煤质活性炭生产工艺简介
- 格式:pptx
- 大小:176.72 KB
- 文档页数:39
煤质活性炭生产流程煤质活性炭采用优质煤为原材料,经过炭化→冷却→活化→洗涤等一系列工序研制而成。
其外观普遍为黑色圆柱状活性炭,不定形煤质颗粒活性炭,又称破碎炭。
圆柱形活性炭又称柱状炭,一般由粉状原料和粘结剂经混捏、挤压成型再经炭化、活化等工序制成。
也可以用粉状活性炭加粘结剂挤压成型。
具有发达的孔隙结构,良好的吸附性能,机械强度高,易反复再生,造价低等特点;用于有毒气体的净化,废气处理,工业和生活用水的净化处理,溶剂回收等方面。
煤质活性炭市场应用1.水处理行业: 自来水、工业用水、污水处理,纯净水、饮料、食品、医药用水2.空气净化:除杂、除味,吸咐,除甲醛,苯、甲苯、二甲苯、油气等有害气体物质3.工业:脱色,提纯,空气净化4. 养鱼:过滤5. 试剂:催化剂及催化剂载体煤质活性炭根据生产工艺和作用不同又分为;Ⅰ型-1 煤质柱状活性炭广泛应用于溶剂回收、工业废气净化、防护装具、家装空气净化、电厂原水净化、饮用水净化,中水回用等方面。
II 型煤质柱状活性炭广泛应用于纯净水处理、电厂原水处理、电子厂用水处理、化工颜料用水处理、食品厂和制药厂用水处理,以及污水厂生物载体、工厂及垃圾场的废气处理,中水回用,海水养殖育苗等方面。
Ⅲ型煤质柱状活性炭广泛应用于在纯净水制造、污水处理、污水生物载体、海水养殖,以及冷库保鲜、工厂空气净化等领域中使用. Ⅴ型原煤破碎颗粒活性炭适合应用于电厂原水净化、自来水净化.尤其在化工污水的过滤净化处理以及电厂锅炉采用苦咸水的氯根处理方面,有很好的处理效果理. Ⅵ型原煤破碎颗粒活性炭适合应用于电厂原水净化、尤其在化工污水的过滤净化处理以及电厂锅炉采用苦咸水的氯根处理方面,有很好的处理效果理. 以及高尔夫球场的土壤改良等工程. V2型煤质粉状活性炭主要适用于自来水净化,用以吸附原水中的有机物、余氯和异味,降低浊度,改善口感,使其达到饮用水的标准.该品在污水处理行业也有良好的处理效果。
煤质活性炭活性炭是黑色粉末状或颗粒状的无定型碳。
活性炭生产工艺流程活性炭是一种具有极强吸附能力的吸附剂,广泛应用于水处理、空气净化、医药、食品加工等领域。
活性炭的生产工艺流程主要包括原料准备、炭化、活化和粉碎等环节。
首先,原料准备是活性炭生产的第一步。
一般来说,活性炭的原料主要是木质素类物质,如木屑、果壳、秸秆等,也可以使用煤炭、石油焦等炭质原料。
这些原料需要经过破碎、筛分、干燥等处理,以保证原料的质量和稳定性。
接下来是炭化过程。
炭化是将原料在高温下进行干馏或氧化,使其转化为炭质物质的过程。
一般情况下,炭化可以分为干法炭化和湿法炭化两种方式。
干法炭化是在缺氧条件下进行,湿法炭化则需要在水蒸气或其他气体的作用下进行。
炭化的关键是控制温度和时间,以确保原料完全炭化,同时又不使炭质物质烧损。
然后是活化过程。
活化是指将炭化后的原料在一定条件下进行气相或液相的活化处理,以增加活性炭的孔隙结构和比表面积。
活化方式主要有物理活化和化学活化两种。
物理活化是利用气体(如水蒸气、二氧化碳等)或化学活化剂(如氢氧化钾、氢氧化钠等)进行活化处理。
通过活化处理,活性炭的吸附性能得到显著提高。
最后是粉碎和筛分。
经过活化处理的活性炭需要进行粉碎和筛分,以得到符合要求的颗粒度和颗粒分布。
一般情况下,活性炭的颗粒度会根据不同的应用领域有所不同,需要根据实际需求进行调整。
综上所述,活性炭生产工艺流程包括原料准备、炭化、活化和粉碎等环节。
通过这些环节的精心设计和严格控制,可以生产出具有优良吸附性能的活性炭产品,满足不同领域的需求。
活性炭的生产工艺流程对产品质量和性能具有重要影响,因此在生产过程中需要严格控制各个环节,确保产品质量稳定可靠。
活性炭炭化工艺炭化工序是气体活化法生产活性炭过程中的重要工序之一,该过程是把原料隔绝空气加热,使非碳元素减少,以生产出适合活化工序所需要的碳质材料的工序,是活化前的主要准备与基础。
在煤基活性炭生产过程中,炭化过程通常包括物料的炭化和炭化尾气处理两部分。
炭化过程炭化过程实际上就是物料在低温条件下的干馏过程。
在该过程中,物料在一定的低温范围内和隔绝空气的条件下逐步升温加热,物料中的低分子物质首先挥发,然后煤及煤焦油沥青分解和固化.整个炭化过程中物料会发生一系列复杂的物理变化和化学变化,其中物理变化主要是脱水、脱气和干燥过程;化学变化主要是热分解和热缩聚两类反应。
物料在热分解和热缩聚反应过程中析出煤气和煤焦油,物料中有机化合物的氧键结合基被破坏,氧元素以Hz 0, CO, CO:等气体析出,同时形成芳香族化合物和交联的高强度碳分子结构固体;在炭化过程中,由于物料在高温分解时将氧和氢等非碳物质排出,失去氧氢后的碳原子则进行重新组合,形成具基本石墨微晶结构的有序物,这种结晶物由六角形排列的碳原子平面组成,它们的排列是不规则的,因此形成了微晶之间的空隙,这些空隙便是炭化料的初始孔隙。
因此,炭化的目的就是使物料形成容易活化的二次孔隙结构并赋予能经受活化所需要的机械强度。
对物料炭化的要求就是通过炭化所得的.炭化料外观要达到一定的规格和形状要求,内部结构上要具有一定的初孔结构,同时要具有较高的机械强度。
炭化过程一般可以分为以下几个阶段。
(1)干燥阶段温度在120℃以下,原料煤释放出外在水分和内在水分,此时原料煤的外形无变化。
(2)开始热解阶段原料煤开始发生分解反应释放出热解水,形成气态产物(如CQ, C02, H2 S等),不同煤种开始热解的温度不同,变质程度低的煤的开始热解温度也较低,东北泥炭约为100—1600,褐煤约为200~ 3000C,烟煤约为300^-4000C,无烟煤约为300-450C。
由于煤的分子结构和生成条件有较大差异,故上述开始热解温度只是不同煤种间的相对参考值。
煤基活性炭制备工艺研究煤基活性炭是一种重要的吸附材料,具有高比表面积、孔隙度大、吸附能力强等优点。
本文对煤基活性炭的制备工艺进行研究。
制备原料:本实验采用的原料为褐煤,煤质为干基灰分12.5%,挥发分45.6%,固定碳34.8%,全硫1.78%,水分1.2%。
制备工艺:将褐煤粉末置于加热炉中进行焦化,焦化过程中,褐煤中的挥发分慢慢被热解出来,同时固定碳逐渐浓缩。
煅烧时分为两个阶段,第一阶段煅烧温度升至300℃,煅烧时间5小时,主要用于除去原料中的水、气态成分和杂质物质。
第二阶段煅烧温度升至800℃,煅烧时间4小时,将固体褐煤焦进行再生,使其分解出一部分孔洞,提高了其比表面积。
在煅烧的第二个时期中,将焦化后的煤粉放置于加热炉中,保持煅烧温度在800℃,加入氮气或水蒸气至2MPa的压力下进行水蒸气或煤气活化。
将煤基原料在800℃高温下气化,使其产生很多孔洞,增加其表面积和孔隙度,提高其吸附性能。
活化后,经水洗、干燥、烘烤后制成煤基活性炭。
控制工艺参数:在煅烧和活化的过程中,要注意控制工艺参数,以保证制备出的煤基活性炭具有较好的吸附性能。
控制的参数主要包括煅烧温度、煅烧时间、流动速率、气氛等。
煅烧温度适合在800℃左右,这样可以保证充分焦化并生成大量活性基团。
煅烧时间在5-6小时内,可以达到焦化的目的。
在活化过程中,气氛要尽量保持惰性气体,以免对煅焦样品产生影响。
流量速率适合在20-30mL/min,可以保证反应充分。
检测煤基活性炭的吸附性能:通过检测制备出的煤基活性炭的吸附性能,可以评价其质量是否合格。
常使用的检测方法有恒重法、氮气吸附法、甲醇蒸汽吸附法等。
其中,氮气吸附法是一种比较直接、简单的检测方法,可以获得煤基活性炭的比表面积、孔径分布、孔体积等指标。
一般来说,制备出的煤基活性炭的比表面积应该在800-1200m2/g之间。
活性炭专业生产工艺流程活性炭是一种高效的吸附材料,广泛应用于水处理、空气净化、化学品处理等领域。
本文将介绍活性炭的专业生产工艺流程,包括原料准备、碳化、激活等步骤。
原料准备活性炭的原料主要是木材、椰壳、煤炭等,这些材料含有丰富的碳元素,具备良好的吸附性能。
在原料准备阶段,首先需要对原料进行粉碎和筛分,以便获得适合生产活性炭的颗粒大小。
碳化碳化是指将原料进行高温炭化处理,将其中的杂质和非碳元素去除,得到含碳高的物质。
碳化可以使用多种方法,包括热解、气化和焦化等。
其中,热解是最常用的方法,它通过在高温下将原料分解为固体碳和气体产物。
激活激活是在高温环境中,通过将碳材料与气体或化学物质接触,增加活性炭的孔隙结构和表面积,从而提高其吸附性能。
激活过程可以分为物理激活和化学激活两种方法。
•物理激活:物理激活是指使用水蒸汽、空气或惰性气体等对碳材料进行高温处理。
这种方法主要通过蒸发原料中的挥发性物质,扩大碳材料中的孔隙,从而提高吸附性能。
•化学激活:化学激活是指将碳材料浸泡在化学剂溶液中,然后在高温条件下进行煮沸或烘干。
化学激活可以引起碳材料的增强孔隙结构和活化表面。
洗涤和干燥在激活过程结束后,活性炭需要经过洗涤和干燥步骤,以去除激活剂和其他杂质,并将其变为干燥的固体状态。
•洗涤:洗涤一般使用盐酸、盐溶液或水等溶液,将活性炭浸泡在其中,并通过搅拌或过滤等方式去除激活剂和其他杂质。
•干燥:完成洗涤后,活性炭需要经过干燥过程,以保证其稳定性。
干燥可以通过自然晾干或者利用烘干设备进行。
质量检验生产过程的最后一步是对活性炭进行质量检验。
主要检验项目包括孔隙度、表面积、吸附性能等。
这些检验可以使用物理测试方法,如氮气吸附法和比表面积测定法,或者化学分析方法,如酸洗法和碘吸附法等。
包装和存储经过质量检验合格的活性炭将被包装,通常以塑料袋或纸箱为包装材料。
在包装过程中,需要避免活性炭与湿气的接触,并确保包装密封牢固。
包装完成后,活性炭需要储存在干燥、通风、避光的仓库中,以防止湿度和阳光的影响。
煤质活性炭的制作工艺及应用范围煤灰的成分比较复杂,它是煤中无机物转化而来的产物,它的含量与成煤原始植物和成煤环境有关。
煤灰中还有少量的碱金属K2O,Na2O等。
煤灰中各成分的熔化温度不同,不能以单一的矿物温度来衡量煤灰的熔融温度。
煤灰实际上是各种矿物成分的复合物,它是以硅酸盐和硅铝酸盆的形式存在。
煤灰的成分很复杂,因此,没有确切的熔化温度。
只能用温度特征来表示煤灰的熔融特征。
煤的灰熔融性对锅炉燃烧及煤质活性炭的活化过程是重要的煤质参数。
煤的灰熔点过低,在炉昆上容易结碴,影响燃烧的正常进行。
若用灰熔点低的煤生产煤质活性炭,在活化过程中,碳化料容易在火化道蓖上爬碴,生瘤,影响活性炭的质量和活化炉的寿命。
【煤的燃点影响煤质活性炭的质量】煤与氧作用使煤体温度升高,当温度达到一定程度时,煤开始着火燃烧,此温度称为煤的燃点。
但目前实验室测得的煤炭燃点,只是相对值,它是将NaNO2与煤样按一定比例混合,在燃点测试装置中按规定的升温速度加热,使其爆燃,爆燃的温度即为煤的燃点。
显然,这种方法测出的燃点低于实际煤的燃点。
煤的燃点受煤的种类影响较大,如泥炭的燃点(225~280℃),褐煤(250~450℃),无烟煤(440一500℃),焦炭的燃点较高(700~750℃)。
不同的煤质燃点不同。
水分大、含氧量高、挥发分高的煤及黄铁矿含量高的煤燃点均较低,易自燃。
温度、煤岩组分、煤的粒度也是影响煤炭燃点的因素。
在活性炭生产中,着火点高的煤制备的碳化料,在碳化中不易被氧化,在活化炉中,温度容易控制,有利于活性炭的质量。
【活性炭制作化学活化和物理活化】活性炭是一种既传统又现代的材料。
随着人类社会的不断发展,活性炭己经在食品、医药、化工、环保等诸多的领域得到了广泛应用;应用数量也不断递增。
近几年来,全球对活性炭的使用量年年增长。
我国活性炭产量己经居世界前列,但是我国生产的活性炭性能一般,性能优良活性炭主要还是依靠进口。
制备活性炭的原料非常丰富,如煤、果壳、稻壳、石油焦、树脂、沥青、废旧轮胎等。
煤质活性炭生产工艺煤质活性炭是一种常用的吸附剂,广泛应用于水处理、空气净化、食品工业等领域。
下面是煤质活性炭生产工艺的详细介绍。
煤质活性炭的生产工艺主要包括煤炭炭化、炭化后处理、活化和活化后处理等几个步骤。
首先是煤炭炭化。
炭化是将煤炭在高温下进行分解和热转化过程。
首先需要选择合适的煤炭作为原料,煤炭的选择会直接影响活性炭的吸附性能。
一般选择贫煤或半焦煤作为原料。
然后将煤炭送入炭化炉中,加热到800-1000摄氏度,通过控制温度、压力和时间等参数,使煤炭中的挥发分和气体排出,得到煤焦。
炭化过程可以分为两种方式,即干热炭化和气流炭化。
炭化后需要进行炭化后处理。
炭化后处理主要是通过进一步处理煤焦,提高炭的物理和化学性能。
常用的炭化后处理方法有煅烧、焦化和胶结等。
其中,煅烧是将煤焦加热至900-1200摄氏度,使其中的气体和挥发分进一步分解和排出,使炭的孔结构增加,提高炭的表面积和吸附性能。
焦化是在高温下进行炭的炭化和炭的改性,使其增加活性。
胶结是将煤焦与一定比例的胶结剂混合,在高温下进行压制和炭化,增加炭的强度和耐磨性。
接下来是活化。
活化是将炭化后的炭通过化学或物理方法,使其增加大量的微孔和介孔结构,提高炭的吸附性能。
常见的活化方法有物理活化和化学活化。
物理活化是将炭放入高温下的活化器中,通过蒸汽或气体来激活炭的表面,其中的活化剂可以是氧气、二氧化碳等。
化学活化是将炭放入含有活化剂的溶液中进行处理,活化剂一般选择碱性或酸性溶液。
活化过程中,控制温度、压力和时间等参数,使炭的孔结构增加,活性增强。
最后是活化后处理。
活化后处理是为了进一步提高炭的吸附性能和增加炭的稳定性。
常见的活化后处理方法有高温处理、酸洗、碱洗等。
高温处理是将活化炭加热至高温,使其中的气体和水分进一步排出,增加炭的稳定性。
酸洗和碱洗是通过将活化炭进行酸性或碱性处理,去除其中的杂质和残留活化剂,提高炭的纯净度。
以上就是煤质活性炭生产工艺的基本步骤。