有相变传热系数的计算
- 格式:ppt
- 大小:1.37 MB
- 文档页数:24
液氧管内有相变的传热量计算液氧是一种常见的工业和航天领域使用的氧化剂。
在液氧输送过程中,由于液氧温度低于其沸点,会发生相变现象。
在管道内部,液氧从液态向气态的相变释放了大量的潜热。
准确计算液氧管内有相变时的传热量对于设计和操作管道具有重要意义。
本文将详细介绍液氧管内有相变的传热量计算方法,包括相变热的计算、传热系数的确定以及管道传热量的估算,旨在为相关工程师和研究人员提供参考。
1.相变热的计算液氧在常压下的沸点约为90K(-183°C),在输送管道中常常处于液态和气态之间。
液态到气态的相变过程中,液氧释放的潜热称为相变热。
计算相变热的常用方法包括:-理论计算:可以使用气体状态方程和热力学公式来计算相变热。
根据液氧的温度和压力,通过计算气体状态方程的参数,可以得到相变热的理论值。
-实验测定:通过实验方法直接测定液氧在常压下的相变热。
常用的实验方法包括差热分析法和燃烧热法等。
2.传热系数的确定在液氧管道中,液态氧与管道壁面之间存在传热过程,传热系数是描述传热效果的重要参数。
液氧的传热系数受多种因素影响,如流动速度、管道内壁面特性等。
传热系数的确定通常采用以下两种方法:-理论计算:根据传热学理论和流体力学公式,结合液氧的物性参数,可以推导出液氧在不同流动条件下的传热系数的近似计算公式。
-实验测定:通过在实验设备中进行液氧传热实验,测量液氧的传热系数。
常用的实验方法包括热电偶法、热平衡法和换热器法等。
3.管道传热量的估算在了解相变热和传热系数的基础上,可以估算液氧管道内有相变时的传热量。
传热量的计算通常包括以下几个步骤:-确定管道内液氧的流动速度和压力等参数。
-通过传热系数的计算或实验测定,确定液氧的传热系数。
-根据管道内液氧的质量流量和相变热的数值,计算出单位时间内的相变热释放量。
-将相变热释放量与传热系数相乘,得到管道单位长度内的传热量。
4.结论液氧管内有相变时的传热量计算是设计和操作液氧输送系统的重要问题。
传热计算传热计算分为两种:设计计算——据任务给定热负荷,确定换热器面积;校核计算——对已有换热器,计算其热负荷、或流体流量、或流体出口温度。
计算基础:热量衡算(即能量衡算)传热速率方程(多用无壁温的总方程)4-4-1能量衡算与推导柏式的能量衡算相比较,在换热器中,①器内无“外功”加入;②位能较小(∵换热器多横置,竖置时△Zmax≤6m),动能变化也较小(∵只有管程流体在分配头处才有些变化),∴一般忽略;③∵流阻转换的热量与热负荷相比很小,∴忽略。
换热器的能量衡算只考虑间壁两侧流体的“焓衡算”。
设换热器绝热,Q L=0;则单位时间内热流体放出的热量等于冷流体吸收的热量:W h(H h1-H h2)=W c(H c2-H c1)=Q(4-30)或(W△H)h=(W△H)c=Q其中的△H不外有下列三种基本形式:①无相变,c p=常数;△H h=c ph(t2-t1)或△H c=c pc(T1-T2)②有相变:△H=r③相变加温变:△H=r+c p△T(/△t)根据实际情况可能组合出许多热量衡算公式。
4-2-2总传热速率微分方程和总传热系数一、总传热速率微分方程∵稳定的间壁传热,流体的对流传热速率Q=间壁的导热速率Q。
∴计算时可任取某侧流体或间壁作为计算对象。
但是,计算式中都涉及壁温,它既难侧又难求取(试差)仿多层平壁,将同一横截面上的两侧流体分别“绝热混合”,它们的差值做为截面传热的中推力,即:式也可以写成:dQ=k(T-t)dS=k△tdS(3-34)对应不同的传热面有:dQ=K i(T-t)dS i=K m(T-t)dS m=K o(T-t)dS o注意①K与α相同处:“局部中传热系数”,计算时取均值②K与dS--对应。
Ki~Km~Ko:二、总传热系数K由和(3--34):基于不同的传热面:即:换热器在实际进行中,∵流体中结晶等的沉淀、结垢、结焦、聚合或冷却水中的藻类、细菌或流体对管才的腐蚀等原因,都会在管壁上形成污垢层。
换热器的传热计算换热器的传热计算包括两类:一类是设计型计算,即根据工艺提出的条件,确定换热面积;另一类是校核型计算,即对已知换热面积的换热器,核算其传热量、流体的流量或温度.这两种计算均以热量衡算和总传热速率方程为基础。
换热器热负荷Q 值一般由工艺包提供,也可以由所需工艺要求求得。
Q=W c p Δt,若流体有相变,Q=c p r 。
热负荷确定后,可由总传热速率方程(Q=K S Δt)求得换热面积,最后根据《化工设备标准系列》确定换热器的选型。
其中总传热系数K=0011h Rs kd bd d d Rs d h d o m i i i i ++++ (1)在实际计算中,总传热系数通常采用推荐值,这些推荐值是从实践中积累或通过实验测定获得的,可以从有关手册中查得。
在选用这些推荐值时,应注意以下几点:1. 设计中管程和壳程的流体应与所选的管程和壳程的流体相一致。
2. 设计中流体的性质(粘度等)和状态(流速等)应与所选的流体性质和状态相一致。
3. 设计中换热器的类型应与所选的换热器的类型相一致。
4. 总传热系数的推荐值一般范围很大,设计时可根据实际情况选取中间的某一数值。
若需降低设备费可选取较大的K 值;若需降低操作费用可取较小的K 值。
5. 为保证较好的换热效果,设计中一般流体采用逆流换热,若采用错流或折流换热时,可通过安德伍德(Underwood )和鲍曼(Bowman)图算法对Δt 进行修正。
虽然这些推荐值给设计带来了很大便利,但是某些情况下,所选K 值与实际值出入很大,为避免盲目烦琐的试差计算,可根据式(1)对K 值估算。
式(1)可分为三部分,对流传热热阻、污垢热阻和管壁导热热阻,其中污垢热阻和管壁导热热阻可查相关手册求得。
由此,K 值估算最关键的部分就是对流传热系数h 的估算.影响对流传热系数的因素主要有:1.流体的种类和相变化的情况液体、气体和蒸气的对流传热系数都不相同。
牛顿型和非牛顿型流体的也有区别,这里只讨论牛顿型对流传热系数。
传热计算一、传热方程式1、q=KA ΔtK 比例常数,为传热系数。
A 传热面积,单位J/S ·m 2K 。
Δt 温差(热量传递的推动力)单位K 。
2、热量衡算2.1焓差法 热负荷的计算q 热=W 热(H 1-H 2) WQ 冷=W 冷(h 1-h 2) WW 热 W 冷热流体和冷流体的质量流量,kg/s;H 1 H 2热流体最初和最终的焓,J/kg ;h 1 h 2冷流体最初和最终的焓,J/kg 。
2.2温差法 在缺乏焓数据时,换热过程无相变q 热=W 热C 热(T 1-T 2) Wq 冷=W 冷C 冷(t 1-t 2) WC 热 C 冷热流体和冷流体的质量流量,J/kg.k;T 1 T 2热流体最初和最终的温度,k ;t 1 t 2冷流体最初和最终的温度,k 。
2.3潜热法 发生相变q 热=W 热r 热 Wq 冷=W 冷r 冷 Wr 热 r 冷热流体和冷流体的汽化潜热。
二、平均温差计算1、间壁并流、逆流(Δt'/Δt">2)Δt 均=(Δt'-Δt")/ln(Δt'/Δt")Δt'换热器进口端的温度差;Δt"换热器出口端的温度差。
2、错流、折流的平均温差Δt 均=φΔt Δt 均逆R=(T 1-T 2)/(t 1-t 2)P=(t 1-t 2)/(T 1-t 1)根据R 、P 值,以及两流体的流动方式,查校正系数。
二、热传导傅里叶定律q=λA(t1-t2)/δλ比例常数(查表)W/m·K A传热面积 m2δ壁厚 m(t1-t2)传热温差三、105%酸室外最低温度-10℃,需保温温度20℃,钢板厚度0.018米,导热系数67.45W/(m.℃),罐体半径10米,高度8米,使用蒸汽0.5MPa,温度151.7℃,汽化潜热2107KJ/Kg,求传热面积及所需Φ32×4的无缝管的米数。
解:由105%酸罐壁面以对流和辐射两种方式散失于周围环境,1、热损量根据圆筒壁保温传热系数a T=9.4+0.052(t w-t)=9.4+0.052(20+10)=10.96 W/( m2℃)热损:Q=a T S(t w-t)=10.96×3.14×10×8×30=82594.56 W2、吸热量105%酸需吸收热量Q1=W1C1(t1-t2)=3.14×10×8×1.8×1000×1.47×30=19940256 W罐壁需吸收热量Q2=W2C2(t1-t2)=3.14×10×8×18×7.85×0.46×30=489825 WQ=Q1+ Q2=20430081 W3、所需0.5MPa蒸汽量W=Q/r =(20430081+82594.56 )/ 2107×1000=1.008 Kg 蒸汽密度:2.547Kg/m3蒸汽V=m/p=1.008/2.547=0.4m34、所需管道型号及长度蒸汽管道采用Φ32×4L=0.4/(3.14×0.012×0.012)=884m.。