2017届苏教版 简单的线性规划问题 课后限时自测
- 格式:doc
- 大小:254.00 KB
- 文档页数:11
高中简单的线性规划问题数学一、考点打破知识点课标要求题型说明1.掌握线性规划问题的求解过线性规划是一类利用图形解决最程,特别是确立最优解的方法。
选择题值问题的方法,表现简单的线性2.能从实质情境中抽象出一些填空题了数形联合的思想,规划问题简单的二元线性规划问题,并也是高考考察的热能加以解决。
点。
二、重难点提示要点:线性规划问题的图解法,追求线性规划问题的最优解;将实质问题转变为线性规划问题,并经过最优解的判断予以解决。
难点:利用图解法求最优解以及怎样把实质问题转变为简单的线性规划问题,并正确给出解答。
考点一:线性规划有关观点名称意义拘束条件由变量 x, y 构成的一次不等式线性拘束条件由 x, y 的一次不等式(或方程)构成的不等式组目标函数欲求最大值或最小值的函数线性目标函数对于 x, y 的一次分析式可行解知足线性拘束条件的解可行域全部可行解构成的会合最优解使目标函数获得最大值或最小值的可行解线性规划问题在线性拘束条件下求线性目标函数的最大值或最小值问题【中心概括】对于有实质背景的线性规划问题,可行域往常是位于第一象限的一个凸多边形地区,此时改动直线的最正确地点一般经过这个凸多边形的极点。
考点二:应用1.求线性目标函数在拘束条件下的最值问题的求解步骤是:(1)作图——画出拘束条件(不等式组)所确立的平面地区和目标函数所表示的平行直线系中的随意一条直线 l ;(2)平移——将l平行挪动,以确立最优解所对应的点的地点;(3)求值——解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值。
2.利用线性规划解决实质问题的一般步骤为:注意:解决实质问题的要点在于正确理解题意,将一般文字语言转变为数学语言从而成立数学模型。
0 x2【随堂练习】 已知平面直角坐标系xOy 上的地区 D 由不等式组y 2x2 y给定。
若 M ( x ,→ →的最大值为________ 。
y )为 D 上的动点,点 A 的坐标为( 2, 1),则 z = OM ·OA 思路剖析:作出可行域, 把目标函数利用向量的数目积坐标表示成对于x, y 的一次函数,利用图象法求解。
新课程同步课时练习----3.3线性规划(2)【基础练习】1.目标函数z=2x-y,将其看成直线方程时,z 的意义是 ( )A .该直线的截距B . 该直线的纵截距C .该直线纵截距的相反数D .该直线的横截距2.设E 为平面上以A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界),则z=4x-3y 的最大值与最小值分别为 .3.在约束条件:102,632,1052≤+-≥-≥+y x y x y x 下,求22y x z +=的最小值.【巩固练习】1.完成一项装修工程,木工和瓦工的比例是2:3,请木工需付工资每人50元,请瓦工需付工资每人40元,现有工资预算2000元,设木工x 人,瓦工y 人,请工人数的约束条件是 ( ) A .⎩⎨⎧∈≤+N y x y x 、532 B. ⎪⎪⎩⎪⎪⎨⎧∈=≤+Ny x y x y x 、3220004050 C .⎪⎩⎪⎨⎧=≤+321004050y x y x D .⎪⎩⎪⎨⎧=≤+3220004050y x y x 2.在如图所示的坐标平面的可行域内(阴影部分包括周界),目标函数z=x+ay 取得最小值的最优解有无数个,则a 的一个可能值为 ( )A .3-B . 3C .1-D .13.4枝牡丹花与5枝月季花的价格之和小于22元,而6枝牡丹花与3枝月季花的价格之和大于24元,则2枝牡丹花与3枝月季花的价格比较结果是 ( )A .2枝牡丹花贵B . 3枝月季花贵C .相同D .不确定4.△ABC 中,三个顶点的坐标分别为A (2,4)B (-1,0)C (1,0),当点P (x,y )在△ABC的内部及边界上运动时,z=x-y 的最大值与最小值分别是 .5.满足约束条件,0,0625⎪⎩⎪⎨⎧≥≥≤+≤+y x y x y x 的点(x,y )中使目标函数z=6x+8y 取得最大值的点的坐标是 .6.设R 为平面上不等式组⎪⎪⎩⎪⎪⎨⎧≤--≥+-≥++≤-+020204340634y x y x y x y x 表示的平面区域.求点(x,y)在R 上变动时,y -2x 的最大值.7.某饲料厂生产甲、乙两种品牌的饲料,已知生产甲种饲料1t 需耗玉米0.4t ,麦麸0.2t ,其余添加剂0.4t ;生产乙种饲料1t 需耗玉米0.5t ,麦麸0.3t ,其余添加剂0.2t 。
简单的线性规划问题[ 学习目标 ] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念 .2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题.知识点一线性规划中的基本概念名称意义约束条件关于变量 x, y 的一次不等式 (组 )线性约束条件关于 x, y 的一次不等式 (组 )目标函数欲求最大值或最小值的关于变量x, y 的函数解析式线性目标函数关于变量 x,y 的一次解析式可行解满足线性约束条件的解(x, y)可行域由所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题知识点二线性规划问题1.目标函数的最值线性目标函数 z= ax+ by (b≠ 0)对应的斜截式直线方程是y=-a z,在 y 轴上的截距是z,bx+b b当 z 变化时,方程表示一组互相平行的直线.当 b>0,截距最大时, z 取得最大值,截距最小时,z 取得最小值;当 b<0,截距最大时, z 取得最小值,截距最小时,z 取得最大值.2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界 )便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值.(4)答:写出答案.知识点三简单线性规划问题的实际应用1.线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有:①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的 A、B、C 三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大?③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.题型一求线性目标函数的最值例1 已知变量x, y 满足约束条件y≤ 2,x+ y≥ 1,x- y≤1,则 z= 3x+ y 的最大值为( )A . 12B .11C.3 D.- 1答案 B解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=- 3x+z 经y=2,x= 3,过点 A 时, z 取得最大值.由? 此时z=3x+ y= 11.x-y= 1 y= 2,x+y- 2≤ 0,跟踪训练 1 (1)x,y 满足约束条件x- 2y- 2≤ 0,若z=y-ax取得最大值的最优解不唯一,...2x-y+ 2≥ 0,则实数 a 的值为 ()1 1A. 2或- 1 B .2 或 2C.2 或 1 D. 2 或- 1x-y+ 1≤ 0,(2)若变量 x,y 满足约束条件x+2y- 8≤ 0,则 z= 3x+ y 的最小值为 ________ .x≥0,答案(1)D (2)1解析(1) 如图,由 y=ax+ z 知 z 的几何意义是直线在y 轴上的截距,故当 a>0 时,要使z= y- ax 取得最大值的最优解不唯一,则a=2;当 a<0 时,要使 z= y- ax 取得最大值的最优解不唯一,则a=- 1.y=- 3x+ z 过点(2)由题意,作出约束条件组成的可行域如图所示,当目标函数z= 3x+ y,即(0,1)时 z 取最小值 1.题型二非线性目标函数的最值问题x- y-2≤ 0,例2 设实数 x, y 满足约束条件 x+ 2y- 4≥ 0,求2y- 3≤ 0,(1)x2+y2的最小值;y(2)x的最大值.解如图,画出不等式组表示的平面区域ABC,(1)令 u= x2+ y2,其几何意义是可行域ABC 内任一点 (x, y)与原点的距离的平方.x+2y- 4= 0,4,8 过原点向直线 x+ 2y- 4=0 作垂线 y= 2x,则垂足为y=2x 的解,即 5 5 ,x+ 2y- 4= 0, 3又由2y- 3=0,得 C 1,2 ,所以垂足在线段 AC 的延长线上,故可行域内的点到原点的距离的最小值为|OC|=1+3 2 213=2,13所以, x2+y2的最小值为4 .yABC 内任一点 (x, y)与原点相连的直线l 的斜率为 v,即 v (2)令 v=x,其几何意义是可行域y- 0=x-0.由图形可知,当直线l 经过可行域内点 C 时, v 最大,3由(1) 知 C 1,2,所以 v max=3 y 3,所以的最大值为.2 x 2x≥ 0,跟踪训练 2 已知 x, y 满足约束条件y≥ 0,则(x+3) 2+ y2的最小值为 ________.x+ y≥ 1,答案10解析画出可行域 ( 如图所示 ) . (x+ 3)2+ y2即点 A(- 3,0)与可行域内点(x, y)之间距离的平方.显然AC 长度最小,∴AC2= (0+ 3)2+ (1- 0)2= 10,即 (x+ 3)2+y2的最小值为 10.题型三线性规划的实际应用例 3某公司生产甲、乙两种桶装产品.已知生产甲产品 1 桶需耗 A 原料 1 千克、 B 原料 2 千克;生产乙产品 1 桶需耗 A 原料 2 千克、 B 原料 1 千克.每桶甲产品的利润是300 元,每桶乙产品的利润是400 元.公司在生产这两种产品的计划中,要求每天消耗A, B 原料都不超过 12 千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少?x+ 2y≤ 12,解设每天分别生产甲产品x 桶,乙产品 y 桶,相应的利润为2x+ y≤ 12,z 元,于是有x≥ 0, y≥ 0,x∈ N , y∈ N ,z= 300x+ 400y,在坐标平面内画出该不等式组表示的平面区域及直线300x+400y= 0,平移该直线,当平移到经过该平面区域内的点(4,4)时,相应直线在 y 轴上的截距达到最大,此时 z= 300x+ 400y 取得最大值,最大值是 z= 300× 4+ 400× 4= 2 800,即该公司可获得的最大利润是 2 800 元.反思与感悟线性规划解决实际问题的步骤:① 分析并根据已知数据列出表格;②确定线性约束条件;③ 确定线性目标函数;④画出可行域;⑤利用线性目标函数 (直线 )求出最优解;⑥ 实际问题需要整数解时,应适当调整,以确定最优解.跟踪训练 3 预算用 2 000 元购买单价为 50 元的桌子和 20 元的椅子,希望使桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的 1.5 倍,问桌子、椅子各买多少才行?解设桌子、椅子分别买x 张、 y 把,目标函数z= x+ y,把所给的条件表示成不等式组,即约束条件为50x+20y≤ 2 000,y≥ x,y≤ 1.5x,x≥ 0,x∈ N*,y≥0, y∈ N* .x=200,50x+ 20y=2 000,7由解得200 y= x,y=,7所以 A 点的坐标为 200,200 .7 750x + 20y =2 000,x = 25,由解得75y = 1.5x ,y = 2 ,所以 B 点的坐标为 7525, 2 .200 20075所以满足条件的可行域是以 A 7 ,7 , B 25, 2 , O(0,0) 为顶点的三角形区域 (如图 ).75由图形可知,目标函数 z =x + y 在可行域内的最优解为 B 25, 2 ,但注意到 x ∈ N * , y ∈ N * ,x = 25, 故取y = 37.故买桌子 25 张,椅子 37 把是最好的选择.x + y - 3≤ 0,1.若直线 y = 2x 上存在点 ( x , y)满足约束条件 x - 2y - 3≤0, 则实数 m 的最大值为 ()x ≥ m ,3A .- 1B . 1C.2D . 25x - 11y ≥- 22,2x + 3y ≥ 9, 2.某公司招收男职员x 名,女职员 y 名, x 和 y 需满足约束条件则 z2x ≤ 11,x ∈ N * , y ∈ N * ,= 10x + 10y 的最大值是 ( )A . 80B .85C .90D . 95y≤1,3.已知实数x,y 满足x≤1,则z=x2+y2的最小值为________.x+y≥ 1,一、选择题1.若点 (x, y)位于曲线 y= |x|与 y= 2 所围成的封闭区域,则 2x- y 的最小值为 ( ) A .- 6 B.- 2 C. 0 D. 2x≥ 1,2.设变量 x, y 满足约束条件x+ y- 4≤ 0,则目标函数 z= 3x- y 的最大值为 ()x- 3y+4≤ 0,4A .- 4 B. 0 C.3 D. 4x≥ 1,则 z=y-1的取值范围是 (3.实数 x, y 满足 y≥ 0,)x- y≥ 0,xA . [ - 1,0]B .( -∞, 0]C.[ -1,+∞ ) D. [ - 1,1)x- y≥ 0,4.若满足条件x+ y- 2≤ 0,的整点 (x, y)(整点是指横、纵坐标都是整数的点)恰有 9 个,y≥ a则整数 a 的值为 ()A .- 3 B.- 2C.- 1 D. 0x≥ 1,5.已知 x, y 满足x+ y≤ 4,目标函数z= 2x+ y 的最大值为7,最小值为1,则 b,c x+ by+ c≤ 0,的值分别为( )A .- 1,4B .- 1,- 3C.- 2,- 1 D.- 1,- 26.已知x,y 满足约束条件x+ y≥ 5,x- y+ 5≥0,x≤ 3,使 z= x+ ay(a> 0)取得最小值的最优解有无数个,则 a 的值为( )A .- 3 B. 3 C.- 1 D. 1二、填空题x≤ 2,7.若 x, y 满足约束条件y≤2,则 z= x+ 2y 的取值范围是 ________.x+ y≥2,8.已知- 1≤ x+y≤ 4 且 2≤ x-y≤ 3,则 z= 2x- 3y 的取值范围是________(答案用区间表示).0≤ x≤ 2,9.已知平面直角坐标系 xOy 上的区域 D 由不等式组y≤ 2,给定.若 M(x, y)为 Dx≤ 2y上的动点,点 A 的坐标为 (→ →2, 1),则 z= OM ·OA的最大值为 ________.10.满足 |x|+ |y|≤ 2 的点 (x,y)中整点 (横纵坐标都是整数)有 ________个.x- y+ 2≥ 0,11.设实数 x, y 满足不等式组2x- y- 5≤ 0,则 z= |x+ 2y- 4|的最大值为 ________.x+ y- 4≥ 0,三、解答题x- 4y≤- 3,12.已知x, y 满足约束条件3x+ 5y≤ 25,目标函数z= 2x- y,求z 的最大值和最小值.x≥ 1,x+ y- 11≥ 0,13.设不等式组3x- y+ 3≥0,表示的平面区域为 D.若指数函数y= a x的图象上存在区域5x- 3y+ 9≤0D 上的点,求 a 的取值范围.14.某家具厂有方木料90 m3,五合板600 m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m3,五合板 2 m2,生产每个书橱需要方木料0.2 m3,五合板 1 m2,出售一张方桌可获利润80 元,出售一个书橱可获利润120 元.(1)如果只安排生产书桌,可获利润多少?(2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所得利润最大?当堂检测答案1. 答案B解析 如图,当 y = 2x 经过且只经过x + y - 3=0 和 x = m 的交点时, m 取到最大值,此时,即 (m,2m)在直线 x + y - 3= 0 上,则 m = 1.2. 答案 C解析 该不等式组表示的平面区域为如图所示的阴影部分.由于 x , y ∈ N * ,计算区域内与11 9 最近的点为 (5,4),故当 x =5, y = 4 时, z 取得最大值为90.2 ,213. 答案2解析实数 x ,y 满足的可行域如图中阴影部分所示,则 z 的最小值为原点到直线 AB 的距离的平方,故 z min = 12= 1.2 2课时精练答案一、选择题1.答案 A解析画出可行域,如图所示,解得A(- 2,2),设 z= 2x- y,把z= 2x- y 变形为 y= 2x- z,则直线经过点 A 时 z 取得最小值;所以 z min=2× (- 2)- 2=- 6,故选 A.2.答案 D解析作出可行域,如图所示.x+ y- 4=0,x=2,联立解得x- 3y+ 4= 0,y=2.当目标函数z= 3x- y 移到 (2,2)时, z= 3x- y 有最大值4.3.答案 D解析作出可行域,如图所示,y-1的几何意义是点 (x, y)与点 (0,1)连线 l 的斜率,当直线l 过 B(1,0) 时 k l最小,最小为- 1. x又直线 l 不能与直线x- y= 0 平行,∴ k l< 1.综上, k∈ [- 1,1).解析不等式组所表示的平面区域如图阴影部分所示,当 a=0 时,只有 4 个整点 (1,1),(0,0) ,(1,0),(2,0).当 a=- 1 时,正好增加 (- 1,- 1),(0,- 1),(1 ,- 1),(2,- 1),(3,- 1)5 个整点.故选C.5.答案 D解析由题意知,直线x+by+ c= 0 经过直线2x+ y= 7 与直线x+ y= 4 的交点,且经过直线2x+ y=1 和直线x= 1 的交点,即经过点(3,1)和点 (1,- 1),3+ b+ c= 0,b=- 1,∴解得1- b+ c= 0,c=- 2.6.答案 D解析如图,作出可行域,作直线l:x+ ay=0,要使目标函数z= x+ ay(a> 0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+ y= 5 重合,故a= 1,选 D.二、填空题7.答案[2,6]解析如图,作出可行域,作直线 l :x+ 2y= 0,将 l 向右上方平移,过点 A(2,0)时,有最小值 2,过点 B(2,2)时,有最大值 6,故 z 的取值范围为[2,6] .解析作出不等式组-1≤ x+ y≤ 4,表示的可行域,如图中阴影部分所示.2≤ x- y≤ 3在可行域内平移直线 2x-3y= 0,当直线经过 x- y= 2 与 x+y= 4 的交点 A(3,1)时,目标函数有最小值z min=2× 3- 3× 1= 3;当直线经过 x+ y=- 1 与 x- y= 3 的交点 B(1,- 2) 时,目标函数有最大值z max=2× 1+ 3× 2 = 8.所以 z∈[3,8] .9.答案 4解析由线性约束条件0≤ x≤ 2,y≤ 2,画出可行域如图中阴影部分所示,目标函数→ →2x+ y,将其化为z=OM ·OA=x≤ 2yy=- 2x+ z,结合图形可知,目标函数的图象过点( 2, 2)时, z 最大,将点 ( 2, 2)代入 z = 2x+ y,得 z 的最大值为 4.10.答案13解析|x|+ |y|≤ 2 可化为x+ y≤ 2 x- y≤ 2x≥ 0, y≥0x≥ 0, y< 0 ,,-x+ y≤ 2 x<0, y≥ 0 ,-x- y≤ 2 x<0, y< 0 ,作出可行域为如图正方形内部(包括边界 ),容易得到整点个数为13 个.11.答案 21解析作出可行域 (如图 ),即△ABC 所围区域 (包括边界 ),其顶点为A(1,3), B(7,9),C(3,1)方法一∵可行域内的点都在直线x+ 2y- 4=0 上方,∴x+ 2y- 4> 0,则目标函数等价于 z= x+ 2y-4,易得当直线 z= x+2y- 4 在点 B(7,9)处,目标函数取得最大值z max= 21.方法二z= |x+ 2y-4|=|x+ 2y- 4|· 5,5令 P( x,y)为可行域内一动点,定直线x+2y- 4= 0,则z= 5d,其中 d 为 P(x, y)到直线 x+2y- 4= 0 的距离.由图可知,区域内的点 B 与直线的距离最大,故d的最大值为 |7+ 2× 9-4|= 21.5 5故目标函数z max= 21 · 5= 21.5三、解答题12.解z= 2x- y 可化为y= 2x- z, z 的几何意义是直线在y 轴上的截距的相反数,故当z 取得最大值和最小值时,应是直线在y 轴上分别取得最小和最大截距的时候.作一组与l0:2x- y=0 平行的直线系l,经上下平移,可得:当l 移动到l1,即经过点A(5,2) 时, z max= 2× 5 - 2= 8.当l 移动到 l 2,即过点 C(1,4.4) 时,z min= 2× 1-4.4=- 2.4.13.解先画出可行域,如图所示,y= a x必须过图中阴影部分或其边界.∵A(2,9) ,∴ 9= a2,∴a= 3.∵a> 1,∴ 1< a≤ 3.14.解由题意可画表格如下:方木料 (m3) 五合板 (m2) 利润 (元 ) 书桌 (张 ) 0.1 2 80书橱 (个 ) 0.2 1 120(1)设只生产书桌x 张,可获得利润z 元,0.1x≤ 90,x≤ 900,2x≤ 600,? x≤300,? 0≤ x≤ 300.则z= 80x,x≥0x≥ 0所以当 x= 300 时, z max= 80× 300= 24 000(元 ) ,即如果只安排生产书桌,最多可生产300 张书桌,获得利润24 000 元.(2)设只生产书橱y 个,可获得利润z 元,0.2y≤ 90,y≤ 450,1·y≤ 600,? y≤ 600,? 0≤ y≤ 450.则z= 120y,y≥ 0y≥ 0所以当 y= 450 时, z max= 120× 450= 54 000(元 ),即如果只安排生产书橱,最多可生产450 个书橱,获得利润54 000 元.(3)设生产书桌 x 张,书橱 y 个,利润总额为z 元,0.1x+ 0.2y≤ 90,x+ 2y≤ 900,2x+ y≤ 600,2x+ y≤ 600,则?x≥ 0,x≥ 0,y≥ 0 y≥ 0.z= 80x+120y.在平面直角坐标系内作出上面不等式组所表示的平面区域,即可行域(如图 ).作直线 l :80x+ 120y=0,即直线 l: 2x+ 3y=0.把直线 l 向右上方平移至 l1的位置时,直线经过可行域上的点M,此时 z= 80x+ 120y 取得最大值.x+ 2y= 900,由2x+ y= 600,解得,点M 的坐标为 (100,400) .所以当 x= 100,y= 400 时,z max= 80×100+ 120×400= 56 000(元 ).因此,生产书桌100 张、书橱400 个,可使所得利润最大.。
[学业水平训练]一、填空题1.给出下列命题:①线性规划中的最优解指的是使目标函数取得最大值或最小值的变量x 和y 的值; ②线性规划中的最优解指的是目标函数的最大值或最小值;③线性规划中的最优解指的是使目标函数取得最大值或最小值的可行域; ④线性规划中的最优解指的是使目标函数取得最大值或最小值的可行解. 其中正确的命题是________.(写出所有正确命题的序号) 答案:①④2.已知1≤a ≤2,-1≤b ≤3,则2a +b 的取值范围是________.解析:在平面直角坐标aOb 中画出可行域(图略),可得目标函数z =2a +b 的最小值和最大值分别为1与7,故2a +b 的取值范围是[1,7].答案:[1,7]3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≥2,y ≥3x -6,则目标函数z =2x +y 的最小值为________.解析:因为变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≥2,y ≥3x -6,在坐标系中画出可行域△ABC ,A (2,0),B (1,1),C (3,3),则使目标函数z =2x +y 取最小值的点是B 点,代入即可得z min =3.答案:34.满足约束条件⎩⎪⎨⎪⎧x +y ≤5,2x +y ≤6,x ≥0,y ≥0,并使目标函数z =6x +8y 取得最大值的点的坐标是________.解析:可行域(如图所示)是四边形OABC 及其内部的区域.作出l 0:6x +8y =0即3x +4y =0,平移直线l 0到l 的位置,由图形知,当l 过点C (0,5)时,z 取得最大值.答案:(0,5)5.若x,y满足约束条件⎩⎪⎨⎪⎧x+y≥1,x-y≥-1,2x-y≤2,目标函数z=ax+2y仅在点(1,0)处取得最小值,则a的取值范围是________.解析:作出可行域如图所示,直线ax+2y=z仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,即-4<a<2.答案:(-4,2)6.(2014·浙江省嘉兴一中月考)已知x,y满足约束条件⎩⎪⎨⎪⎧x≥1x-y+1≤02x-y-2≤0,则x2+y2的最小值是________.解析:画出满足条件的可行域(如图),根据x2+y2表示可行域内一点到原点的距离,可知x2+y2的最小值是|AO|2.由⎩⎪⎨⎪⎧x=1x-y+1=0得A(1,2),所以|AO|2=5.答案:57.配制A,B两种药剂,需要甲、乙两种原料,已知配一剂A种药需甲料3 mg、乙料5 mg;配一剂B种药需甲料5 mg、乙料4 mg.今有甲料20 mg、乙料25 mg,若A,B两种药至少各配一剂,则不同的配制方法的种数是________.解析:设A,B两种药分别配x,y剂.则⎩⎪⎨⎪⎧x≥1,y≥1,3x+5y≤20,作出可行域(如图).5x+4y≤25,x,y∈N.上述不等式组的解集是可行域中的整点.运用画网格的方法,可得这个区域内的整点为:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),(3,2),(4,1),所以在至少各配一剂的情况下,共有8种不同的配制方法.答案:8二、解答题8.在约束条件⎩⎪⎨⎪⎧x≥0y≥0x+y≤sy+2x≤4下,当3≤s≤5时,求目标函数z=3x+2y的最大值的变化范围.解:如图,由⎩⎪⎨⎪⎧x+y=sy+2x=4,得⎩⎪⎨⎪⎧x=4-sy=2s-4,交点为B(4-s,2s-4),其他各交点分别为A(2,0),C(0,s),C′(0,4).(1)当3≤s<4时,可行域是四边形OABC,此时7≤z max<8;(2)当4≤s≤5时,可行域是△OAC′,此时z max=8.由(1),(2)可知目标函数z=3x+2y的最大值的变化范围是[7,8].9.一个农民有田2亩,根据他的经验,若种水稻,则每亩每期产量为400千克;若种花生,则每亩每期产量为100千克,但水稻成本较高,每亩每期需240元,而花生只要80元,且花生每千克可卖5元,稻米每千克只卖3元,现在他只能凑足400元,问这位农民对两种作物各种多少亩,才能得到最大利润?解:设水稻种x亩,花生种y亩,得到的利润为P,则由题意得⎩⎪⎨⎪⎧x+y≤2,240x+80y≤400,x≥0,y≥0.而利润P=(3×400-240)x+(5×100-80)y=960x+420y(目标函数),可行域如图所示,可联立⎩⎪⎨⎪⎧x+y=2,240x+80y=400,得交点B(1.5,0.5).故当x=1.5,y=0.5时,P max=960×1.5+420×0.5=1650,即水稻种1.5亩,花生种0.5亩时所得到的利润最大.[高考水平训练]一、填空题1.某公司招收男职员x名,女职员y名,x和y需满足约束条件⎩⎪⎨⎪⎧5x-11y≥-222x+3y≥92x≤11,则z=10x+10y的最大值是________.解析:先画出满足约束条件的可行域,如图中阴影部分所示.由⎩⎪⎨⎪⎧5x -11y =-22,2x =11,解得⎩⎪⎨⎪⎧x =5.5,y =4.5, 但x ∈N *,y ∈N *,结合图知当x =5,y =4时,z max =90. 答案:902.(2014·湖北省襄阳四中期中考试)若不等式组⎩⎪⎨⎪⎧x -y +5≥0y ≥a0≤x ≤2表示的平面区域是一个三角形,则a 的取值范围是________.解析:作出满足条件的可行域(如图),当y =a 过点A (0,5)时表示的平面区域为△ABC ;当5<a <7时表示的平面区域均为三角形.综上,5≤a <7.答案:5≤a <7 二、解答题3.某工厂生产甲、乙两种产品,已知生产甲种产品1 t ,需矿石4 t 、煤3 t ,生产乙种产品1 t ,需矿石5 t 、煤10 t ,每1 t 甲种产品的利润是7万元,每1 t 乙种产品的利润是12万元,工厂在生产这两种产品的计划中,要求消耗矿石不超过200 t ,煤不超过300 t ,问:甲、乙两种产品应各生产多少,能使利润总额达到最大?解:设生产甲、乙两种产品分别为x t 、y t ,利润总额为z 万元,则z =7x +12y ,且⎩⎪⎨⎪⎧4x +5y ≤200,3x +10y ≤300,x ≥0,y ≥0,作出不等式组所表示的平面区域,如图所示.由⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得P (20,24). ∴当x =20,y =24时,z 取得最大值.所以应生产甲种产品20 t ,乙种产品24 t ,能使利润总额达到最大.4.某工厂在甲、乙两地的两个分厂各生产某种机器12台和6台,现销售给A 地10台、B 地8台.已知从甲地调运1台至A 地、B 地的运费分别为400元和800元,从乙地调运1台至A 地、B 地的运费分别为300元和500元.请你设计调运方案,使总运费不超过9 000元.解:设从甲地调x 台给A 地,则给B 地(12-x )台;从乙地调y 台给A 地,则给B 地(6-y )台.由题意得⎩⎪⎨⎪⎧x +y =10,400x +800(12-x )+300y +500(6-y )≤9 000,0≤x ≤12,0≤y ≤6,x ,y ∈N ,即⎩⎪⎨⎪⎧x +y =10,2x +y ≥18,0≤x ≤12,0≤y ≤6,x ,y ∈N .作出可行域如图所示.由图知,符合条件的x ,y 为⎩⎪⎨⎪⎧x =8,y =2或⎩⎪⎨⎪⎧x =9,y =1或⎩⎪⎨⎪⎧x =10,y =0.所以为使运费不超过9 000元,可有三种调运方案.方案1 从甲地调8台给A 地、4台给B 地;再从乙地调2台给A 地、4台给B 地. 方案2 从甲地调9台给A 地、3台给B 地;再从乙地调1台给A 地、5台给B 地. 方案3 从甲地调10台给A 地,2台给B 地,再从乙地调6台给B 地.。
第8课 简单的线性规划问题分层训练1.若⎪⎩⎪⎨⎧≥+≤≤222y x y x , 则目标函数Z=x+2y 的取值范围 ( )A. [2 , 6]B. [2 , 5]C. [3 , 6]D. [3 , 5] 2.目标函数Z=2x -y , 将其看成直线方程时, Z 的意义是 ( ) A.该直线的截距 B.该直线的纵截距 C.该直线纵截距的相反数 D.该直线的横截距3.△ABC 中, A(2 , 4) , B(-1 , 2) , C(1 ,0), 点P 在△ABC 内部及其边界上运动, 则W=y -x 的取值范围是 ( )A. [1 , 3]B. [-3 , 1]C. [-1 , 3]D. [-3 , -1] 考试热点 4.不等式组⎩⎨⎧≤≤≥++-300))(5(x y x y x 表示的平面区域的确面积为________5.约束条件⎪⎩⎪⎨⎧≥≥≤+≤=4,0621052y x y x y x , 所表示的区域中,整点其有________个.6.设变量,x y 满足约束条件2211x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩,则23z x y =+的最大值为7.若⎩⎨⎧≤-≤≤+≤4264y x y x , 则Z=2x+y 的最大值为___________ , 最小值为___________ . 8.写出不等式组⎩⎨⎧≤<-≤<-1111y x 所表示的平面区域内整点坐标.拓展延伸9.求Z=2x+y 的最大值和最小值, 其中x , y 满足约束条件⎪⎩⎪⎨⎧≤≤≥-+2202y x y x .。
简单的线性规划问题测试题 姓名:1.目标函数z =4x +y ,将其看成直线方程时,z 的几何意义 ( )A .该直线的截距B .该直线的纵截距C .该直线的横截距D .该直线的纵截距的相反数2. 若⎪⎩⎪⎨⎧≥+≤≤,2,2,2y x y x 则目标函数z =x +2y 的取值范围是 ( )A.[2,6]B.[2,5]C.[3,6]D.[3,5]3. 在△ABC 中, 三顶点坐标为A (2,4), B (-1,2), C (1,0), 点P (x ,y )在△ABC 内部及边界运动,则z =x -y 的最大、最小值分别是 ( )A.3,1 B .-1,-3 C.1,-3 D.3,-14.给出一平面区域(如图所示),若使目标函数z =ax +y (a >0)取得最大值的最优解有无穷多个,则a 的值为 ( )A .41- B .53C . 4D .355.设变量x y ,满足约束条件142x y x y y --⎧⎪+⎨⎪⎩≥≤≥,则目标函数z =2x +4y 的最大值为( )A.10 B.12 C.13 D.146.下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A.(02), B.(20)-, C.(02)-, D.(20),7.若不等式组502x y y a x -+0⎧⎪⎨⎪⎩≥,≥,≤≤表示的平面区域是一个三角形,则a 的取值范围是( )A.5a < B.7a ≥ C.57a <≤ D.5a <或7a ≥8.如果点P 在平面区域22020210x y x y y -+⎧⎪+-⎨⎪-⎩≥≤≥上,点Q 在曲线22(2)1x y ++=上,那么P Q 的最小值为() A.321-C.11-9.不等式组⎩⎨⎧≤≤≥++-300))(5(x y x y x 表示的平面区域是一个( )A.三角形B.直角三角形C.梯形D.矩形10.已知12314(00)(11)()23P P P ,,,,,,则在不等式2x-3y+1≤0表示的平面区域内的点是( )A.P 1、P 2B.P 2C.P 2、P 3D.P 311.变量x 、y 满足条件:212,2936,2324,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎨+=⎪⎪≥≥⎩则使z=3x +2y 的值最小的(x ,y )是( )A.(4.5,3)B.(3,6)C.(9,2)D.(6,4)12.设变量x 、y 满足条件⎪⎩⎪⎨⎧≤--≥-+≥+-0320101y x y x y x 则目标函数z=2x-y 的最大值为( )A.3B.2C.1D.013.设动点坐标(x ,y )满足⎩⎨⎧≥≥-++-3)4)(1(x y x y x ,则x 2+y 2的最小值为( ) A.5 B.10 C.217D.10二、填空题:14.求z =31x +2y 的最大值,使式子中的x 、y 满足⎪⎩⎪⎨⎧≥≤+≤1,1,y y x x y 该问题中的不等式组叫做______________,z =31x +2y 叫做________________.15.设变量x y ,满足约束条件30023x y x y x -+⎧⎪+⎨⎪-⎩≥,≥,≤≤,则目标函数2x y +的最小值为 .16.已知实数x y ,满足2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,则2z x y =-的取值范围是________.17.已知集合}1),{(≤+=y x y x A ,{}0),(22≤-=x y y x B ,B A M =,则M 的面积等于_________。
3.3.3 简单的线性规划问题(一)课时目标 1.了解线性规划的意义.2.会求一些简单的线性规划问题.线性规划中的基本概念一、填空题1.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧ x +3y -3≥0,2x -y -3≤0,x -y +1≥0,则x +y 的最大值为________.2.已知点P(x ,y)的坐标满足条件⎩⎪⎨⎪⎧ x +y≤4,y≥x ,x≥1,则x 2+y 2的最大值为________.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y≥3,x -y≥-1,2x -y≤3.则目标函数z =2x +3y 的最小值为________.4.已知-1<x +y<4且2<x -y<3,则z =2x -3y 的取值范围是________.(答案用区间表示)5.已知实数x ,y 满足⎩⎪⎨⎪⎧x +2y -5≤0,x≥1,y≥0,x +2y -3≥0,则yx的最大值为____________. 6.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为________和________.7.在坐标平面上有两个区域M 和N ,其中区域M =⎩⎨⎧⎭⎬⎫(x ,y)|⎩⎪⎨⎪⎧y≥0y≤x y≤2-x ,区域N ={(x ,y)|t≤x≤t +1,0≤t≤1},区域M 和N 公共部分的面积用函数f(t)表示,则f(t)的表达式为________.8.设不等式组⎩⎪⎨⎪⎧x≥1,x -2y +3≥0y≥x ,所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,则AB 的最小值为________.二、解答题9.线性约束条件⎩⎪⎨⎪⎧x +3y≥12x +y≤103x +y≥12下,求z =2x -y 的最大值和最小值.10.已知⎩⎪⎨⎪⎧2x +y -5≥03x -y -5≤0x -2y +5≥0,求x 2+y 2的最小值和最大值.能力提升11.已知实数x ,y 满足⎩⎪⎨⎪⎧(x -y +6)(x +y -6)≥01≤x≤4,求x 2+y 2-2的取值范围.12.已知实数x 、y 满足⎩⎪⎨⎪⎧2x +y -2≥0x -2y +4≥03x -y -3≤0,试求z =y +1x +1的最大值和最小值.1.作不等式组表示的可行域时,注意标出相应的直线方程,还要给可行域的各顶点标上字母,平移直线时,要注意线性目标函数的斜率与可行域中边界直线的斜率进行比较,确定最优解.2.在解决与线性规划相关的问题时,首先考虑目标函数的几何意义,利用数形结合方法可迅速解决相关问题.3.3.3 简单的线性规划问题(一)答案知识梳理 线性约束 作业设计 1.9解析 画出可行域如图:当直线y =-x +z 过点A 时,z 最大.由⎩⎪⎨⎪⎧2x -y -3=0,x -y +1=0得A(4,5),∴z max =4+5=9. 2. 10解析 画出不等式组对应的可行域如下图所示:易得A(1,1),|OA|=2,B(2,2), |OB|=22, C(1,3),|OC|=10.∴(x 2+y 2)max =|OC|2=(10)2=10. 3.7解析 作出可行域如图所示.由图可知,z =2x +3y 经过点A(2,1)时,z 有最小值,z 的最小值为7. 4.(3,8)解析 由⎩⎪⎨⎪⎧-1<x +y<4,2<x -y<3得平面区域如图阴影部分所示.由⎩⎪⎨⎪⎧ x +y =-1,x -y =3得⎩⎪⎨⎪⎧ x =1,y =-2.由⎩⎪⎨⎪⎧ x +y =4,x -y =2得⎩⎪⎨⎪⎧x =3,y =1. ∴2×3-3×1<z =2x -3y<2×1-3×(-2),即3<z<8,故z =2x -3y 的取值范围是(3,8). 5.2解析 画出不等式组⎩⎪⎨⎪⎧x +2y -5≤0,x≥1,y≥0,x +2y -3≥0对应的平面区域Ω,y x =y -0x -0表示平面区域Ω上的点P(x ,y)与原点的连线的斜率. A(1,2),B(3,0),∴0≤yx≤2.6.3 -11解析 作出可行域如图阴影部分所示,由图可知z =3x -4y 经过点A 时z 有最小值,经过点B 时z 有最大值.易求A(3,5),B(5,3).∴z 最大=3×5-4×3=3,z 最小=3×3-4×5=-11.7.f(t)=-t 2+t +12解析作出不等式组⎩⎪⎨⎪⎧y≥0y≤x y≤2-x 所表示的平面区域.由t≤x≤t +1,0≤t≤1,得f(t)=S △OEF -S △AOD -S △BFC =1-12t 2-12(1-t)2=-t 2+t +12.8.4解析 如图所示.由约束条件作出可行域,得D(1,1),E(1,2),C(3,3).要求(AB)min ,可通过求D 、E 、C 三点到直线3x -4y -9=0距离最小值的2倍来求. 经分析,D(1,1)到直线3x -4y -9=0的距离d =|3×1-4×1-9|5=2最小,∴(AB)min =4.9.解 如图作出线性约束条件⎩⎪⎨⎪⎧x +3y≥12x +y≤103x +y≥12下的可行域,包含边界:其中三条直线中x +3y =12与3x +y =12交于点A(3,3),x +y =10与x +3y =12交于点B(9,1), x +y =10与3x +y =12交于点C(1,9),作一组与直线2x -y =0平行的直线l :2x -y =z ,即y =2x -z ,然后平行移动直线l ,直线l 在y 轴上的截距为-z ,当l 经过点B 时, -z 取最小值,此时z 最大,即z max =2×9-1=17;当l 经过点C 时,-z 取最大值,此时z 最小,即z min =2×1-9=-7. ∴z max =17,z min =-7. 10.解 作出不等式组 ⎩⎪⎨⎪⎧2x +y -5≥03x -y -5≤0x -2y +5≥0的可行域如图所示,由⎩⎪⎨⎪⎧ x -2y +5=02x +y -5=0,得A(1,3), 由⎩⎪⎨⎪⎧ x -2y +5=03x -y -5=0,得B(3,4), 由⎩⎪⎨⎪⎧3x -y -5=02x +y -5=0,得C(2,1), 设z =x 2+y 2,则它表示可行域内的点到原点的距离的平方,结合图形知,原点到点B的距离最大,注意到OC ⊥AC ,∴原点到点C 的距离最小.故z max =|OB|2=25, z min =|OC|2=5.11.解 作出可行域如图,由x 2+y 2=(x -0)2+(y -0)2,可以看作区域内的点与原点的距离的平方, 最小值为原点到直线x +y -6=0的距离的平方, 即OP 2,最大值为OA 2,其中A(4,10),OP =|0+0-6|12+12=62=32,OA =42+102=116,∴(x 2+y 2-2)min =(32)2-2=18-2=16, (x 2+y 2-2)max =(116)2-2=116-2=114, ∴16≤x 2+y 2-2≤114.即x 2+y 2-2的取值范围为16≤x 2+y 2-2≤114. 12.解 由于z =y +1x +1=y -(-1)x -(-1),所以z 的几何意义是点(x ,y)与点M(-1,-1)连线的斜率, 因此y +1x +1的最值就是点(x ,y)与点M(-1,-1)连线的斜率的最值,结合图可知,直线MB 的斜率最大,直线MC 的斜率最小,即 z max =k MB =3,此时x =0,y =2; z min =k MC =12,此时x =1,y =0.∴z 的最大值为3,最小值为12.。
简单的线性规划问题[ 学习目标 ] 1.认识线性规划的意义以及拘束条件、目标函数、可行解、可行域、最优解等基本看法 .2.认识线性规划问题的图解法,并能应用它解决一些简单的实责问题.知识点一线性规划中的基本看法名称意义拘束条件关于变量 x, y 的一次不等式 (组 )线性拘束条件关于 x, y 的一次不等式 (组 )目标函数欲求最大值或最小值的关于变量x, y 的函数解析式线性目标函数关于变量 x,y 的一次解析式可行解满足线性拘束条件的解(x, y)可行域由所有可行解组成的会集最优解使目标函数获取最大值或最小值的可行解线性规划问题在线性拘束条件下求线性目标函数的最大值或最小值问题知识点二线性规划问题1.目标函数的最值线性目标函数 z= ax+ by (b≠ 0)对应的斜截式直线方程是y=-a z,在 y 轴上的截距是z,bx+b b当 z 变化时,方程表示一组互相平行的直线.当 b>0,截距最大时, z 获取最大值,截距最小时,z 获取最小值;当 b<0,截距最大时, z 获取最小值,截距最小时,z 获取最大值.2.解决简单线性规划问题的一般步骤在确定线性拘束条件和线性目标函数的前提下,解决简单线性规划问题的步骤能够概括为:“画、移、求、答”四步,即,(1)画:依照线性拘束条件,在平面直角坐标系中,把可行域表示的平面图形正确地画出来,可行域能够是封闭的多边形,也能够是一侧开放的无量大的平面地域.(2)移:运用数形结合的思想,把目标函数表示的直线平行搬动,最先经过或最后经过的极点(或界线 )即是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值.(4)答:写出答案.知识点三简单线性规划问题的本质应用1.线性规划的实责问题的种类(1)给定必然数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样兼备安排,使完成这项任务耗费的人力、物力资源量最小.常有问题有:①物质调动问题比方,已知两煤矿每年的产量,煤需经两个车站运往外处,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?②产品安排问题比方,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的 A、B、C 三种资料的数量,此厂每个月所能供应的三种资料的限额都是已知的,这个工厂在每个月中应怎样安排这两种产品的生产,才能使每个月获取的总利润最大?③下料问题比方,要把一批长钢管截成两种规格的钢管,应怎样下料能使耗费最小?2.解答线性规划本质应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转变成数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细领悟模范给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特别点作为最优解.(3)模型应用:将求解出来的结论反响到详尽的实例中,设计出最正确的方案.题型一求线性目标函数的最值例1 已知变量x, y 满足拘束条件y≤ 2,x+ y≥ 1,x- y≤1,则 z= 3x+ y 的最大值为( )A . 12B .11C.3 D.- 1答案 B解析第一画出可行域,建立在可行域的基础上,解析最值点,尔后经过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为拘束条件对应的可行域,当直线y=- 3x+z 经y=2,x= 3,过点 A 时, z 获取最大值.由? 此时z=3x+ y= 11.x-y= 1 y= 2,x+y- 2≤ 0,追踪训练 1 (1)x,y 满足拘束条件x- 2y- 2≤ 0,若z=y-ax获取最大值的最优解不唯一,...2x-y+ 2≥ 0,则实数 a 的值为 ()1 1A. 2或- 1 B .2 或 2C.2 或 1 D. 2 或- 1x-y+ 1≤ 0,(2)若变量 x,y 满足拘束条件x+2y- 8≤ 0,则 z= 3x+ y 的最小值为 ________ .x≥0,答案(1)D (2)1解析(1) 如图,由 y=ax+ z 知 z 的几何意义是直线在y 轴上的截距,故当 a>0 时,要使z= y- ax 获取最大值的最优解不唯一,则a=2;当 a<0 时,要使 z= y- ax 获取最大值的最优解不唯一,则a=- 1.y=- 3x+ z 过点(2)由题意,作出拘束条件组成的可行域以下列图,当目标函数z= 3x+ y,即(0,1)时 z 取最小值 1.题型二非线性目标函数的最值问题x- y-2≤ 0,例2 设实数 x, y 满足拘束条件 x+ 2y- 4≥ 0,求2y- 3≤ 0,(1)x2+y2的最小值;y(2)x的最大值.解如图,画出不等式组表示的平面地域ABC,(1)令 u= x2+ y2,其几何意义是可行域ABC 内任一点 (x, y)与原点的距离的平方.x+2y- 4= 0,4,8 过原点向直线 x+ 2y- 4=0 作垂线 y= 2x,则垂足为y=2x 的解,即 5 5 ,x+ 2y- 4= 0, 3又由2y- 3=0,得 C 1,2 ,因此垂足在线段 AC 的延长线上,故可行域内的点到原点的距离的最小值为|OC|=1+3 2 213=2,13因此, x2+y2的最小值为4 .yABC 内任一点 (x, y)与原点相连的直线l 的斜率为 v,即 v (2)令 v=x,其几何意义是可行域y- 0=x-0.由图形可知,当直线l 经过可行域内点 C 时, v 最大,3由(1) 知 C 1,2,因此 v max=3 y 3,因此的最大值为.2 x 2x≥ 0,追踪训练 2 已知 x, y 满足拘束条件y≥ 0,则(x+3) 2+ y2的最小值为 ________.x+ y≥ 1,答案10解析画出可行域 ( 以下列图 ) . (x+ 3)2+ y2即点 A(- 3,0)与可行域内点(x, y)之间距离的平方.显然AC 长度最小,∴AC2= (0+ 3)2+ (1- 0)2= 10,即 (x+ 3)2+y2的最小值为 10.题型三线性规划的本质应用例 3某公司生产甲、乙两种桶装产品.已知生产甲产品 1 桶需耗 A 原料 1 千克、 B 原料 2 千克;生产乙产品 1 桶需耗 A 原料 2 千克、 B 原料 1 千克.每桶甲产品的利润是300 元,每桶乙产品的利润是400 元.公司在生产这两种产品的计划中,要求每天耗费A, B 原料都不高出 12 千克.经过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获取的最大利润是多少?x+ 2y≤ 12,解设每天赋别生产甲产品x 桶,乙产品 y 桶,相应的利润为2x+ y≤ 12,z 元,于是有x≥ 0, y≥ 0,x∈ N , y∈ N ,z= 300x+ 400y,在坐标平面内画出该不等式组表示的平面地域及直线300x+400y= 0,平移该直线,当平移到经过该平面地域内的点(4,4)时,相应直线在 y 轴上的截距达到最大,此时 z= 300x+ 400y 获取最大值,最大值是 z= 300× 4+ 400× 4= 2 800,即该公司可获取的最大利润是 2 800 元.反思与感悟线性规划解决实责问题的步骤:① 解析并依照已知数据列出表格;②确定线性拘束条件;③ 确定线性目标函数;④画出可行域;⑤利用线性目标函数 (直线 )求出最优解;⑥ 实责问题需要整数解时,应合适调整,以确定最优解.追踪训练 3 估量用 2 000 元购买单价为 50 元的桌子和 20 元的椅子,希望使桌子和椅子的总数尽可能的多,但椅子数很多于桌子数,且不多于桌子数的 1.5 倍,问桌子、椅子各买多少才行?解设桌子、椅子分别买x 张、 y 把,目标函数z= x+ y,把所给的条件表示成不等式组,即拘束条件为50x+20y≤ 2 000,y≥ x,y≤,x≥ 0,x∈ N*,y≥0, y∈ N* .x=200,50x+ 20y=2 000,7由解得200 y= x,y=,7因此 A 点的坐标为 200,200 .7 750x + 20y =2 000,x = 25,由解得75y =,y = 2 ,因此 B 点的坐标为 7525, 2 .200 20075因此满足条件的可行域是以 A 7 ,7 , B 25, 2 , O(0,0) 为极点的三角形地域 (如图 ).75由图形可知,目标函数 z =x + y 在可行域内的最优解为 B 25, 2 ,但注意到 x ∈ N * , y ∈ N * ,x = 25, 故取y = 37.故买桌子 25 张,椅子 37 把是最好的选择.x + y - 3≤ 0,1.若直线 y = 2x 上存在点 ( x , y)满足拘束条件 x - 2y - 3≤0, 则实数 m 的最大值为 ()x ≥ m ,3A .- 1B . 1C.2D . 25x - 11y ≥- 22,2x + 3y ≥ 9, 2.某公司招收男职员x 名,女职员 y 名, x 和 y 需满足拘束条件则 z2x ≤ 11,x ∈ N * , y ∈ N * ,= 10x + 10y 的最大值是 ( )A . 80B .85C .90D . 95y≤1,3.已知实数x,y 满足x≤1,则z=x2+y2的最小值为________.x+y≥ 1,一、选择题1.若点 (x, y)位于曲线 y= |x|与 y= 2 所围成的封闭地域,则 2x- y 的最小值为 ( ) A .- 6 B.- 2 C. 0 D. 2x≥ 1,2.设变量 x, y 满足拘束条件x+ y- 4≤ 0,则目标函数 z= 3x- y 的最大值为 ()x- 3y+4≤ 0,4A .- 4 B. 0 C.3 D. 4x≥ 1,则 z=y-1的取值范围是 (3.实数 x, y 满足 y≥ 0,)x- y≥ 0,xA . [ - 1,0]B .( -∞, 0]C.[ -1,+∞ ) D. [ - 1,1)x- y≥ 0,4.若满足条件x+ y- 2≤ 0,的整点 (x, y)(整点是指横、纵坐标都是整数的点)恰有 9 个,y≥ a则整数 a 的值为 ()A .- 3 B.- 2C.- 1 D. 0x≥ 1,5.已知 x, y 满足x+ y≤ 4,目标函数z= 2x+ y 的最大值为7,最小值为1,则 b,c x+ by+ c≤ 0,的值分别为( )A .- 1,4B .- 1,- 3C.- 2,- 1 D.- 1,- 26.已知x,y 满足拘束条件x+ y≥ 5,x- y+ 5≥0,x≤ 3,使 z= x+ ay(a> 0)获取最小值的最优解有无数个,则 a 的值为( )A .- 3 B. 3 C.- 1 D. 1二、填空题x≤ 2,7.若 x, y 满足拘束条件y≤2,则 z= x+ 2y 的取值范围是 ________.x+ y≥2,8.已知- 1≤ x+y≤ 4 且 2≤ x-y≤ 3,则 z= 2x- 3y 的取值范围是________(答案用区间表示).0≤ x≤ 2,9.已知平面直角坐标系 xOy 上的地域 D 由不等式组y≤ 2,给定.若 M(x, y)为 Dx≤ 2y上的动点,点 A 的坐标为 (→ →2, 1),则 z= OM ·OA的最大值为 ________.10.满足 |x|+ |y|≤ 2 的点 (x,y)中整点 (横纵坐标都是整数)有 ________个.x- y+ 2≥ 0,11.设实数 x, y 满足不等式组2x- y- 5≤ 0,则 z= |x+ 2y- 4|的最大值为 ________.x+ y- 4≥ 0,三、解答题x- 4y≤- 3,12.已知x, y 满足拘束条件3x+ 5y≤ 25,目标函数z= 2x- y,求z 的最大值和最小值.x≥ 1,x+ y- 11≥ 0,13.设不等式组3x- y+ 3≥0,表示的平面地域为 D.若指数函数y= a x的图象上存在地域5x- 3y+ 9≤0D 上的点,求 a 的取值范围.14.某家具厂有方木材90 m3,五合板600 m2,准备加工成书桌和书厨销售.已知生产每张书桌需要方木材0.1 m3,五合板 2 m2,生产每个书厨需要方木材0.2 m3,五合板 1 m2,销售一张方桌可获利润80 元,销售一个书厨可获利润120 元.(1)若是只安排生产书桌,可获利润多少?(2)若是只安排生产书厨,可获利润多少?(3)怎样安排生产可使所得利润最大?当堂检测答案1. 答案B解析 如图,当 y = 2x 经过且只经过x + y - 3=0 和 x = m 的交点时, m 取到最大值,此时,即 (m,2m)在直线 x + y - 3= 0 上,则 m = 1.2. 答案 C解析 该不等式组表示的平面地域为以下列图的阴影部分.由于 x , y ∈ N * ,计算地域内与11 9 近来的点为 (5,4),故当 x =5, y = 4 时, z 获取最大值为90.2 ,213. 答案2解析实数 x ,y 满足的可行域如图中阴影部分所示,则 z 的最小值为原点到直线 AB 的距离的平方,故 z min = 12= 1.2 2课时精练答案一、选择题1.答案 A解析画出可行域,以下列图,解得A(- 2,2),设 z= 2x- y,把z= 2x- y 变形为 y= 2x- z,则直线经过点 A 时 z 获取最小值;因此 z min=2× (- 2)- 2=- 6,应选 A.2.答案 D解析作出可行域,以下列图.x+ y- 4=0,x=2,联立解得x- 3y+ 4= 0,y=2.当目标函数z= 3x- y 移到 (2,2)时, z= 3x- y 有最大值4.3.答案 D解析作出可行域,以下列图,y-1的几何意义是点 (x, y)与点 (0,1)连线 l 的斜率,当直线l 过 B(1,0) 时 k l最小,最小为- 1. x又直线 l 不能够与直线x- y= 0 平行,∴ k l< 1.综上, k∈ [- 1,1).解析不等式组所表示的平面地域如图阴影部分所示,当 a=0 时,只有 4 个整点 (1,1),(0,0) ,(1,0),(2,0).当 a=- 1 时,正好增加 (- 1,- 1),(0,- 1),(1 ,- 1),(2,- 1),(3,- 1)5 个整点.故选C.5.答案 D解析由题意知,直线x+by+ c= 0 经过直线2x+ y= 7 与直线x+ y= 4 的交点,且经过直线2x+ y=1 和直线x= 1 的交点,即经过点(3,1)和点 (1,- 1),3+ b+ c= 0,b=- 1,∴解得1- b+ c= 0,c=- 2.6.答案 D解析如图,作出可行域,作直线l:x+ ay=0,要使目标函数z= x+ ay(a> 0)获取最小值的最优解有无数个,则将l 向右上方平移后与直线x+ y= 5 重合,故a= 1,选 D.二、填空题7.答案[2,6]解析如图,作出可行域,作直线 l :x+ 2y= 0,将 l 向右上方平移,过点 A(2,0)时,有最小值 2,过点 B(2,2)时,有最大值 6,故 z 的取值范围为[2,6] .解析作出不等式组-1≤ x+ y≤ 4,表示的可行域,如图中阴影部分所示.2≤ x- y≤ 3在可行域内平移直线 2x-3y= 0,当直线经过 x- y= 2 与 x+y= 4 的交点 A(3,1)时,目标函数有最小值z min=2× 3- 3× 1= 3;当直线经过 x+ y=- 1 与 x- y= 3 的交点 B(1,- 2) 时,目标函数有最大值z max=2× 1+ 3× 2 = 8.因此 z∈[3,8] .9.答案 4解析由线性拘束条件0≤ x≤ 2,y≤ 2,画出可行域如图中阴影部分所示,目标函数→ →2x+ y,将其化为z=OM ·OA=x≤ 2yy=- 2x+ z,结合图形可知,目标函数的图象过点( 2, 2)时, z 最大,将点 ( 2, 2)代入 z = 2x+ y,得 z 的最大值为 4.10.答案13解析|x|+ |y|≤ 2 可化为x+ y≤ 2 x- y≤ 2x≥ 0, y≥0x≥ 0, y< 0 ,,-x+ y≤ 2 x<0, y≥ 0 ,-x- y≤ 2 x<0, y< 0 ,作出可行域为如图正方形内部(包括界线 ),简单获取整点个数为13 个.11.答案 21解析作出可行域 (如图 ),即△ABC 所围地域 (包括界线 ),其极点为A(1,3), B(7,9),C(3,1)方法一∵可行域内的点都在直线x+ 2y- 4=0 上方,∴x+ 2y- 4> 0,则目标函数等价于 z= x+ 2y-4,易合适直线 z= x+2y- 4 在点 B(7,9)处,目标函数获取最大值z max= 21.方法二z= |x+ 2y-4|=|x+ 2y- 4|· 5,5令 P( x,y)为可行域内一动点,定直线x+2y- 4= 0,则z= 5d,其中 d 为 P(x, y)到直线 x+2y- 4= 0 的距离.由图可知,地域内的点 B 与直线的距离最大,故d的最大值为 |7+ 2× 9-4|= 21.5 5故目标函数z max= 21 · 5= 21.5三、解答题12.解z= 2x- y 可化为y= 2x- z, z 的几何意义是直线在y 轴上的截距的相反数,故当z 获取最大值和最小值时,应是直线在y 轴上分别获取最小和最大截距的时候.作一组与l0:2x- y=0 平行的直线系l,经上下平移,可得:当l 搬动到l1,即经过点A(5,2) 时, z max= 2× 5 - 2= 8.当l 搬动到 l 2,即过点 C(1,4.4) 时,z min= 2× 1-=- 2.4.13.解先画出可行域,以下列图,y= a x必定过图中阴影部分或其界线.∵A(2,9) ,∴ 9= a2,∴a= 3.∵a> 1,∴ 1< a≤ 3.14.解由题意可画表格以下:方木材 (m3) 五合板 (m2) 利润 (元 ) 书桌 (张 ) 2 80书厨 (个 ) 1 120(1)设只生产书桌x 张,可获取利润z 元,≤ 90,x≤ 900,2x≤ 600,? x≤300,? 0≤ x≤ 300.则z= 80x,x≥0x≥ 0因此当 x= 300 时, z max= 80× 300= 24 000(元 ) ,即若是只安排生产书桌,最多可生产300 张书桌,获取利润24 000 元.(2)设只生产书厨y 个,可获取利润z 元,≤ 90,y≤ 450,1·y≤ 600,? y≤ 600,? 0≤ y≤ 450.则z= 120y,y≥ 0y≥ 0因此当 y= 450 时, z max= 120× 450= 54 000(元 ),即若是只安排生产书厨,最多可生产450 个书厨,获取利润54 000 元.(3)设生产书桌 x 张,书厨 y 个,利润总数为z 元,+≤ 90,x+ 2y≤ 900,2x+ y≤ 600,2x+ y≤ 600,则?x≥ 0,x≥ 0,y≥ 0 y≥ 0.z= 80x+120y.在平面直角坐标系内作出上面不等式组所表示的平面地域,即可行域(如图 ).作直线 l :80x+ 120y=0,即直线 l: 2x+ 3y=0.把直线 l 向右上方平移至 l1的地址时,直线经过可行域上的点M,此时 z= 80x+ 120y 获取最大值.x+ 2y= 900,由2x+ y= 600,解得,点M 的坐标为 (100,400) .因此当 x= 100,y= 400 时,z max= 80×100+ 120×400= 56 000(元 ).因此,生产书桌100 张、书厨400 个,可使所得利润最大.。
学业分层测评(十八)(建议用时:45分钟)[学业达标]一、填空题1.(2015·全国卷Ⅰ)若x,y满足约束条件错误!则z=3x+y的最大值为________.【解析】画出可行域(如图所示).∵z=3x+y,∴y=-3x+z。
∴直线y=-3x+z在y轴上截距最大时,即直线过点B时,z取得最大值.由错误!解得B(1,1),∴z max=3×1+1=4.【答案】42.若点(x,y)位于曲线y=|x|与y=2所围成的封闭区域,则2x-y的最小值为________.【解析】画出可行域,如图所示,由错误!解得A(-2,2),设z=2x-y,把z=2x-y变形为y=2x-z,则直线经过点A时z取得最小值,所以z min=2×(-2)-2=-6.【答案】-63.给出平面区域如图3。
3。
8所示,若使目标函数z=ax+y(a〉0)取得最大值的最优解有无穷多个,则a的值为________.图3.3。
8【解析】由于直线y=-ax+z的斜率-a〈0,因此,要使z=ax+y取最大值的最优解有无穷多个,这些解必在线段AC上.∴-a=-错误!,即a=错误!。
【答案】错误!4.若实数x,y满足错误!则错误!的取值范围是________。
【导学号:91730064】【解析】错误!可看作可行域中的点与原点构成直线的斜率,结合图形可解,错误!≥k OA=错误!。
【答案】错误!5.某旅行社租用A,B两种型号的客车安排900名客人旅行,A,B两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆,则租金最少为________.【解析】设租A型车x辆,B型车y辆,租金为z,则错误!画出可行域(图中阴影区域中的整数点),则目标函数z=1 600x +2 400y在点N(5,12)处取得最小值36 800.【答案】36 8006.设D为不等式组错误!所表示的平面区域,区域D上的点与点(1,0)之间的距离的最小值为________.【解析】作出可行域,如图中阴影部分所示,则根据图形可知,点B(1,0)到直线2x-y=0的距离最小,d=错误!=错误!〈1,故最小距离为错误!。
课后限时自测(三十四)[A 级 基础达标练]一、填空题1.(2014·广东高考改编)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +2y ≤8,0≤x ≤4,0≤y ≤3,,则z =2x +y 的最大值等于________.[解析] 作出约束条件下的可行域如图(阴影部分),当直线y =-2x +z 经过点A (4,2)时,z 取最大值为10.[答案] 102.(2015·扬州调研)已知x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y +5≥0,x -y ≤0,y ≤0,则z =3x +4y 的最小值是________.[解析] 可行区域如图所示.在P ⎝ ⎛⎭⎪⎫-52,-52处取到最小值-17.5.[答案] -17.53.已知实数x ,y 满足⎩⎪⎨⎪⎧ x ≥0,y -x +1≤0,y -2x +4≥0,若z =y -ax 取得最大值时的最优解(x ,y )有无数个,则a =________.[解析] 依题意,在坐标平面内画出题中的不等式组表示的平面区域,如图所示.要使z =y -ax 取得最大值时的最优解(x ,y )有无数个,则直线z =y -ax 必平行于直线y -x +1=0,于是有a =1.[答案] 14.(2013·山东高考改编)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧ 2x -y -2≥0x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为________.[解析] 线性约束条件表示的平面区域如图所示(阴影部分).由{ x +2y -1=0, 3x +y -8=0,得A (3,-1).当M 点与A 重合时,OM 的斜率最小,k OM =-13.[答案] -135.(2013·陕西高考改编)若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域内,则2x -y 的最小值是________.[解析] 曲线y =|x |与y =2所围成的封闭区域如图阴影部分所示.当直线l :y =2x 向左平移时,(2x -y )的值在逐渐变小,当l 通过点A (-2,2)时,(2x -y )min=-6.[答案] -66.已知点P (x ,y )满足⎩⎪⎨⎪⎧ x -4y +3≤0, 3x +5y ≤25,x -1≥0,定点为A (2,0),则|OP→|sin ∠AOP (O 为坐标原点)的最大值为________.[解析] 可行域如图阴影部分所示,A (2,0)在x 正半轴上,所以|OP→|·sin ∠AOP 即为P 点纵坐标.当P 位于点B 时,其纵坐标取得最大值225.[答案] 2257.(2014·兴化安丰中学检测)已知不等式组⎩⎪⎨⎪⎧ y ≤x y ≥-x x ≤a 表示的平面区域S 的面积为4,若点P (x ,y )∈S ,则z =2x +y 的最大值为________.[解析] 由约束条件可作图如下,得S =12×a ×2a =a 2,则a 2=4,a =2,故图中点C (2,2),平移直线得当过点C (2,2)时z max =2×2+2=6.[答案] 68.(2014·江西高考)x ,y ∈R ,若|x |+|y |+|x -1|+|y -1|≤2,则x +y 的取值范围为________.[解析] 由绝对值的几何意义知,|x |+|x -1|是数轴上的点x 到原点和点1的距离之和,所以|x |+|x -1|≥1,当且仅当x ∈[0,1]时取“=”.同理|y |+|y -1|≥1,当且仅当y ∈[0,1]时取“=”.∴|x |+|y |+|x -1|+|y -1|≥2.而|x |+|y |+|x -1|+|y -1|≤2,∴|x |+|y |+|x -1|+|y -1|=2,此时,x ∈[0,1],y ∈[0,1],∴(x +y )∈[0,2].[答案] [0,2]二、解答题9.(2012·四川高考改编)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克,B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,试求公司共可获得的最大利润.[解] 设生产甲产品x 桶,乙产品y 桶,每天利润为z 元,则 ⎩⎪⎨⎪⎧ x +2y ≤122x +y ≤12 x ≥0y ≥0x ,y ∈N ,且z =300x +400y .作出可行域,如图阴影部分所示.作直线300x +400y =0,向右上平移,过点A 时,z =300x +400y 取最大值,由⎩⎪⎨⎪⎧ x +2y =122x +y =12,得⎩⎪⎨⎪⎧x =4y =4,∴A (4,4), ∴z max =300×4+400×4=2 800.故公司共可获得的最大利润为2 800元.10.(2012·安徽高考改编)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧ x ≥0,x +2y ≥3,2x +y ≤3.(1)求z =x -y 的最小值和最大值;(2)若z =x 2+y 2,求z 的取值范围.[解] 作约束条件{ x ≥0, x +2y ≥3, 2x +y ≤3满足的可行域,如图所示为△ABC 及其内部.联立{ x +2y =3, 2x +y =3.得A (1,1).解方程组{ x =0, 2x +y =3,得点B (0,3).(1)由z =x -y ,得y =x -z .平移直线x -y =0,则当其过点B (0,3)时,截距-z 最大,即z 最小;当过点A (1,1)时,截距-z 最小,即z 最大.∴z min =0-3=-3;z max =1-1=0.(2)过O (0,0)作直线x +2y =3的垂线l 交于点N .观察可行域知,可行域内的点B 、N 到原点的距离分别达到最大与最小.又|ON |=|0+0-3|12+22=355,|OB |=3. ∴z 的取值范围是⎣⎢⎡⎦⎥⎤355,3.[B 级 能力提升练]一、填空题1.(2014·山东高考改编)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -1≤02x -y -3≥0,当目标函数z =ax +by (a >0,b >0)在该约束条件下取到最小值25时,a 2+b 2的最小值为____________.[解析]法一 线性约束条件所表示的可行域如图所示.由⎩⎪⎨⎪⎧ x -y -1=02x -y -3=0,解得⎩⎪⎨⎪⎧x =2y =1,所以z =ax +by 在A (2,1)处取得最小值,故2a +b =25,a 2+b 2=a 2+(25-2a )2=(5a -4)2+4≥4.法二 画出满足约束条件的可行域知,当目标函数过直线x -y -1=0与2x -y -3=0的交点(2,1)时取得最小值,所以有2a +b =2 5.又因为a 2+b 2是原点(0,0)到点(a ,b )的距离的平方,故当a 2+b 2为原点到直线2a +b -25=0的距离时最小,所以a 2+b 2的最小值是|-25|22+12=2,所以a 2+b 2的最小值是4. [答案] 42.(2013·江苏高考)抛物线y =x 2在x =1处的切线与两坐标轴围成的三角形区域为D (包含三角形内部与边界).若点P (x ,y )是区域D 内的任意一点,则x +2y 的取值范围是________.[解析] 由于y ′=2x ,所以抛物线在x =1处的切线方程为y -1=2(x -1),即y =2x -1.画出可行域(如图).设x +2y =z ,则y =-12x +12z .当直线y =-12x +12z 经过点A ⎝ ⎛⎭⎪⎫12,0,B (0,-1)时,z 分别取到最大值和最小值,此时最大值z max =12,最小值z min =-2.故取值范围是⎣⎢⎡⎦⎥⎤-2,12. [答案] ⎣⎢⎡⎦⎥⎤-2,12 二、解答题3.某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C .另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C .如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?[解] 设需要预订满足要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费用为z 元.由题意知z =2.5x +4y ,且x ,y 满足⎩⎪⎨⎪⎧ x ≥0,y ≥0,12x +8y ≥64 6x +6y ≥42,6x +10y ≥54. 即⎩⎪⎨⎪⎧ x ≥0,y ≥0,3x +2y ≥16,x +y ≥7,3x +5y ≥27.作出约束条件表示的可行域(如图所示).由⎩⎪⎨⎪⎧ 3x +5y =27,x +y =7,得⎩⎪⎨⎪⎧x =4,y =3. 让目标函数表示的直线2.5x +4y =z 在可行域上平移,由此可知z =2.5x +4y 在B (4,3)处取得最小值.所以最优解为x =4,y =3.因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.。