晶体三极管输入和输出特性
- 格式:ppt
- 大小:2.25 MB
- 文档页数:20
晶体三极管的主要参数晶体三极管是一种重要的电子器件,被广泛应用于电子电路中。
它具有许多主要参数,这些参数对于了解晶体三极管的性能和应用非常重要。
本文将介绍晶体三极管的几个主要参数,并详细解释它们的含义和作用。
1. 最大集电极电流(ICmax)最大集电极电流是指晶体三极管能够承受的最大电流。
超过这个电流值,晶体三极管可能会损坏。
因此,在使用晶体三极管时,需要确保集电极电流不超过ICmax。
2. 最大集电极功耗(PCmax)最大集电极功耗表示晶体三极管能够承受的最大功耗。
当晶体三极管的功耗超过这个值时,会导致晶体三极管过热,甚至损坏。
因此,在设计电路时,需要确保集电极功耗不超过PCmax。
3. 最大集电极-基极电压(VCEmax)最大集电极-基极电压是指晶体三极管能够承受的最大电压差。
当集电极-基极电压超过这个值时,晶体三极管可能会击穿,造成损坏。
因此,在使用晶体三极管时,需要确保集电极-基极电压不超过VCEmax。
4. 最大基极-发射极电压(VBEmax)最大基极-发射极电压是指晶体三极管能够承受的最大电压差。
当基极-发射极电压超过这个值时,晶体三极管可能会击穿,造成损坏。
因此,在使用晶体三极管时,需要确保基极-发射极电压不超过VBEmax。
5. 最大集电极-发射极电流放大倍数(hFEmax)最大集电极-发射极电流放大倍数表示晶体三极管的放大能力。
它是指在特定工作条件下,晶体三极管输入电流与输出电流之间的比值。
hFEmax越大,表示晶体三极管具有更好的放大能力。
6. 截止频率(fT)截止频率是指晶体三极管在放大作用下,输出信号的频率达到-3dB 的点。
截止频率越高,表示晶体三极管具有更好的高频特性。
7. 饱和电流(ICsat)饱和电流是指晶体三极管在饱和工作区时的集电极电流。
当晶体三极管处于饱和状态时,集电极电流不再随输入信号的变化而变化,保持在一个稳定的值。
总结:晶体三极管的主要参数包括最大集电极电流、最大集电极功耗、最大集电极-基极电压、最大基极-发射极电压、最大集电极-发射极电流放大倍数、截止频率和饱和电流。
2. 简述BJT三极管原理
双极结型晶体管(BJT)是半导体三极管的一种,其工作原理基于半导体材料中的载流子输运现象。
以下是对BJT三极管原理的简要描述:
1. 结构:BJT三极管由三个半导体区域组成,分别是发射区、基区和集电区。
这三个区域之间由两个PN结隔开。
发射区掺杂浓度高,集电区面积大,基区则介于两者之间。
2. 电流传输过程:当在BJT的发射极和基极之间加上正向电压时,载流子(空穴和电子)将从发射区注入到基区。
其中,高能量的电子能够穿过基区的势垒,进入集电区,形成集电极电流。
集电极电流的大小可以用来控制BJT的导通状态。
3. 放大作用:BJT的一个重要特性是它能够放大电流。
这是由于在基区,载流子经历了两次扩散-漂移过程。
第一次是从发射区注入到基区的载流子在基区的扩散-漂移过程;第二次是从基区扩散到集电区的载流子的漂移过程。
在这个过程中,空穴和电子分别被电场力拉向集电极和发射极,形成集电极电流。
4. 输出特性:BJT的输出特性是指集电极电流与基极-发射极电压之间的关系。
这个关系通常被表示为一个曲线,称为三极管的输入特性曲线。
在不同的基极-发射极电压下,会有不同的输出状态,包括放大区、饱和区和截止区。
5. 频率响应:BJT的频率响应是其工作频率与电压增益之间的关系。
在高频条件下,由于载流子的渡越时间效应和结电容的影响,BJT 的性能会受到限制。
6. 温度特性:温度对BJT的性能有很大影响。
随着温度的升高,载流子的传输过程会受到影响,导致电流增大,电压增益下降。
因此,在高温环境下,需要对BJT进行适当的散热设计。
晶体三极管具有能量放大作用晶体三极管是一种能够对电流进行放大的电子器件。
它是由三个不同类型的半导体材料组成的结构,常用的是N型半导体、P型半导体和N型半导体的组合。
晶体三极管的放大作用主要体现在它对输入信号的电流进行放大并产生相应的输出信号。
晶体三极管的能量放大作用是通过引入外部电流控制器实现的。
在晶体三极管中,将输入信号加到基级,然后通过控制集电极和发射极之间的电流来控制输出信号。
晶体三极管的工作原理是由于输入信号的变化,引起了电流在两个不同类型的半导体材料之间的移动。
这个过程被称为晶体三极管的自动增益。
晶体三极管的放大作用具有以下几个方面的优点。
首先,晶体三极管的放大作用能够使输入信号的幅度增加,从而提供更大的输出信号。
这对于电信号的传输和处理来说非常重要,尤其是在需要长距离传输信号或者需要对信号进行进一步处理的场合。
其次,晶体三极管具有良好的线性放大特性,即输入信号的变化能够准确地对应于输出信号的变化。
这使得晶体三极管在模拟电子电路中得到了广泛的应用。
再次,晶体三极管的输出电流能够达到几个毫安至几十毫安的高电流水平,这使得它可以驱动其他电子器件,如电磁线圈、电动机等。
最后,晶体三极管的功耗相对较低,能够在较小的体积和重量下提供强大的放大能力。
晶体三极管的能量放大作用也存在一些限制。
首先,晶体三极管的输出电流和电压都受到一定的限制,这会影响到放大信号的幅度。
其次,晶体三极管的放大作用容易受到温度变化的影响,可能导致输出信号的不稳定。
此外,晶体三极管的工作速度有限,对高频信号的放大效果较差,限制了它在高频电子电路中的应用。
总之,晶体三极管的能量放大作用使得它成为了电子器件中最常用的放大器件之一、它在各种电子设备中得到了广泛的应用,如收音机、电视机、计算机等。
随着科技的发展,晶体三极管的工作原理也得到了不断的改进和完善,使得它具备了更强大的放大能力和更稳定的性能。
但是随着新的电子器件的出现,如场效应晶体管和集成电路等,晶体三极管的应用正逐渐减少,但其作为电子学重要的历史地位始终不会被取代。
三极管的特征三极管,也被称为双极型晶体管(bipolar junction transistor,简称BJT),是一种常见的半导体器件。
它具有三个区域:发射极(Emitter)、基极(Base)和集电极(Collector)。
三极管具有许多特征,下面将逐一介绍。
1. 放大作用三极管的主要功能是放大电流和电压信号。
当在基极-发射极电流(IB)的作用下,由发射极-集电极电流(IC)的增大,即电流放大效应。
这使得三极管可以用作放大器,将弱信号放大为强信号,从而实现信号处理和传输。
2. 开关作用三极管还可以用作开关。
当输入信号的电压或电流超过一定的阈值时,三极管可以处于饱和状态,导通集电极和发射极之间的电流。
反之,当输入信号的电压或电流低于阈值时,三极管处于截止状态,不导通。
这种开关特性使得三极管广泛应用于数字电路和开关电源等领域。
3. 电流放大倍数三极管的电流放大倍数(或称为电流放大系数)是指集电极-发射极电流(IC)与基极-发射极电流(IB)之间的比值,用β表示。
β的数值通常在几十到几百之间。
电流放大倍数决定了三极管的放大能力,也是设计电路时需要考虑的重要参数之一。
4. 输入/输出阻抗三极管具有较高的输入阻抗和较低的输出阻抗。
输入阻抗决定了信号源与三极管之间的匹配程度,输出阻抗决定了三极管与负载电路之间的匹配程度。
较高的输入阻抗可以减少信号源的负载效应,较低的输出阻抗可以提供更好的信号传输能力。
5. 频率响应三极管的频率响应是指其对不同频率信号的放大能力。
一般来说,三极管在低频时具有较好的放大能力,但在高频时可能会出现衰减。
这是由于三极管内部结构和材料特性所致。
为了实现更高的频率响应,可以采用特殊工艺和结构设计。
6. 温度特性三极管的工作性能会受到温度的影响。
一般情况下,三极管的电流放大倍数会随着温度的升高而下降,而饱和电压会随温度的升高而增加。
这需要在设计电路时考虑温度补偿和稳定性。
7. 噪声三极管的工作过程中会产生一定的噪声。
晶体管是半导体三极管中应用最广泛的器件之一,在电路中用“V”或“VT”(旧文字符号为“Q”、“GB”等)表示。
晶体管是内部含有两个PN结,外部通常为三个引出电极的半导体器件。
它对电信号有放大和开关等作用,应用十分广泛。
一、晶体管的种类晶体管有多种分类方法。
(一)按半导体材料和极性分类按晶体管使用的半导体材料可分为硅材料晶体管和锗材料晶体管管。
按晶体管的极性可分为锗NPN型晶体管、锗PNP晶体管、硅NPN型晶体管和硅PNP型晶体管。
(二)按结构及制造工艺分类晶体管按其结构及制造工艺可分为扩散型晶体管、合金型晶体管和平面型晶体管。
(三)按电流容量分类晶体管按电流容量可分为小功率晶体管、中功率晶体管和大功率晶体管。
(四)按工作频率分类晶体管按工作频率可分为低频晶体管、高频晶体管和超高频晶体管等。
(五)按封装结构分类晶体管按封装结构可分为金属封装(简称金封)晶体管、塑料封装(简称塑封)晶体管、玻璃壳封装(简称玻封)晶体管、表面封装(片状)晶体管和陶瓷封装晶体管等。
其封装外形多种多样。
(六)按功能和用途分类晶体管按功能和用途可分为低噪声放大晶体管、中高频放大晶体管、低频放大晶体管、开关晶体管、达林顿晶体管、高反压晶体管、带阻晶体管、带阻尼晶体管、微波晶体管、光敏晶体管和磁敏晶体管等多种类型。
二、晶体管的主要参数晶体管的主要参数有电流放大系数、耗散功率、频率特性、集电极最大电流、最大反向电压、反向电流等。
(一)电流放大系数电流放大系数也称电流放大倍数,用来表示晶体管放大能力。
根据晶体管工作状态的不同,电流放大系数又分为直流电流放大系数和交流电流放大系数。
1.直流电流放大系数直流电流放大系数也称静态电流放大系数或直流放大倍数,是指在静态无变化信号输入时,晶体管集电极电流IC与基极电流IB的比值,一般用hFE或β表示。
2.交流电流放大系数交流电流放大系数也称动态电流放大系数或交流放大倍数,是指在交流状态下,晶体管集电极电流变化量△IC与基极电流变化量△IB的比值,一般用hfe或β表示。
晶体三极管及其特性摘要晶体三极管三个区的工作状态特点可概括为以下三句话:三极管工作在饱和状态时发射结正偏,集电结也正偏;工作在放大状态时发射结正偏、集电结反偏;工作在截止状态时发射结反偏,集电结也反偏。
晶体三极管是电子技术最基本、最重要的器件之一,也是模拟电子技术教学的重点内容。
关键词三极管的结构;输出特性;工作状态;偏置条件晶体三极管在电子线路中起到很大的作用,是其他元器不可替代的。
在实际应用中有三种由三极管组成的放大电路,其中共发射极电路是三种基本电路中最常用的放大电路。
首先了解晶体三极管的结构。
1三极管的结构与作用1.1三极管的结构晶体三极管的结构和类型:晶体三极管是半导体中的一个基本元器件,它在放大状态下有很强的电流放大能力,是电子电路中的最主要的元器件。
三极管是由二个PN结组成,这二个PN结相距很近,两个相距较近的PN结把整块半导体划分为三个依次是发射区、基区和集电区,根据组合方式的不同分为PNP和NPN两种,NPN型管射区内”发射”的是负电子,移动方向与电流方向是不同的,所以发射极方向指向外部;而PNP型管射区内发射出的是正电子,移动方向与电流方向是相同的,所以发射极方向指向内部。
管型的不同在正向电压下的导通方向也不同,发射极方向指向代表着它的导通方向。
1.2 三极管的作用1.2.1晶体三极管可以实现电流放大的作用三极管实现电流放大作用的原理是:三极管能用基极电流的变化来控制集电极电流的变化,基极电流变化很小,导致集电极电流发生很大的变化。
这也是三极管非常重要的特性。
我们把集电极电流变化量与基极电流变化量的比值用符号“β”表示,一般来说“β”是一个定值,但有时ΔIb也可能会有所改变。
晶体三极管有以下三种状态:饱和状态、截止状态和放大状态。
如果加在发射结的电压比PN结的导通电压小,基极中无电流,集电极和发射极也都无电流,在电路中相当于一个断开的开关,三极管就不再有电流放大作用,即为三极管的截止状态。
晶体管简介及特性一、BJT的结构简介BJT又常称为晶体管,它的种类很多。
按照频率分,有高频管、低频管;按照功率分,有小、中、大功率管;按照半导体材料分,有硅管、锗管;根据结构不同,又可分成NPN型和PNP型等等。
但从它们的外形来看,BJT都有三个电极。
它是由两个 PN结的三层半导体制成的。
中间是一块很薄的P型半导体(几微米~几十微米),两边各为一块N型半导体。
从三块半导体上各自接出的一根引线就是BJT的三个电极,它们分别叫做发射极e、基极b和集电极c,对应的每块半导体称为发射区、基区和集电区。
虽然发射区和集电区都是N型半导体,但是发射区比集电区掺的杂质多。
在几何尺寸上,集电区的面积比发射区的大,这从图3.1也可看到,因此它们并不是对称的。
二、BJT的电流分配与放大作用1、BJT内部载流子的传输过程BJT工作于放大状态的基本条件:发射结正偏、集电结反偏。
在外加电压的作用下, BJT内部载流子的传输过程为:(1)发射极注入电子由于发射结外加正向电压VEE,因此发射结的空间电荷区变窄,这时发射区的多数载流子电子不断通过发射结扩散到基区,形成发射极电流IE,其方向与电子流动方向相反。
(2)电子在基区中的扩散与复合由发射区来的电子注入基区后,就在基区靠近发射结的边界积累起来,右基区中形成了一定的浓度梯度,靠近发射结附近浓度最高,离发射结越远浓度越小。
因此,电子就要向集电结的方向扩散,在扩散过程中又会与基区中的空穴复合,同时接在基区的电源VEE的正端则不断从基区拉走电子,好像不断供给基区空穴。
电子复合的数目与电源从基区拉走的电子数目相等,使基区的空穴浓度基本维持不变。
这样就形成了基极电流IB,所以基极电流就是电子在基区与空穴复合的电流。
也就是说,注基区的电子有一部分未到达集电结,如复合越多,则到达集电结的电子越少,对放大是不利的。
所以为了减小复合,常把基区做得很薄 (几微米),并使基区掺入杂质的浓度很低,因而电子在扩散过程中实际上与空穴复合的数量很少,大部分都能能到达集电结。
详解npn三极管的原理和应用一、npn三极管的原理npn三极管(NPN Transistor,NPN: Negative-Positive-Negative)是一种常见的双极型晶体管,属于半导体器件的一种。
它由两个P型半导体夹一个N型半导体构成。
以下是npn三极管的工作原理:1.基本结构:npn三极管由Emitter(发射极)、Base(基极)和Collector(集电极)三个区域组成。
NPN的发射极是N型半导体,Base是P 型半导体,Collector是N型半导体。
2.工作原理:当正向偏置电压(VBE)施加在Base和Emitter之间时,电流开始流动,因为N型发射极区域的多数载流子向P型基区域移动。
这被称为发射级。
当Collecto极施加一个正向电压(VCE)时,集电极区域的大多数载流子也向基区域移动。
这个区域称为集电级。
3.放大特性:npn三极管是一种放大器,输入电流的改变可以通过控制输出电流来放大。
这种放大效应是由于发射级和集电级之间的关系产生的。
二、npn三极管的应用npn三极管有很多应用,包括以下几个方面:1. 放大器npn三极管可以作为电流放大器,将小信号放大到更大的电流。
通过调节输入电流,可以控制输出电流的放大倍数。
这使得npn三极管可以在许多电子设备中用作声音放大器、电视和无线通信设备等。
2. 开关由于npn三极管具有电流放大特性,它也可以用作开关。
当基极-发射极间的电压(VBE)达到一定的阈值时,三极管会打开,导通电流。
当电压低于阈值时,三极管关闭,断开电流。
这使得npn三极管能够在数字电路中用作开关,实现许多逻辑电路。
3. 震荡器npn三极管可以构成震荡器,用于产生特定频率的振荡信号。
这种振荡器常用于无线电和通信设备中。
4. 温度传感器由于npn三极管的输入电流和输出电流之间有温度相关的特性,故npn三极管可以用作温度传感器。
温度变化会导致npn三极管的电流变化,通过测量这种变化可以获得温度信息。
晶体三极管一、三极管的电流放大原理晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。
而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。
图1、晶体三极管(NPN)的结构图一是NPN管的结构图,它是由2块N型半导体中间夹着一块P型半导体所组成,从图可见发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b 和集电极。
当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。
在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正确,发射区的多数载流子(电子)极基区的多数载流子(控穴)很容易地截越过发射结构互相向反方各扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流Ie。
由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补纪念给,从而形成了基极电流Ibo根据电流连续性原理得:Ie=Ib+Ic这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:β1=Ic/Ib式中:β--称为直流放大倍数,集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:β= △Ic/△Ib式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。
三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。
晶体三极管的输入、输出特性曲线三极管的特性曲线是指三极管各极上的电压和电流之间的关系曲线,是三极管内部性能的外部表现。
从使用三极管的角度来说,了解它的特性曲线是重要的。
由于三极管有两个PN结,因此它的特性曲线不像二极管那样简单。
最常用的有输入特性和输出特性曲线两种,在实际应用中,通常利用晶体管特性图示仪直接观察,也可用图1的电路开展测试逐点描绘。
(一)输入特性曲线输入特性是指,当三极管的集电极与发射极之间电压UCE保持为某一固定值时,加在三极管基极与发射极之间的电压UBE与基极电流IB之间的关系。
以3DG130C为例,按图1实验电路测试。
当UCE分别固定在O和1伏两种情况下,调整RPl测得的IB和UBE的值,列于表1。
它的输入特性曲线,如图2所示。
为了说明输入特性,图中画出两种曲线,表示UCE不同的两种情况。
但两条线不会同时存在。
图1晶体三极管输入、输出特性实验电路图2晶体三极管输入特性曲线表1三极管输入特性数据1.当UCE = O伏时,也就是将三极管的集电极与发射极短接,如图3所示,相当于正向接法的两个并联二极管。
图2中曲线A的形状跟二极管的正向伏安特性曲线非常相似,IB和UBE 也是非线性关系。
2.当UCE=I伏时,集电结反偏,产生集电极电流IC, 在一样的UBE条件下,基极电流IB就要减小。
(图2中a点降到b 点),因此曲线B相对曲线A右移一段距离。
可见,UCE 对IB有一定影响。
当UCE>1伏以后,IB与UCE几乎无关,其特性曲线和UCE = I优那条曲线非常接近,通常按UCE = I 伏的输出特性曲线分析。
图3 UCE=O时的等效电路图4 3AX52B的输入特性曲线图4是3AX52B错三极管的输入特性,注意横坐标是一UBE,这是指PNP型错管的基极电位低于发射极电位。
可见,错管和硅管它们的输入特性曲线都是非线性的,都有“死区”, 错管和硅管相比,错管在较小的UBE值下,就可使发射结正偏导通。
晶体三极管工作总结
晶体三极管是一种重要的半导体器件,它在电子设备中起着至关重要的作用。
它的工作原理和特性对于电子工程师来说是非常重要的。
在本文中,我们将对晶体三极管的工作原理和特性进行总结。
晶体三极管是一种三端口的半导体器件,通常包括一个发射极、一个基极和一
个集电极。
它的工作原理是基于PN结的导电特性。
当一个正向偏置电压施加在发
射极和基极之间时,PN结会被击穿,电子会从发射极注入到基极,形成一个电流。
这个电流会被放大并从集电极中输出。
晶体三极管有很多重要的特性。
首先,它具有放大作用。
当一个小的输入信号
施加在基极上时,晶体三极管可以放大这个信号并输出一个更大的信号。
这使得它在放大电路中得到了广泛的应用。
其次,晶体三极管还具有开关作用。
当一个正向偏置电压施加在发射极和基极
之间时,晶体三极管处于导通状态,允许电流通过。
而当一个逆向偏置电压施加在发射极和基极之间时,晶体三极管处于截止状态,电流无法通过。
这使得它在数字电路中得到了广泛的应用。
此外,晶体三极管还具有频率响应特性。
它可以在很高的频率下工作,这使得
它在射频电路中得到了广泛的应用。
总之,晶体三极管是一种非常重要的半导体器件,它在电子设备中起着至关重
要的作用。
它的工作原理和特性对于电子工程师来说是非常重要的。
希望本文对晶体三极管的工作原理和特性有所帮助。
三极管的特性曲线三极管外部各极电压和电流的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。
它不仅能反映三极管的质量与特性,还能用来定量地估算出三极管的某些参数,是分析和设计三极管电路的重要依据。
对于三极管的不同连接方式,有着不同的特性曲线。
应用最广泛的是共发射极电路,其基本测试电路如图Z0118所示,共发射极特性曲线可以用描点法绘出,也可以由晶体管特性图示仪直接显示出来。
一、输入特性曲线在三极管共射极连接的情况下,当集电极与发射极之间的电压UBE 维持不同的定值时,UBE和IB之间的一簇关系曲线,称为共射极输入特性曲线,如图Z0119所示。
输入特性曲线的数学表达式为:IB=f(UBE)| UBE = 常数GS0120由图Z0119 可以看出这簇曲线,有下面几个特点:(1)UBE = 0的一条曲线与二极管的正向特性相似。
这是因为UCE = 0时,集电极与发射极短路,相当于两个二极管并联,这样IB与UCE 的关系就成了两个并联二极管的伏安特性。
(2)UCE由零开始逐渐增大时输入特性曲线右移,而且当UCE的数值增至较大时(如UCE>1V),各曲线几乎重合。
这是因为UCE由零逐渐增大时,使集电结宽度逐渐增大,基区宽度相应地减小,使存贮于基区的注入载流子的数量减小,复合减小,因而IB减小。
如保持IB为定值,就必须加大UBE ,故使曲线右移。
当UCE 较大时(如UCE >1V),集电结所加反向电压,已足能把注入基区的非平衡载流子绝大部分都拉向集电极去,以致UCE再增加,IB 也不再明显地减小,这样,就形成了各曲线几乎重合的现象。
(3)和二极管一样,三极管也有一个门限电压Vγ,通常硅管约为0.5~0. 6V,锗管约为0.1~0.2V。
二、输出特性曲线输出特性曲线如图Z0120所示。
测试电路如图Z0117。
输出特性曲线的数学表达式为:由图还可以看出,输出特性曲线可分为三个区域:(1)截止区:指IB=0的那条特性曲线以下的区域。
晶体管的输入输出特性曲线详解届别系别专业班级姓名指导老师二零一二年十月晶体管的输入输出特性曲线详解学生姓名:指导老师:摘要:晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
根据晶体管的结构进行分类,晶体管可以分为:NPN型晶体管和PNP 型晶体管。
依据晶体管两个PN结的偏置情况,晶体管的工作状态有放大、饱和、截止和倒置四种。
晶体管的性能可以有三个电极之间的电压和电流关系来反映,通常称为伏安特性。
生产厂家还给出了各种管子型号的参数也能表示晶体管的性能。
利用晶体管制成的放大电路的可以是把微弱的信号放大到负载所需的数值晶体管是一种半导体器件,放大器或电控开关常用。
晶体管是规范操作电脑,手机,和所有其他现代电子电路的基本构建块。
由于其响应速度快,准确性,晶体管可用于各种各样的数字和模拟功能,包括放大,开关,稳压,信号调制和振荡器。
晶体管可独立包装或在一个非常小的的区域,可容纳一亿或更多的晶体管集成电路的一部分。
关键字:晶体管、输入输出曲线、放大电路的静态分析和动态分析。
【Keywords】The transistor, the input/output curve, amplifying circuit static analysis and dynamic analysis.一、晶体管的基本结构晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图1-1(a)、(b)所示。
从三个区引出相应的电极,发射极,基极,集电极,各用“E”(或“e”)、“B”(或“b”)、“C”(或“c”)表示。
发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。
基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。