433131412387AC D AB C B C D D AB S S S S =+-=+-=△△△△∵143B C D △的面积为7故答案为:7.三、解答题.20. 【答案】(1)30,16 (2)2x = 21. 【答案】(1)13 (2)填表见解析,49【小问1详解】解:当1,2a b ==-时1a b +=-,20a b+=,()123a b -=--= ∵取出的卡片上代数式的值为负数的概率为:13.【小问2详解】解:补全表格如下:∵所有等可能的结果数有9种,和为单项式的结果数有4种 ∵和为单项式的概率为49. 22. 【答案】(1)45︒,14(2m 【小问1详解】解:由题意可得:PQ AE ⊥, 2.6PQ =m , 1.6AB CD EQ ===m 4AE BQ ==()m ,3AC BD ==()m∵431CE =-=()m , 2.6 1.61PE =-=()m ,90CEP ∠=︒ ∵CE PE =∵45PCE β=∠=︒,1tan tan 4PE PAE AE α=∠==.【小问2详解】 解:∵1CE PE ==m ,90CEP ∠=︒∵CP ==m如图,过C 作CH AP ⊥于H∵1tan tan 4CH PAE AH α=∠==,设CH x =m ,则4AH x =m ∵()22249x x AC +==解得:17x =∵CH =m∵sin34CH APC CP ∠===.23. 【答案】(1)1EF =;(2)BE GE AH GH ===,2BE =BP 或2【解析】解:如图,过G '作G K FH ''⊥于K 结合题意可得:四边形FOG K '为矩形∵FO KG '=由拼接可得:HF FO KG '==由正方形的性质可得:45A ∠=︒∵AHG ,H G D '',AFE △为等腰直角三角形 ∵G KH ''为等腰直角三角形设H K KG x ''==∵H G H D '''==∵AH HG ==,HF FO x ==∵正方形的边长为2∵= ∵OA =∵x x +=解得:1x =∵))1111EF AF x ====.(2)∵AFE △为等腰直角三角形,1EF AF ==.∵AE ==∵2BE =∵)12GE H G =='='=-2AH GH ===∵BE GE AH GH ===.如图,以B 为圆心,BO 为半径画弧交BC 于P ',交AB 于Q ',则直线P Q ''为分割线此时BP '=,2P Q ''==,符合要求 或以C 圆心,CO 为半径画弧,交BC 于P ,交CD 于Q ,则直线PQ 为分割线此时CP CQ ==2PQ ==∵2BP =综上:BP 或2-24. 【答案】(1)甲、乙的报告成绩分别为76,92分 (2)125 (3)∵130;∵95%【小问1详解】解:当100p =时,甲的报告成绩为:809576100y ⨯==分乙的报告成绩为:()201301008092150100y ⨯-=+=-分.【小问2详解】解:设丙的原始成绩为1x 分,则丁的原始成绩为()140x -分 ∵10x p ≤<时,18092x y p ==丙①,()1804064x y p -==丁② 由∵-∵得320028p = ∵8007p = ∵1800929207131807x p⨯==≈>,故不成立,舍.∵140150p x ≤-≤时,()1209280150x p y p -==+-丙③,()120406480150x p y p --==+-丁④ 由∵-∵得:80028150p =- ∵8507p = ∵185020792808501507x ⎛⎫- ⎪⎝⎭=+- ∵19707x = ∵16908504077x p -=<=,故不成立,舍.∵11040,150x p p x ≤-<≤≤时,()1209280150x p y p -==+-丙⑤()1804064x y p -==丁⑥联立∵∵解得:1125,140p x ==,且符合题意综上所述125p =.【小问3详解】解:∵共计100名员工,且成绩已经排列好∵中位数是第50,51名员工成绩的平均数由表格得第50,51名员工成绩都是130分∵中位数为130.∵当130p >时,则8013090p ⨯=,解得10401309p =<,故不成立,舍.当130p ≤时,则()201309080150p p -=+-,解得110p =,符合题意∵ 由表格得到原始成绩为110及110以上的人数为()10012295-++= ∵合格率为:95100%95%100⨯=.25. 【答案】(1)π (2)点B 到OA 的距离为2;3 (3)∵3d =-23 【小问1详解】解:如图,连接OA ,OB∵O 的半径为3,3AB =∵3OA OB AB ===∵AOB 为等边三角形∵60AOB ∠=︒∵AN 的长为60π3π180.【小问2详解】解:过B 作BI OA ⊥于I ,过O 作OH MN ⊥于H ,连接MO∵OA MN ∥ ∵90IBH BHO HOI BIO ∠=∠=∠=∠=︒∵四边形BIOH 是矩形∵BH OI =,BI OH =∵MN =OH MN ⊥∵MH NH ==而3OM =∵2OH BI ==∵点B 到OA 的距离为2.∵3AB =,BI OA ⊥∵AI =∵3OI OA AI BH =-==∵33x BN BH NH ==+==.【小问3详解】解:∵如图,∵过点A 的切线与AC 垂直∵AC 过圆心过O 作OJ BC ⊥于J ,过O 作OK AB ⊥于K ,而90ABC ∠=︒∵四边形KOJB 为矩形∵OJ KB =∵3AB =,BC =∵AC ==∵cosAB AK BAC AC AO∠==== ∵AK∵3OJ BK ==即3d =-如图,当B 为MN 中点时过O 作OL B C ''⊥于L ,过O 作OJ BC ⊥于J ,∵90OJL ∠>︒∵OL OJ >,此时OJ 最短如图,过A 作AQ OB ⊥于Q ,而3AB AO ==∵B 为MN 中点,则OB MN ⊥∵由(2)可得2OB =∵1BQ OQ ==∵AQ ==∵90ABC AQB ∠=︒=∠∵90OBJ ABO ABO BAQ ∠+∠=︒=∠+∠∵OBJ BAQ ∠=∠∵tan tan OBJ BAQ ∠=∠∵OJ BQ BJ AQ ==设OJ m =,则BJ =∵()2222m += 解得:23m =(不符合题意的根舍去) ∵d 的最小值为23. 26. 【答案】(1)12a =,()2,2Q - (2)两人说法都正确,理由见解析(3)∵410=-y x ;∵112-或112+ (4)2n t m =+- 【小问1详解】解:∵抛物线21:2C y ax x =-过点(4,0),顶点为Q .∵1680a -=解得:12a = ∵抛物线为:()221122222y x x x =-=-- ∵()2,2Q -.【小问2详解】解:把()2,2Q -向左平移2个单位长度得到对应点的坐标为:()0,2-当0x =时 ∵222221111:()2222222C y x t t t t =--+-=-+-=- ∵()0,2-在2C 上∵嘉嘉说法正确.∵22211:()222C y x t t =--+- 2122x xt =-+- 当0x =时,=2y - ∵22211:()222C y x t t =--+-过定点()0,2-.∵淇淇说法正确. 【小问3详解】解:∵当4t =时()2222111:()246222C y x t t x =--+-=--+ ∵顶点()4,6P ,而()2,2Q -设PQ 为y ex f =+∵4622e f e f +=⎧⎨+=-⎩解得:410e f =⎧⎨=-⎩ ∵PQ 为410=-y x .∵如图,当()221:4662C y x =--+=-(等于6两直线重合不符合题意)∵4x =±∵交点()46J --,交点()4K +由直线l PQ ∥,设直线l 为4y x b =+∵(446b -+=-解得:22b =∵直线l 为:422y x =+当4220y x =+=时,112x =-此时直线l 与x 轴交点的横坐标为112-同理当直线l 过点()4K +直线l 为:422y x =-当4220y x =-=时,112x =+此时直线l 与x 轴交点的横坐标为112+【小问4详解】解:如图,∵()21222y x =--,22211:()222C y x t t =--+- ∵2C 是由1C 通过旋转180︒,再平移得到的,两个函数图象的形状相同如图,连接AB 交PQ 于L ,连接AQ ,BQ ,AP ,BP∵四边形APBQ 是平行四边形当点M 是到直线PQ 的距离最大的点,最大距离为d,点N 到直线PQ 的距离恰好也为d 此时M 与B 重合,N 与A 重合∵()2,2P -,21,22Q t t ⎛⎫- ⎪⎝⎭ ∵L 的横坐标为2t 2+ ∵21,22M m m m ⎛⎫- ⎪⎝⎭,()2211,222N n n t t ⎡⎤--+-⎢⎥⎣⎦∵L 的横坐标为2m n + ∵222m n t ++= 解得:2n t m =+-.。
2024年河南省中考数学真题试卷一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的) 1. 如图,数轴上点P 表示的数是( )A. 1-B. 0C. 1D. 22. 据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为( )A. 8578410⨯B. 105.78410⨯C. 115.78410⨯D. 120.578410⨯ 3. 如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为( )A. 60︒B. 50︒C. 40︒D. 30︒4. 信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为( )A. B. C. D. 5. 下列不等式中,与1x ->组成的不等式组无解的是( )A. 2x >B. 0x <C. <2x -D. 3x >-6. 如图,在ABCD 中,对角线AC ,BD 相交于点O,点E 为OC 的中点,EF AB ∥交BC 于点F .若4AB =,则EF 的长为( )A. 12 B. 1 C. 43 D. 27. 计算3()a a a a a ⋅⋅⋅个的结果是( )A. 5aB. 6aC. 3a a +D. 3a a 8. 豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )A. 19B. 16C. 15D. 139. 如图,O 是边长为ABC 的外接圆,点D 是BC 的中点,连接BD ,CD .以点D 为圆心,BD 的长为半径在O 内画弧,则阴影部分的面积为( )A. 8π3B. 4πC. 16π3D. 16π10. 把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I 与使用电器的总功率P 的函数图象(如图1),插线板电源线产生的热量Q 与I 的函数图象(如图2).下列结论中错误的是( )A. 当440W P =时,2A I =B. Q 随I 的增大而增大C. I 每增加1A,Q 的增加量相同D. P 越大,插线板电源线产生的热量Q 越多二、填空题(每小题3分,共15分) 11. 请写出2m 的一个同类项:_______.12. 2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”.某校组织各班围绕这个主题开展板报宣传活动,并对各班的宣传板报进行评分,得分情况如图,则得分的众数为___________分.13. 若关于x 的方程2102x x c -+=有两个相等的实数根,则c 的值为___________. 14. 如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20-,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为___________.15. 如图,在Rt ABC △中,90ACB ∠=︒,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 的垂线,交射线AD 于点E .若1CD =,则AE 的最大值为_________,最小值为_________.三、解答题(本大题共8个小题,共75分)16. (1)计算(01 (2)化简:231124a a a +⎛⎫+÷ ⎪--⎝⎭. 17. 为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________(填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为________分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误()1⨯-,且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好. 18. 如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E,反比例函数()0k y x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象. (3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________.19. 如图,在Rt ABC △中,CD 是斜边AB 上的中线,∥BE DC 交AC 的延长线于点E .(1)请用无刻度的直尺和圆规作ECM ∠,使ECM A ∠=∠,且射线CM 交BE 于点F (保留作图痕迹,不写作法).(2)证明(1)中得到的四边形CDBF 是菱形20. 如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.图1 图2(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m .参考数据 1.73≈). 21. 为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B 两种食品作为午餐.这两种食品每包质量均为50g ,营养成分表如下.(1)若要从这两种食品中摄入4600kJ 热量和70g 蛋白质,应选用A,B 两种食品各多少包? (2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g ,且热量最低,应如何选用这两种食品? 22. 从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =-+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由. 23. 综合与实践在学习特殊四边形的过程中,我们积累了一定的研究经验,请运用已有经验,对“邻等对补四边形”进行研究定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.(1)操作判断用分别含有30︒和45︒角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有________(填序号).(2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质. 如图2,四边形ABCD 是邻等对补四边形,AB AD =,AC 是它的一条对角线.∠写出图中相等的角,并说明理由∠若BC m =,DC n =,2BCD θ∠=,求AC 的长(用含m,n,θ的式子表示).(3)拓展应用如图3,在Rt ABC △中,90B ,3AB =,4BC =,分别在边BC ,AC 上取点M,N,使四边形ABMN 是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出BN 的长.2024年河南省中考数学真题试卷答案一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的) 1. 【答案】A2. 【答案】C3. 【答案】B4. 【答案】A5. 【答案】A6. 【答案】B7. 【答案】D8. 【答案】D9. 【答案】C10. 【答案】C【解析】解∠根据图1知:当440W P =时,2A I =,故选项A 正确,但不符合题意 根据图2知:Q 随I 的增大而增大,故选项B 正确,但不符合题意根据图2知:Q 随I 的增大而增大,但前小半段增加的幅度小,后面增加的幅度大,故选项C 错误,符合题意根据图1知:I 随P 的增大而增大,又Q 随I 的增大而增大,则P 越大,插线板电源线产生的热量Q 越多,故选项D 正确,但不符合题意故选:C .二、填空题(每小题3分,共15分)11. 【答案】m (答案不唯一)12. 【答案】913. 【答案】1214. 【答案】()3,1015.【答案】 ∠. 1 ∠. 1【解析】解:∠90ACB ∠=︒,3CA CB == ∠190452BAC ABC ∠=∠=⨯︒=︒∠线段CD 绕点C 在平面内旋转,1CD =∠点D 在以点C 为圆心,1为半径的圆上∠BE AE ⊥∠90AEB ∠=︒∠点E 在以AB 为直径的圆上在Rt ABE △中,cos AE AB BAE =⋅∠∠AB 为定值∠当cos BAE ∠最大时,AE 最大,cos BAE ∠最小时,AE 最小 ∠当AE 与C 相切于点D,且点D 在ABC 内部时,BAE ∠最小,AE 最大,连接CD ,CE ,如图所示:则CD AE ⊥∠90ADE CDE ∠=∠=︒∠AD ==∠AC AC =∠45CED ABC ==︒∠∠∠90CDE ∠=︒∠CDE 为等腰直角三角形∠1DE CD ==∠1AE AD DE =+=+即AE 的最大值为1当AE 与C 相切于点D,且点D 在ABC 外部时,BAE ∠最大,AE 最小,连接CD ,CE ,如图所示:则CD AE ⊥∠90CDE ∠=︒∠AD ==∠四边形ABCE 为圆内接四边形 ∠180135CEA ABC =︒-=︒∠∠∠18045CED CEA =︒-=︒∠∠∠90CDE ∠=︒∠CDE 为等腰直角三角形∠1DE CD ==∠1AE AD DE =-=-即AE 的最小值为1故答案为:1;1.三、解答题(本大题共8个小题,共75分) 16. 【答案】(1)9(2)2a +17. 【答案】(1)甲 29(2)甲 (3)乙队员表现更好 18. 【答案】(1)6y x= (2)见解析 (3)92【小问1详解】解:反比例函数k y x =的图象经过点()3,2A ∠23k = ∠6k = ∠这个反比例函数的表达式为6y x =【小问2详解】解:当1x =时,6y =当2x =时,3y =当6x =时,1y =∠反比例函数6y x=的图象经过()1,6,()2,3,()6,1 画图如下:【小问3详解】解:∠()6,4E 向左平移后,E 在反比例函数的图象上∠平移后点E 对应点的纵坐标为4当4y =时,64x=解得32x = ∠平移距离为39622-=.故答案为:92.19. 【答案】(1)见解析(2)见解析【小问1详解】解:如图【小问2详解】证明:∠ECM A∠=∠∠CM AB∥∠∥BE DC∠四边形CDBF是平行四边形∠在Rt ABC△中,CD是斜边AB上的中线∠12 CD BD AB ==∠平行四边形CDBF是菱形.20. 【答案】(1)见解析(2)塑像AB的高约为6.9m 【小问1详解】证明:如图,连接BM.则AMB APB∠=∠.∠AMB ADB∠>∠∠APB ADB ∠>∠.【小问2详解】解:在Rt AHP 中,60APH ∠=︒,6PH =. ∠tan AH APH PH∠=∠tan 606AH PH =⋅︒==∠30APB ∠=︒∠603030BPH APH APB ∠=∠-∠=︒-︒=︒.在Rt BHP △中,tan BH BPH PH ∠=∠tan 306BH PH =⋅︒==∠()4 1.73 6.9m AB AH BH =-==≈⨯≈.答:塑像AB 的高约为6.9m .21. 【答案】(1)选用A 种食品4包,B 种食品2包(2)选用A 种食品3包,B 种食品4包【小问1详解】解:设选用A 种食品x 包,B 种食品y 包根据题意,得7009004600,101570.x y x y +=⎧⎨+=⎩解方程组,得4,2.x y =⎧⎨=⎩答:选用A 种食品4包,B 种食品2包.【小问2详解】解:设选用A 种食品a 包,则选用B 种食品()7-a 包根据题意,得()1015790a a +-≥.∠3a ≤.设总热量为kJ w ,则()70090072006300w a a a =+-=-+.∠2000-<∠w 随a 的增大而减小.∠当3a =时,w 最小.∠7734a -=-=.答:选用A 种食品3包,B 种食品4包.22. 【答案】(1)010v (2)()20m /s(3)小明的说法不正确,理由见解析【小问1详解】解:205h t v t =-+220051020v v t ⎛⎫=--+ ⎪⎝⎭ ∠当010v t =时,h 最大 故答案为:010v 【小问2详解】解:根据题意,得 当010v t =时,20h = ∠20005201010v v v ⎛⎫-⨯+⨯= ⎪⎝⎭∠()020m /s v =(负值舍去)【小问3详解】解:小明的说法不正确.理由如下:由(2),得2520h t t =-+当15h =时,215520t t =-+解方程,得11t =,23t =∠两次间隔的时间为312s -=∠小明的说法不正确.23. 【答案】(1)∠∠ (2)∠ACD ACB ∠=∠.理由见解析;∠2cos m n θ+(3)5或7 【小问1详解】解:观察图知,图∠和图∠中不存在对角互补,图2和图4中存在对角互补且邻边相等 故图∠和图∠中四边形是邻等对补四边形故答案为:∠∠【小问2详解】解:∠ACD ACB ∠=∠,理由:延长CB 至点E,使BE DC =,连接AE∠四边形ABCD 是邻等对补四边形∠180ABC D ∠+∠=︒∠180ABC ABE ∠+∠=︒∠ABE D ∠=∠∠AB AD =∠()SAS ABE ADC ≌∠E ACD ∠=∠,AE AC =∠E ACB ∠=∠∠ACD ACB ∠=∠∠过A 作AF EC ⊥于F∠AE AC = ∠()()1112222m n CF CE BC BE BC DC +==+=+= ∠2BCD θ∠=∠ACD ACB θ∠=∠=在Rt AFC △中,cos CF θAC= ∠cos 2cos CF m n AC θθ+== 【小问3详解】解:∠90B ,3AB =,4BC =∠5AC∠四边形ABMN 是邻等对补四边形 ∠180ANM B ∠+∠=︒∠90ANM =︒当AB BM =时,如图,连接AM ,过N 作NH BC ⊥于H∠22218AM AB BM =+=在Rt AMN 中222218MN AM AN AN =-=- 在Rt CMN 中()()22222435MN CM CN AN =-=--- ∠()()22218435AN AN -=--- 解得 4.2AN = ∠45CN = ∠90NHC ABC ∠=∠=︒,C C ∠=∠ ∠NHC ABC ∽534∠1225NH =,1625CH = ∠8425BH =∠BN ==当AN AB =时,如图,连接AM∠AM AM =∠Rt Rt ABM ANM ≌ ∠BM NM =,故不符合题意,舍去 当AN MN =时,连接AM ,过N 作NH BC ⊥于H∠90MNC ABC ∠=∠=︒,C C ∠=∠ ∠CMN CAB ∽△△ ∠CN MN BC AB =,即543CN CN -= 解得207CN =∠90NHC ABC ∠=∠=︒,C C ∠=∠ ∠NHC ABC ∽534∠127NH =,167CH = ∠127BH =∠BN ==当BM MN =时,如图,连接AM∠AM AM =∠Rt Rt ABM ANM ≌ ∠AN AB =,故不符合题意,舍去综上,BN 的长为5或7.。
2024年天津市中考数学真题试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算()33--的结果是()A.6B.3C.0D.-62.下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B.C. D.3.的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.5.据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为()A.70.0810⨯B.60.810⨯C.5810⨯D.48010⨯1-的值等于()A.0B.1C.12- 17.计算3311x x x ---的结果等于() A.3 B.x C.1x x - D.231x - 8.若点()()()123,1,,1,,5A x B x C x -都在反比例函数5y x =的图象上,则123,,x x x 的大小关系是() A.123x x x << B.132x x x << C.321x x x <<D.213x x x << 9.《孙子算经》是我国古代著名的数学典籍,其中有一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳度之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,绳子长y 尺,则可以列出的方程组为()A. 4.50.51y x x y -=⎧⎨-=⎩B. 4.50.51y x x y -=⎧⎨+=⎩C. 4.51x y x y +=⎧⎨-=⎩D. 4.51x y y x +=⎧⎨-=⎩10.如图,Rt ABC △中,90,40C B ∠=︒∠=︒,以点A 为圆心,适当长为半径画弧,交AB 于点E ,交AC 于点F ;再分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧(所在圆的半径相等)在BAC ∠的内部相交于点P ;画射线AP ,与BC 相交于点D ,则ADC ∠的大小为()A.60B.65C.70D.7511.如图,ABC 中,30B ∠=,将ABC 绕点C 顺时针旋转60得到DEC ,点,A B 的对应点分别为,D E ,延长BA 交DE 于点F ,下列结论一定正确的是()A.ACB ACD ∠=∠B.AC DE ∥C.AB EF =D.BF CE ⊥12.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230506h t t t =-≤≤.有下列结论:①小球从抛出到落地需要6s①小球运动中的高度可以是30m①小球运动2s 时的高度小于运动5s 时的高度.其中,正确结论的个数是()A.0B.1C.2D.3第II 卷二、填空题(本大题共6小题,每小题3分,共18分)13.不透明袋子中装有10个球,其中有3个绿球,4个黑球,3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为______.14.计算86x x ÷的结果为______.15.计算)11的结果为___. 16.若正比例函数y kx =(k 是常数,0k ≠)的图象经过第一、第三象限,则k 的值可以是_____________(写出一个即可).17.如图,正方形ABCD 的边长为对角线,AC BD 相交于点O ,点E 在CA 的延长线上,5OE =,连接DE .(1)线段AE 的长为______(2)若F 为DE 的中点,则线段AF 的长为______.18.如图,在每个小正方形的边长为1的网格中,点,,A F G 均在格点上.(1)线段AG 的长为______(2)点E 在水平网格线上,过点,,A E F 作圆,经过圆与水平网格线的交点作切线,分别与,AE AF 的延长线相交于点,,B C ABC △中,点M 在边BC 上,点N 在边AB 上,点P 在边AC 上.请用无刻度的直尺,在如图所示的网格中,画出点,,M N P ,使MNP △的周长最短,并简要说明点,,M N P 的位置是如何找到的(不要求证明)______.三、解答题(本大题共7小题,共66分.解答应写出文字说明,演算步骤或推理过程) 19.解不等式组213317x x x +≤⎧⎨-≥-⎩①②请结合题意填空,完成本题的解答.(1)解不等式①,得______(2)解不等式①,得______(3)把不等式①和①的解集在数轴上表示出来:(4)原不等式组的解集为______.20.为了解某校八年级学生每周参加科学教育的时间(单位:h ),随机调查了该校八年级a 名学生,根据统计的结果,绘制出如下的统计图①和图①.请根据相关信息,解答下列问题:(1)填空:a 的值为______,图①中m 的值为______,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为______和______(2)求统计的这组学生每周参加科学教育的时间数据的平均数(3)根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是9h 的人数约为多少?21.已知AOB 中,30,ABO AB ∠=︒为O 的弦,直线MN 与O 相切于点C .(1)如图①,若AB MN ∥,直径CE 与AB 相交于点D ,求AOB ∠和BCE ∠的大小(2)如图①,若,OB MN CG AB ⊥∥,垂足为,G CG 与OB 相交于点,3F OA =,求线段OF 的长. 22.综合与实践活动中,要用测角仪测量天津海河上一座桥的桥塔AB 的高度(如图①).某学习小组设计了一个方案:如图①,点,,C D E 依次在同一条水平直线上,36m,DE EC AB =⊥,垂足为C .在D 处测得桥塔顶部B 的仰角(CDB ∠)为45︒,测得桥塔底部A 的俯角(CDA ∠)为6︒,又在E 处测得桥塔顶部B 的仰角(CEB ∠)为31︒.(1)求线段CD 的长(结果取整数)(2)求桥塔AB 的高度(结果取整数).参考数据:tan310.6,tan60.1︒≈︒≈.23.已知张华的家、画社、文化广场依次在同一条直线上,画社离家0.6km ,文化广场离家1.5km .张华从家出发,先匀速骑行了4min 到画社,在画社停留了15min ,之后匀速骑行了6min 到文化广场,在文化广场停留6min 后,再匀速步行了20min 返回家.下面图中x 表示时间,y 表示离家的距离.图象反映了这个过程中张华离家的距离与时间之间的对应关系.请根据相关信息,回答下列问题:(1)①填表:①填空:张华从文化广场返回家的速度为______km /min①当025x ≤≤时,请直接写出张华离家的距离y 关于时间x 的函数解析式(2)当张华离开家8min 时,他的爸爸也从家出发匀速步行了20min 直接到达了文化广场,那么从画社到文化广场的途中()0.6 1.5y <<两人相遇时离家的距离是多少?(直接写出结果即可)24.将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠==.(1)填空:如图①,点C 的坐标为______,点B 的坐标为______(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图①,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围①设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可). 25.已知抛物线()20y ax bx c a b c a =++>,,为常数,的顶点为P ,且20a b +=,对称轴与x 轴相交于点D ,点(),1M m 在抛物线上,1m O >,为坐标原点.(1)当11a c ==-,时,求该抛物线顶点P 的坐标(2)当2OM OP ==,求a 的值 (3)若N 是抛物线上的点,且点N 在第四象限,90MDN DM DN ∠=︒=,,点E 在线段MN 上,点F在线段DN 上,NE NF +=,当DE MF +,求a 的值.2024年天津市中考数学真题试卷答案解析一、选择题.1.【答案】A2.【答案】B3.【答案】C4.【答案】C5.【答案】C6.【答案】A7.【答案】A8.【答案】B9.【答案】A10.【答案】B11.【答案】D【解析】解:记BF 与CE 相交于一点H,如图所示:①ABC 中,将ABC 绕点C 顺时针旋转60得到DEC ①60BCE ACD ∠=∠=︒①30B ∠=︒①在BHC 中,18090BHC BCE B ∠=︒-∠-∠=︒ ①BF CE ⊥故D 选项是正确的,符合题意设ACH x ∠=︒①60ACB x ∠=︒-︒,①30B ∠=︒①()180306090EDC BAC x x ∠=∠=︒-︒-︒-︒=︒+︒①9060150EDC ACD x x ∠+∠=︒+︒+︒=︒+︒ ①x ︒不一定等于30︒①EDC ACD ∠+∠不一定等于180︒①AC DE ∥不一定成立故B 选项不正确,不符合题意①6060ACB x ACD x ∠=︒-︒∠=︒︒,,不一定等于0︒ ①ACB ACD ∠=∠不一定成立故A 选项不正确,不符合题意①将ABC 绕点C 顺时针旋转60得到DEC ①AB ED EF FD ==+①BA EF >故C 选项不正确,不符合题意故选:D12.【答案】C【解析】解:令0h =,则23050t t -=,解得:10t =,26t = ①小球从抛出到落地需要6s ,故①正确①()223055345h t t t =-=--+①最大高度为45m①小球运动中的高度可以是30m ,故①正确 当2t =时,23025240h =⨯-⨯=;当5t =时,23055525h =⨯-⨯= ①小球运动2s 时的高度大于运动5s 时的高度,故①错误 故选C . 二、填空题.13.【答案】31014.【答案】2x15.【答案】1016.【答案】1(答案不唯一)【解析】17.【答案】【解析】(1)四边形ABCD 是正方形 OA OC OD OB ∴===,90DOC ∠=︒ ∴在Rt DOC 中,222OD OC DC += 3DC =3OD OC OA OB ∴====5OE =∴532AE OE OA =-=-=(2)延长DA 到点G ,使AG AD =,连接EG 由E 点向AG 作垂线,垂足为H①F 为DE 的中点,A 为GD 的中点 ①AF 为DGE △的中位线在Rt EAH △中,45EAH DAC ∠=∠=︒ AH EH ∴=222AH EH AE +=AH EH ∴==GH AG AH ∴=-== 在Rt EHG △中,2222810EG EH GH ∴=+=+=∴=EG AF 为DGE △的中位线12AF EG ∴==18.【答案】①.图见解析,说明见解析【解析】(1)由勾股定理可知,AG ==故答案为(2)如图,根据题意,切点为M ;连接ME 并延长,与网格线相交于点1M ;取圆与网格线的交点D 和格点H ,连接DH 并延长,与网格线相交于点2M ;连接12M M ,分别与,AB AC 相交于点,N P ,则点,,M N P 即为所求.三、解答题.19.【答案】(1)1x ≤(2)3x ≥-(3)见解析(4)31x -≤≤【解析】【小问1详解】解:解不等式①得1x ≤故答案为:1x ≤【小问2详解】解:解不等式①得3x ≥-故答案为:3x ≥-【小问3详解】解:在数轴上表示如下:【小问4详解】解:由数轴可得原不等式组的解集为31x -≤≤故答案为:31x -≤≤.20.【答案】(1)50,34,8,8(2)8.36(3)150人【小问1详解】解:36%50÷=(人)%1750100%34%m =÷⨯=34m ∴=在这组数据中,8出现了17次,次数最多∴众数是8将这组数据从小到大依次排列,处于最中间的第25,26名学生的分数都是8∴中位数是(88)28+÷=故答案为:50,34,8,8.【小问2详解】 63778179151088.36,3717158x ⨯+⨯+⨯+⨯+⨯==++++ ∴这组数据的平均数是8.36.【小问3详解】在所抽取的样本中,每周参加科学教育的时间是9h 的学生占30%∴根据样本数据,估计该校八年级学生500人中,每周参加科学教育的时间是9h 的学生占30%,有50030%150⨯=.∴估计该校八年级学生每周参加科学教育的时间是9h 的人数约为150.21.【答案】(1)120AOB ∠=︒;30BCE ∠=︒(2【小问1详解】AB 为O 的弦OA OB ∴=.得A ABO ∠=∠.△AOB 中,180A ABO AOB ∠+∠+∠=︒又30ABO ∠=︒1802120AOB ABO ∴∠=︒-∠=︒.直线MN 与O 相切于点,C CE 为O 的直径CE MN ∴⊥.即90ECM ∠=︒.又AB MN ∥90CDB ECM ∴∠=∠=︒.在Rt ODB 中,9060BOE ABO ∠=︒-∠=︒.12BCE BOE ∠∠=30BCE ∴∠=︒.【小问2详解】如图,连接OC .∵直线MN 与O 相切于点,C CE 为O 的直径①90OCM ∠=︒①//OC MN①90OCM COB ∠=∠=︒.CG AB ⊥,得90FGB ∠=︒.∴在Rt FGB 中,由30ABO ∠=︒得9060BFG ABO ∠=︒-∠=︒.60CFO BFG ∴∠=∠=︒.在Rt COF △中,tan ,3OC CFO OC OA OF∠=== 33tan tan60OC OF CFO ∠∴=== 22.【答案】(1)54m(2)59m【小问1详解】解:设CD x =,由36DE =,得36CE CD DE x =+=+.EC AB ⊥,垂足为C90BCE ACD ∠∠∴==︒.在Rt BCD 中,tan 45BC CDB CDB CD∠=∠=︒, tan tan45BC CD CDB x x ∠∴=⋅=⋅︒=. 在Rt BCE 中,tan 31BC CEB CEB CE ∠=∠=︒, ()tan 36tan31BC CE CEB x ∴=⋅∠=+⋅︒.()36tan31x x ∴=+⋅︒. 得36tan31360.6541tan3110.6x ⨯︒⨯=≈=-︒-. 答:线段CD 的长约为54m .【小问2详解】在Rt ACD △中,tan 6AC CDA CDA CD∠=∠=︒, tan 54tan6540.1 5.4AC CD CDA ∠∴=⋅≈⨯︒≈⨯=.5.45459AB AC BC ∴=+≈+≈.答:桥塔AB 的高度约为59m .23.【答案】(1)①0.15,0.6,1.5;①0.075;①当04x ≤≤时,0.15y x =;当419x <≤时,0.6y =;当1925x <≤时,0.15 2.25y x =-(2)1.05km【小问1详解】解:①画社离家0.6km ,张华从家出发,先匀速骑行了4min 到画社①张华的骑行速度为()0.640.15km /min ÷=①张华离家1min 时,张华离家0.1510.15km ⨯=张华离家13min 时,还在画社,故此时张华离家还是0.6km张华离家30min 时,在文化广场,故此时张华离家还是1.5km .故答案为:0.15,0.6,1.5.①()1.5 5.1 3.10.075km /min ÷-=故答案为:0.075.①当04x ≤≤时,张华的匀速骑行速度为()0.640.15km /min ÷=①0.15y x =当419x <≤时,0.6y =当1925x <≤时,设次数的函数解析式为:y kx b =+把()19,0.6,()25,1.5代入y kx b =+,可得出:190.625 1.5k b k b +=⎧⎨+=⎩解得:0.152.25k b =⎧⎨=-⎩ ①0.15 2.25y x =-综上:当04x ≤≤时,0.15y x =,当419x <≤时,0.6y =,当1925x <≤时,0.15 2.25y x =-.【小问2详解】张华爸爸的速度为:()1.5200.075km /min ÷=设张华爸爸距家km y ',则()0.07580.0750.6y x x =-=-'当两人从画社到文化广场的途中()0.6 1.5y <<两人相遇时,有600.1.005 2..2575x x --= 解得:22x =①()0.07580.0750.60.075220.6 1.05km y x x =-=-=⨯-='故从画社到文化广场的途中()0.6 1.5y <<两人相遇时离家的距离是1.05km .24.【答案】(1)((,(2)①3522t <<S ≤≤ 【小问1详解】解:如图:过点C 作CH OA ⊥①四边形OABC 是平行四边形,2,60OC AOC ∠==,()3,0A①2360OC AB OA B AOC ====∠=∠=︒,CB ,,①CH OA ⊥①30OCH ∠=︒ ①112OH OC ==①CH①(1C①3CB OA ==①134+=①(4B故答案为:(,(4 【小问2详解】解:①①过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上 ①60OO C AOC ''∠=∠=︒,O P OP '=①22OO OP t =='①()3,0A①3OA =①23AO OO OA t ''=-=-①四边形OABC 为平行四边形①2AB OC ==,AB OC ∥,60O AB AOC '∠=∠=︒①EO A '是等边三角形①23AE AO t '==-①BE AB AE =-①()22352BE AB AE t t =-=--=-①25BE t =-+当O '与点A 重合时此时AB 与C O ''的交点为E 与A 重合,1322OP OA == 如图:当C '与点B 重合时此时AB 与C O ''的交点为E 与B 重合,1522CB OP +== ①t 的取值范围为3522t << ①如图:过点C 作CH OA ⊥由(1)得出(C ,60COA ∠=︒①tan 60MP OP ︒=MP t =①MP =当213t ≤<时,2111222S O P OP MP t '==⨯==0>,开口向上,对称轴直线0=t①在213t ≤<时,2S =随着t 的增大而增大①92S ≤< 当312t ≤≤时,如图:()()())111121222S O P MC MP OP CM MP t t t =+⨯''=+⨯=+-=-=0>,S 随着t 的增大而增大①在32t =时32S ===在1t =时1S ==①当312t ≤≤时,2S ≤≤ ①当3522t <<时,过点E 作,如图:①由①得出EO A '是等边三角形,EN AO ⊥ ①()11323222AN AO t t ==-=-'①tan EAO '∠=EN AN =①32EN t ⎫=-⎪⎭12S AO EN '=-⨯⨯()1323222t t ⎡⎤⎫=----⎪⎢⎥⎭⎣⎦24=+-①0<①开口向下,在2t ==时,S 有最大值①42S =+=①在3522t <<时,352222-=-①23322S ⎛⎫=+= ⎪⎝⎭则在3522t <<时4S <≤ 当51124t ≤≤时,如图()()11232522S AO BC MP t t =-⨯+⨯=--⨯--=+'+'①0<,S 随着t 的增大而减小①在51124t ≤≤时,则把51124t t ==,分别代入2S =+得出52S =+=114S =+=①在51124t ≤≤时S ≤≤综上S ≤≤25.【答案】(1)该抛物线顶点P 的坐标为1,2 (2)10(3)1【小问1详解】解:201a b a +==,,得22b a =-=-.又1c =- ∴该抛物线的解析式为221y x x =--. ()222112y x x x =--=--∴该抛物线顶点P 的坐标为()1,2-【小问2详解】解:过点(),1M m 作MH x ⊥轴,垂足为1H m >,则901MHO HM OH m ∠=︒==,,.在Rt MOH 中,由222HM OH OM OM +==, 221m ∴+=⎝⎭.解得123322m m ==-,(舍). ∴点M 的坐标为3,12⎛⎫ ⎪⎝⎭. 20a b +=,即12b a -=.∴抛物线22y ax ax c =-+的对称轴为1x =.对称轴与x 轴相交于点D ,则190OD ODP ∠==︒,.在Rt OPD 中,由222OD PD OP OP +==, 221PD ∴+=⎝⎭.解得32PD =负值舍去. 由0a >,得该抛物线顶点P 的坐标为31,2⎛⎫-⎪⎝⎭. ∴该抛物线的解析式为()2312y a x =--. 点3,12M ⎛⎫ ⎪⎝⎭在该抛物线上,有2331122a ⎛⎫=-- ⎪⎝⎭. 10a ∴=【小问3详解】解:过点(),1M m 作MH x ⊥轴,垂足为1H m >,则901MHO HM OH m ∠=︒==,,.1DH OH OD m ∴=-=-.∴在Rt DMH △中,()222211DM DH HM m =+=-+. 过点N 作NK x ⊥轴,垂足为K ,则90DKN ∠=︒.90MDN DM DN ∠=︒=,,又90DNK NDK MDH ∠∠∠=︒-= NDK DMH ∴≌△△.①1DK MH ==,1NK DH m ==-①点N 的坐标为()2,1m -.在Rt DMN △中,45DMN DNM ∠=∠=︒22222MN DM DN DM =+=,即MN =.根据题意,NE NF +=,得ME NF =.在DMN 的外部,作45DNG DME ∠=∠=︒,且NG DM =,连接GF 得90MNG DNM DNG ∠∠∠︒=+=.GNF DME ∴≌△△.①GF DE =.DE MF GF MF GM ∴+=+≥.当满足条件的点F 落在线段GM 上时,DE MF +取得最小值,即GM =. 在Rt GMN △中,22223GM NG MN DM =+=223DM ∴=.得25DM =.()2115m ∴-+=.解得1231m m ==-,(舍). ∴点M 的坐标为()3,1,点N 的坐标为()2,2-. 点()()3,12,2M N -,都在抛物线22y ax ax c =-+上 得196,244a a c a a c =-+-=-+.1a ∴=.。
2024年吉林省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若()3-⨯ 的运算结果为正数,则W 内的数字可以为( )A .2B .1C .0D .1-【答案】D【分析】本题主要考查了有理数的乘法计算,根据有理数的乘法计算法则,分别计算出3-与四个选项中的数的乘积即可得到答案.【详解】解:()326-⨯=-,()313-⨯=-,()300-⨯=,()()313-⨯-=,四个算式的运算结果中,只有3是正数,故选:D .2.长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A .102.0410⨯B .92.0410⨯C .820.410⨯D .100.20410⨯3.葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是( )A .主视图与左视图相同B .主视图与俯视图相同C .左视图与俯视图相同D .主视图、左视图与俯视图都相同【答案】A 【分析】本题主要考查了简单几何体的三视图,根据三视图的定义找到葫芦的三视图即可得到答案.【详解】解:葫芦的俯视图是两个同心圆,且带有圆心,主视图和俯视图都是下面一个较大的圆,中间一个较小的圆,上面是一条线段,故选:A .4.下列方程中,有两个相等实数根的是( )A .()221x -=-B .()220x -=C .()221x -=D .()222x -=5.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为( )A .()4,2--B .()4,2-C .()2,4D .()4,2【答案】C【分析】本题主要考查了坐标与图形变化—旋转,矩形的性质等等,先根据题意得到42OA OC ==,,再由矩形的性质可得290AB OC ABC ===︒,∠,由旋转的性质可得42OA OA A B AB '''====,,90OA B ''∠=︒,据此可得答案.【详解】解:∵点A 的坐标为()4,0-,点C 的坐标为()0,2,∴42OA OC ==,,∵四边形OABC 是矩形,∴290AB OC ABC ===︒,∠,∵将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',∴42OA OA A B AB '''====,,90OA B ''∠=︒,∴A B y ''⊥轴,∴点B '的坐标为()2,4,故选:C .6.如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A .50︒B .100︒C .130︒D .150︒【答案】C 【分析】本题考查了平行线的性质,圆的内接四边形的性质,熟练掌握知识点是解题的关键.先根据BE AD ∥得到50D BEC ∠=∠=︒,再由四边形ABCD 内接于O 得到180ABC D ∠+∠=︒,即可求解.【详解】解:∵BE AD ∥,50BEC ∠=︒,∴50D BEC ∠=∠=︒,∵四边形ABCD 内接于O ,∴180ABC D ∠+∠=︒,∴18050130ABC ∠=︒-︒=︒,故选:C .二、填空题7.当分式11x +的值为正数时,写出一个满足条件的x 的值为 .8.因式分解:a 2﹣3a=.【答案】a (a ﹣3)【分析】直接把公因式a 提出来即可.【详解】解:a 2﹣3a=a (a ﹣3).故答案为a (a ﹣3).9.不等式组2030x x ->⎧⎨-<⎩的解集为 .【答案】23x <</32x >>【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:2030x x ->⎧⎨-<⎩①②解不等式①得:2x >,解不等式②得:3x <,∴原不等式组的解集为23x <<,故答案为:23x <<.10.如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .【答案】两点之间,线段最短【分析】本题考查了两点之间线段最短,熟记相关结论即可.【详解】从长春站去往胜利公园,走人民大街路程最近,其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.11.正六边形的每个内角等于°.12.如图,正方形ABCD 的对角线AC BD ,相交于点O ,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒,则EF BC 的值为 .13.图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图②,其中AB AB '=,AB B C '⊥于点C ,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为 .【答案】()22220.5x x +=+【分析】本题考查了勾股定理的实际应用,正确理解题意,运用勾股定理建立方程是解题的关键.设AC 的长度为x 尺,则0.5AB AB x '==+,在Rt AB C '△中,由勾股定理即可建立方程.【详解】解:设AC 的长度为x 尺,则0.5AB AB x '==+,∵AB B C '⊥,由勾股定理得:222AC B C AB ''+=,∴()22220.5x x +=+,故答案为:()22220.5x x +=+.14.某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A ,D .1m OA =,10m OB =,40AOD ∠=︒,则阴影部分的面积为 2m (结果保留π).三、解答题15.先化简,再求值:()()2111a a a +-++,其中a =16.吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率.由树状图可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有∴幸运游客小明与小亮恰好抽中同一个项目的概率17.如图,在ABCD Y 中,点O 是AB 的中点,连接CO 并延长,交DA 的延长线于点E ,求证:AE BC =.【答案】证明见解析【分析】本题主要考查了全等三角形的性质与判定,平行四边形的性质,先根据平行四边形对边平行推出OAE OBC OCB E ==∠∠,∠∠,再由线段中点的定义得到OA OB =,据此可证明()AAS AOE BOC △≌△,进而可证明AE BC =.【详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,∴OAE OBC OCB E ==∠∠,∠∠,∵点O 是AB 的中点,∴OA OB =,∴()AAS AOE BOC △≌△,∴AE BC =.18.钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.【答案】白色琴键52个,黑色琴键36个【分析】本题考查了列一元一次方程解应用题,正确理解题意是解题的关键.设黑色琴键x 个,则白色琴键()16x +个,可得方程()1688x x ++=,再解方程即可.【详解】解:设黑色琴键x 个,则白色琴键()16x +个,由题意得:()1688x x ++=,解得:36x =,∴黑色琴键由:361652+=(个),答:白色琴键52个,黑色琴键36个.19.图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD 的一条对称轴.(2)在图②中,画出经过点E 的O 的切线.【答案】(1)见解析(2)见解析【分析】本题主要考查了正方形的性质与判定,矩形的性质与判定,切线的判定,画对称轴等等:(1)如图所示,取格点E 、F ,作直线EF ,则直线EF 即为所求;(2)如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求.【详解】(1)解:如图所示,取格点E、F,作直线EF,则直线EF即为所求;,的中点;易证明四边形ABCD是矩形,且E、F分别为AB CD、,作直线GH,则直线GH即为所求;(2)解:如图所示,取格点G H⊥.易证明四边形OGTH是正方形,点E为正方形OGTH的中心,则OE GH20.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.-年全国居民人均可支配收入及其增长速度情况如图所示.21.中华人民共和国20192023根据以上信息回答下列问题:-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多少元?(1)20192023-年全国居民人均可支配收入的中位数.(2)直接写出20192023(3)下列判断合理的是______(填序号).-年全国居民人均可支配收入里逐年上升趋势.①20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5年中,②201920232020年全国居民人均可支配收入最低.【答案】(1)8485元(2)35128元(3)①【分析】本题主要考查了频数分布直方图,频数分布折线图,中位数:(1)用2023年的全国居民人均可支配收入减去2019年全国居民人均可支配收入即可得到答案;(2)根据中位数的定义求解即可;(3)根据统计图的数据即可得到答案.【详解】(1)解:39218307338485-=元,答:20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多8485元.(2)解:20192023-年这五年的全国居民人均可支配收入分别为30733元,32189元,35128元,36883元,39218元,∴20192023-年全国居民人均可支配收入的中位数为35128元;(3)解:由统计图可知20192023-年全国居民人均可支配收入里逐年上升趋势,故①正确;由统计图可知20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.但这5年中,2019年全国居民人均可支配收入最低,故②错误;故答案为:①.22.图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin 370.60︒=,cos370.80︒=,tan 370.75︒=)在Rt GAD 中,45EAD ∠=∴873tan DG AG DG EAD===∠在Rt GAC △中,37EAC ∠=∴tan 873CG AG EAC =⋅∠=∴873654.75CD DG CG =-=-23.综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题.【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.【收集数据】小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x ,凳面的宽度为mm y ,记录如下:以对称轴为基准向两边各取相同的长度/mm x 16.519.823.126.429.7凳面的宽度/mm y 115.5132148.5165181.5【分析数据】如图③,小组根据表中x ,y 的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度是多少?【答案】(1)在同一条直线上,函数解析式为:533y x =+(2)36mm【分析】本题考查了一次函数的实际应用,待定系数法求函数解析式,已知函数值求自变量,熟练掌握知识点,正确理解题意是解题的关键.(1)用待定系数法求解即可;(2)将213y =代入函数解析式,解方程即可.【详解】(1),解:设函数解析式为:()0y kx b k =+≠,∵当16.5,115.5x y ==,23.1,148.5x y ==,∴16.5115.523.1148.5k b k b +=⎧⎨+=⎩,解得:533k b =⎧⎨=⎩,∴函数解析式为:533y x =+,经检验其余点均在直线533y x =+上,∴函数解析式为533y x =+,这些点在同一条直线上;(2)解:把213y =代入533y x =+得:533213x +=,解得:36x =,∴当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度为36mm .24.小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB BC =,BD AC ⊥,垂足为点D .若2CD =,1BD =,则ABC S = ______.(2)如图②,在菱形A B C D ''''中,4''=A C ,2B D ''=,则A B C D S ''''=菱形______.(3)如图③,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,3FH =,则EFGH S =四边形______;若EG a =,FH b =,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想.【理解运用】(4)如图④,在MNK △中,3MN =,4KN =,5MK =,点P 为边MN 上一点.小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ;(ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ';(ⅲ)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧;(ⅳ)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ .请你直接写出MPKQ S 四边形的值.25.如图,在ABC 中,90C ∠=︒,30B ∠=︒,3cm AC =,AD 是ABC 的角平分线.动点P从点A /s 的速度沿折线AD DB -向终点B 运动.过点P 作PQ AB ∥,交AC 于点Q ,以PQ 为边作等边三角形PQE ,且点C ,E 在PQ 同侧,设点P 的运动时间为()()s 0t t >,PQE V与ABC 重合部分图形的面积为()2cm S .(1)当点P 在线段AD 上运动时,判断APQ △的形状(不必证明),并直接写出AQ 的长(用含t 的代数式表示).(2)当点E 与点C 重合时,求t 的值.(3)求S 关于t 的函数解析式,并写出自变量t 的取值范围.∵90C ∠=︒,30B ∠=∴60BAC ∠=︒,∵AD 平分BAC ∠,∴30PAQ BAD ∠=∠=∵PQ AB ∥,∴30APQ BAD ∠=∠=∴PAQ APQ =∠∠,∵PQE V 为等边三角形,∴QE QP =,由(1)得QA QP =∴QE QA =,即22AE AQ t ==∵30PAQ ∠=︒,∴1322PG AP ==∵PQE V 是等边三角形,∴QE PQ AQ ===∴12S QE PG =⋅=∵PQE V 是等边三角形,∴60E ∠=︒,而CE AE AC =-∴tan CF CE =⋅∠∴1S CE CF =⋅∵30DAC ∠=︒DCA ∠=由上知3DC =,∴23AD =,∴此时323PD t =-26.小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围.Ⅲ.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.则10m -≤≤,综上:10m -≤≤或12m ≤≤.【详解】(1)解:∵20x =-<,∴将2x =-,1y =代入3y kx =+,得:231k -+=,解得:1k =,∵20,30x x =>=>,∴将2,3x y ==,3,6x y ==代入23y ax bx =++得:42339336a b a b ++=⎧⎨++=⎩,解得:12a b =⎧⎨=-⎩;(2)解:Ⅰ,∵1,1,2k a b ===-,∴一次函数解析式为:3y x =+,二次函数解析式为:223y x x =-+当0x >时,223y x x =-+,对称为直线1x =,开口向上,∴1x ≥时,y 随着x 的增大而增大;当0x ≤时,3y x =+,10k =>,∴0x ≤时,y 随着x 的增大而增大,综上,x 的取值范围:0x ≤或1x ≥;Ⅱ,∵230ax bx t ++-=,∴23ax bx t ++=,在04x <<时无解,∴问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点,∵对于223y x x =-+,当1x =时,2y =∴顶点为()1,2,如图:∴当2t =时,抛物线223y x x =-+与直线y ∴当2t <时,抛物线223y x x =-+与直线y 当4x =,168311y =-+=,∴当11t =时,抛物线223y x x =-+与直线∴当11t ≥时,抛物线223y x x =-+与直线y ∴当2t <或11t ≥时,抛物线223y x x =-+与直线即:当2t <或11t ≥时,关于x 的方程2ax +Ⅲ:∵,1P Q x m x m ==-+,由题意得:11012m m -≤-+≤⎧⎨≤≤⎩,∴12m ≤≤;②当12m <,如图:由题意得:10112m m -≤≤⎧⎨≤-+≤⎩,∴10m -≤≤,综上:10m -≤≤或12m ≤≤.。
2024年陕西省初中学业水平考试数学试卷注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题),全卷共8页,总分120分,考试时间120分钟2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡上填涂对应的试卷类型信息点(A 或B )3.请在答题卡上各题的指定区域内作答,否则作答无效4.作图时,先用铅笔作图,再用规定签字笔描黑5.考试结束,本试卷和答题卡一并交回第一部分(选择题共24分)一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.3-的倒数是()A.3B.13 C.13- D.3-2.如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是()A. B. C. D.3.如图,AB DC ∥,BC DE ∥,145B ∠=︒,则D ∠的度数为()A.25︒B.35︒C.45︒D.55︒4.不等式()216x -≥的解集是()A.2x ≤ B.2x ≥ C.4x ≤ D.4x ≥5.如图,在ABC 中,90BAC ∠=︒,AD 是BC 边上的高,E 是DC 的中点,连接AE ,则图中的直角三角形有()A.2个B.3个C.4个D.5个6.一个正比例函数的图象经过点()2,A m 和点(),6B n -,若点A 与点B 关于原点对称,则这个正比例函数的表达式为()A.3y x = B.3y x =- C.13y x = D.13y x =-7.如图,正方形CEFG 的顶点G 在正方形ABCD 的边CD 上,AF 与DC 交于点H ,若6AB =,2CE =,则DH 的长为()A .2 B.3 C.52 D.838.已知一个二次函数2y ax bx c =++的自变量x 与函数y 的几组对应值如下表,x…4-2-035…y …24-8-03-15-…则下列关于这个二次函数的结论正确的是()A.图象的开口向上B.当0x >时,y 的值随x 的值增大而增大C.图象经过第二、三、四象限D.图象的对称轴是直线1x =第二部分(非选择题共96分)二、填空题(共5小题,每小题3分,计15分)9.分解因式:2a ab -=_______________.10.小华探究“幻方”时,提出了一个问题:如图,将0,2-,1-,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是________.(写出一个符合题意的数即可)11.如图,BC 是O 的弦,连接OB ,OC ,A ∠是 BC所对的圆周角,则A ∠与OBC ∠的和的度数是________.12.已知点()12,A y -和点()2,B m y 均在反比例函数5y x=-的图象上,若01m <<,则12y y +________0.13.如图,在ABC 中,AB AC =,E 是边AB 上一点,连接CE ,在BC 右侧作BF AC ∥,且BF AE =,连接CF .若13AC =,10BC =,则四边形EBFC 的面积为________.三、解答题(共13小题,计81分。
绝密★启用前2024年广东省广州市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.四个数−10,−1,0,10中,最小的数是( )A. −10B. −1C. 0D. 102.下列图案中,点O为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O对称的是( )A. B. C. D.3.若a≠0,则下列运算正确的是( )A. a2+a3=a5B. a3⋅a2=a5C. 2a⋅3a=5aD. a3÷a2=14.若a<b,则( )A. a+3>b+3B. a−2>b−2C. −a<−bD. 2a<2b5.为了解公园用地面积x(单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照0<x≤4,4<x≤8,8<x≤12,12<x≤16,16<x≤20的分组绘制了如图所示的频数分布直方图,下列说法正确的是( )A. a的值为20B. 用地面积在8<x≤12这一组的公园个数最多C. 用地面积在4<x≤8这一组的公园个数最少D. 这50个公园中有一半以上的公园用地面积超过12公顷6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x辆,根据题意,可列方程为( )A. 1.2x+1100=35060B. 1.2x−1100=35060C. 1.2(x+1100)=35060D. x−1100=35060×1.27.如图,在△ABC中,∠A=90°,AB=AC=6,D为边BC的中点,点E,F分别在边AB,AC上,AE=CF,则四边形AEDF的面积为( )A. 18B. 9√ 2C. 9D. 6√ 28.函数y1=ax2+bx+c与y2=k的图象如图所示,当()时,y1,y2均随着xx的增大而减小.A. x<−1B. −1<x<0C. 0<x<2D. x>19.如图,⊙O中,弦AB的长为4√ 3,点C在⊙O上,OC⊥AB,∠ABC=30°.⊙O所在的平面内有一点P,若OP=5,则点P与⊙O的位置关系是( )A. 点P在⊙O上B. 点P在⊙O内C. 点P在⊙O外D. 无法确定10.如图,圆锥的侧面展开图是一个圆心角为72°的扇形,若扇形的半径l是5,则该圆锥的体积是( )A. 3√ 11π8πB. √ 118C. 2√ 6ππD. 2√ 63第II卷(非选择题)二、填空题:本题共6小题,每小题3分,共18分。
中考数学试卷(word版,无答案)
一、填空题(每题3分,满分30分)
1.(3分)中国政府提出的“一带一路”倡议,近两年来为沿线国家创造了约180000个就业岗位.将数据180000用科学记数法表示为.
2.(3分)在函数y=中,自变量x的取值范围是.
3.(3分)如图,在四边形ABCD中,AD=BC,在不添加任何辅助线的情况下,请你添加一个条件,使四边形ABCD是平行四边形.
4.(3分)在不透明的甲、乙两个盒子中装有除颜色外完全相同的小球,甲盒中有2个白球、1个黄球,乙盒中有1个白球、1个黄球,分别从每个盒中随机摸出1个球,则摸出的2个球都是黄球的概率是.
5.(3分)若关于x的一元一次不等式组的解集为x>1,则m的取值范围是.
6.(3分)如图,在⊙O中,半径OA垂直于弦BC,点D在圆上且∠ADC=30°,则∠AOB 的度数为.
7.(3分)若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是.
8.(3分)如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB =S△PCD,则PC+PD的最小值为.
9.(3分)一张直角三角形纸片ABC,∠ACB=90°,AB=10,AC=6,点D为BC边上的任一点,沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE是直角三角形时,则CD的长为.
10.(3分)如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,连接AA2,得到△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连接A1A3,得到△A1A2A3;再以对角线OA3为边作第四个正方形,连接A2A4,得到△A2A3A4……记△AA1A2、△A1A2A3、△A2A3A4的面积分别为S1、S2、S3,如此下去,则S2019=.
二、选择题(每题3分,满分30分)
11.(3分)下列各运算中,计算正确的是()
A.a2+2a2=3a4B.b10÷b2=b5
C.(m﹣n)2=m2﹣n2D.(﹣2x2)3=﹣8x6
12.(3分)下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是()A.B.
C.D.
13.(3分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是()
A.6B.5C.4D.3
14.(3分)某班在阳光体育活动中,测试了五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据.在统计时,出现了一处错误:将最低成绩写得更低了,则计算结果不受影响的是()
A.平均数B.中位数C.方差D.极差
15.(3分)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()
A.4B.5C.6D.7
16.(3分)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数y=上,顶点B在反比例函数y=上,点C在x轴的正半轴上,则平行四边形OABC的面积是()
A.B.C.4D.6
17.(3分)已知关于x的分式方程=1的解是非正数,则m的取值范围是()A.m≤3B.m<3C.m>﹣3D.m≥﹣3 18.(3分)如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC=3:2,过点B作BE∥AC,过点C作CE∥DB,BE、CE交于点E,连接DE,则tan∠EDC=()
A.B.C.D.
19.(3分)某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有()A.4种B.3种C.2种D.1种
20.(3分)如图,在平行四边形ABCD中,∠BAC=90°,AB=AC,过点A作边BC的垂线AF交DC的延长线于点E,点F是垂足,连接BE、DF,DF交AC于点O.则下列结论:①四边形ABEC是正方形;②CO:BE=1:3;③DE=BC;④S四边形OCEF=S△AOD,正确的个数是()
A.1B.2C.3D.4
三、解答题(满分60分)
21.(5分)先化简,再求值:(﹣)÷,期中x=2sin30°+1.
22.(6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.
(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;
(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;
(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).
23.(6分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A(3,0)、点B (﹣1,0),与y轴交于点C.
(1)求拋物线的解析式;
(2)过点D(0,3)作直线MN∥x轴,点P在直线NN上且S△P AC=S△DBC,直接写出点P的坐标.
24.(7分)“世界读书日”前夕,某校开展了“读书助我成长”的阅读活动.为了了解该校学生在此次活动中课外阅读书籍的数量情况,随机抽取了部分学生进行调查,将收集到的数据进行整理,绘制出两幅不完整的统计图,请根据统计图信息解决下列问题:
(1)求本次调查中共抽取的学生人数;
(2)补全条形统计图;
(3)在扇形统计图中,阅读2本书籍的人数所在扇形的圆心角度数是;
(4)若该校有1200名学生,估计该校在这次活动中阅读书籍的数量不低于3本的学生有多少人?
25.(8分)小明放学后从学校回家,出发5分钟时,同桌小强发现小明的数学作业卷忘记拿了,立即拿着数学作业卷按照同样的路线去追赶小明,小强出发10分钟时,小明才想起没拿数学作业卷,马上以原速原路返回,在途中与小强相遇.两人离学校的路程y(米)与小强所用时间t(分钟)之间的函数图象如图所示.
(1)求函数图象中a的值;
(2)求小强的速度;
(3)求线段AB的函数解析式,并写出自变量的取值范围.
26.(8分)如图,在△ABC中,AB=BC,AD⊥BC于点D,BE⊥AC于点E,AD与BE交于点F,BH⊥AB于点B,点M是BC的中点,连接FM并延长交BH于点H.
(1)如图①所示,若∠ABC=30°,求证:DF+BH=BD;
(2)如图②所示,若∠ABC=45°,如图③所示,若∠ABC=60°(点M与点D重合),猜想线段DF、BH与BD之间又有怎样的数量关系?请直接写出你的猜想,不需证明.
27.(10分)为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.
(1)求购买一个甲种文具、一个乙种文具各需多少元?
(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x个,求有多少种购买方案?
(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?
28.(10分)如图,在平面直角坐标系中,矩形ABCD的边AB在x轴上,AB、BC的长分别是一元二次方程x2﹣7x+12=0的两个根(BC>AB),OA=2OB,边CD交y轴于点E,动点P以每秒1个单位长度的速度,从点E出发沿折线段ED﹣DA向点A运动,运动的时间为t(0≤t<6)秒,设△BOP与矩形AOED重叠部分的面积为S.
(1)求点D的坐标;
(2)求S关于t的函数关系式,并写出自变量的取值范围;
(3)在点P的运动过程中,是否存在点P,使△BEP为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.。