与客户共同整理的FLUENT12经典培训教程——混合梯形管算例(周旋、高洁综合版本)
- 格式:pptx
- 大小:2.19 MB
- 文档页数:44
luent中一些问题----(目录)1 如何入门2 CFD计算中涉及到的流体及流动的基本概念和术语2.1 理想流体(Ideal Fluid)和粘性流体(Viscous Fluid)2.2 牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid)2.3 可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid)2.4 层流(Laminar Flow)和湍流(Turbulent Flow)2.5 定常流动(Steady Flow)和非定常流动(Unsteady Flow)2.6 亚音速流动(Subsonic)与超音速流动(Supersonic)2.7 热传导(Heat Transfer)及扩散(Diffusion)3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?3.1 离散化的目的3.2 计算区域的离散及通常使用的网格3.3 控制方程的离散及其方法3.4 各种离散化方法的区别4 常见离散格式的性能的对比(稳定性、精度和经济性)5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?6.1 可压缩Euler及Navier-Stokes方程数值解6.2 不可压缩Navier-Stokes方程求解7 什么叫边界条件?有何物理意义?它与初始条件有什么关系?8 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?9 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?10 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?12 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?14 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的?15 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?16 22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?17 23 在FLUENT运行过程中,经常会出现“turbulence viscous rate”超过了极限值,此时如何解决?而这里的极限值指的是什么值?修正后它对计算结果有何影响18 24 在FLUENT运行计算时,为什么有时候总是出现“reversed flow”?其具体意义是什么?有没有办法避免?如果一直这样显示,它对最终的计算结果有什么样的影响26 什么叫问题的初始化?在FLUENT中初始化的方法对计算结果有什么样的影响?初始化中的“patch”怎么理解?27 什么叫PDF方法?FLUENT中模拟煤粉燃烧的方法有哪些?30 FLUENT运行过程中,出现残差曲线震荡是怎么回事?如何解决残差震荡的问题?残差震荡对计算收敛性和计算结果有什么影响?31数值模拟过程中,什么情况下出现伪扩散的情况?以及对于伪扩散在数值模拟过程中如何避免?32 FLUENT轮廓(contour)显示过程中,有时候标准轮廓线显示通常不能精确地显示其细节,特别是对于封闭的3D物体(如柱体),其原因是什么?如何解决?33 如果采用非稳态计算完毕后,如何才能更形象地显示出动态的效果图?34 在FLUENT的学习过程中,通常会涉及几个压力的概念,比如压力是相对值还是绝对值?参考压力有何作用?如何设置和利用它?35 在FLUENT结果的后处理过程中,如何将美观漂亮的定性分析的效果图和定量分析示意图插入到论文中来说明问题?36 在DPM模型中,粒子轨迹能表示粒子在计算域内的行程,如何显示单一粒径粒子的轨道(如20微米的粒子)?37 在FLUENT定义速度入口时,速度入口的适用范围是什么?湍流参数的定义方法有哪些?各自有什么不同?38 在计算完成后,如何显示某一断面上的温度值?如何得到速度矢量图?如何得到流线?39 分离式求解器和耦合式求解器的适用场合是什么?分析两种求解器在计算效率与精度方面的区别43 FLUENT中常用的文件格式类型:dbs,msh,cas,dat,trn,jou,profile等有什么用处?44 在计算区域内的某一个面(2D)或一个体(3D)内定义体积热源或组分质量源。
HPU营销攻略平均法、五步、八点目录营销平均法、五步、八点 (1)平均法 (1)五步 (1)八点 (5)营销平均法、五步、八点平均法含义:见的顾客越多,成交的机会越大。
定义:与你所见的每一位顾客热情地打招呼,成交是必然的,它只是一个数字的游戏而已。
保证:良好的态度+不断提升的销售技巧是实现平均法的保证。
实施方法:1.坚信平均法的魔力;2.做足八小时;3.见足两百个顾客;4.快;5.不挑选地区;6.不挑选顾客。
意义:1.是提高业绩的保证;2.是提高业务技能的保证;3.是强壮人所必须具备的;4.可以建立自信;5.可以锻炼口才;6.可以增加勇气。
五步任何简单的武功只要做到一招致敌就是最好的武功了。
武功的最高境界是无招胜有招。
所有的武林绝学也只是由N多个平凡的招式巧妙地组合到一起的结果,把这些平凡的招式反复练习直至练成本能,那么这个武功就成了武林至高了。
销售也是一样,把销售过程分解成几个步骤,分解成一个个单独的动作不断练习直到成为习惯。
一个完整的销售过程,可以分成五个步骤:第一步:打招呼打招呼时的三个要点:热情、目光、笑容。
第一点:热情。
不知道大家注意到没有,在主动与别人打招呼时绝对会出现的情况就是打招呼的人热情对方就跟着热情,而冷漠地给别人打招呼就会得到冷漠的回应,所以我们在给顾客打招呼时一定要热情为先。
你的热情会影响到顾客的心情。
第二点:目光。
用专注的目光盯住对方的眼睛,这会给顾客一定的震撼作用,会让顾客对你产生亲近。
有人觉得这样做好像不太礼貌,特别是男销售员面对女顾客时,我只能告诉你,你这种想法是大错特错。
这样说的道理其实很简单,一个人热情的对你打招呼而且你发现他的眼睛有神的盯着你,好像在说话,你的心理活动会是什么样的呢?一是觉得好奇,这个人怎么这样看着我?二是有一丝紧张,又有点害怕(这点紧张害怕就会让别人能在几分钟之内控制你的思维),进而产生的紧迫感会让你乱了方寸,不知所措,此时你就可能接受他的安排了。
一、多相流模型①VOF模型该模型通过求解单独的动量方程和处理穿过区域的每一流体的容积比来模拟两种或三种不能混合的流体。
典型的应用包括流体喷射、流体中大泡运动、流体在大坝坝口的流动、气液界面的稳态和瞬态处理等。
②Mixture模型这是一种简化的多相流模型,用于模拟各种有不同速度的多相流,但是假定了在短空间尺度上局部的平衡。
相之间的耦合应当是很强的。
它也用于模拟有强烈耦合的各向同性多相流和各向以相同速度运动的多相流。
典型的应用包括沉降(sedimentation)、气旋分离器、低载荷作业下的多粒子流动、气相容积率很低的泡状流。
Mixture Parameters一般需要勾选Mixture Parameters中的Slip Velocity复选框,以此来求解滑移速度模型,因为在多相流中各种组分的速度有很大不同。
对于求解一个均匀的多相流问题可以选择不做滑移速度的计算,可以在mixture parameters选项下将slip velocity关掉。
Body Force Formulation为提高解的收敛性,对于涉及到表面张力的计算,建议在Body Force Formulation 中勾选Implicit Body Force。
这样做由于压力梯度和动量方程中表面张力的部分平衡,从而提高解的收敛性。
③Eulerian模型该模型可以模拟多相分离流及相互作用的相,相可以是液体、气体、固体。
与在离散相模型中Eulerian-Lagrangian方案只用于离散相不同,在多相流模型中Eulerian方案用于模型中的每一项。
二、相设置相设置一般用于多相流的设置,对于相设置,这里主要讲一下Interaction的设置,如图:Interaction设置Drag选项针对每对物相,在下拉菜单中选择阻力函数。
其中包括schiller-naumann 模型、morsi-alexander 模型、symmetric(对称)模型等用于流体与流体之间阻力计算的模型,也包括wen-yu 模型、gidaspow 模型、syamlal-obrien 模型等用于液体与固体之间阻力计算的模型,还包括syamlal-obrien-symmetric 模型用于固体与固体之间的阻力计算。
FLUENT12软件介绍n 软件功能FLUENT软件几乎成为航空领域CFD分析的标准,特别是在ANSYS公司收购FLUENT以后针对航空领域做了大量高技术含量的开发工作,FLUENT内置六自由度刚体运动模块配合强大的动网格技术用于模拟飞行器外挂物分离、领先的转捩模型精确计算层流到湍流的转捩以及飞行器阻力精确模拟、非平衡壁面函数和增强型壁面函数+压力梯度修正大大提高边界层回流计算精度、多面体网格技术大大减小网格量并提高计算精度、密度基算法解决高超音速流动、高阶格式可以精确捕捉激波、噪声模块解决航空领域的气动噪声问题、非平衡火焰模型用于航空发动机燃烧模拟、旋转机械模型+虚拟叶片模型广泛用于螺旋桨旋翼CFD模拟、先进的多相流模型+动网格技术用于恶劣飞行条件下的结冰数值模拟、HPC大规模计算高效并行技术,这些都是航空领域CFD计算的关键技术。
n 软件模块网格技术1)网格自适应技术:FLUENT采用网格自适应技术,可根据计算中得到的流场结果反过来调整和优化网格,从而使得计算结果更加准确。
这是目前在CFD技术中提高计算精度最重要的技术之一,尤其对于有波系干扰、分离等复杂物理现象的流动问题,采用自适应技术能够有效地捕捉到流场中的细微的物理现象,大大提高计算精度。
FLUENT软件具有多种自适应选项,可以对物理量值、物理量的空间微分值(如压力梯度)、网格容积变化率、壁面y*/y+值等进行自适应。
(2)多重网格初始化(FMG)技术:较好的初始流场能够大大提高问题的收敛速度。
FLUENT 提供了自动在后台操作的FMG方法,在粗网格上先用一阶精度的无粘欧拉方程计算得到较好的初始化流场,然后一步步细化网格求解NS方程得到精确解。
FMG方法对于包含较大压力、速度梯度的流动问题非常有用,在某些情况下收敛时间可缩短至原来的五分之一。
(3)多面体网格技术:FLUENT新版本增加了多面体网格功能,可以把四面体网格量减少约2/3,而且计算精度提高。
FLUENT中文手册(简化版)本手册介绍FLUENT的使用方法,并附带了相关的算例。
下面是本教程各部分各章节的简略概括。
第一部分:☐开始使用:描述了FLUENT的计算能力以及它与其它程序的接口。
介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。
在本章中给出了一个简单的算例。
☐使用界面:描述用户界面、文本界面以及在线帮助的使用方法,还有远程处理与批处理的一些方法。
☐读写文件:描述了FLUENT可以读写的文件以及硬拷贝文件。
☐单位系统:描述了如何使用FLUENT所提供的标准与自定义单位系统。
☐使用网格:描述了各种计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。
还描述了非一致(nonconformal)网格的使用.☐边界条件:描述了FLUENT所提供的各种类型边界条件和源项,如何使用它们,如何定义它们等☐物理特性:描述了如何定义流体的物理特性与方程。
FLUENT采用这些信息来处理你的输入信息。
第二部分:☐基本物理模型:描述了计算流动和传热所用的物理模型(包括自然对流、周期流、热传导、swirling、旋转流、可压流、无粘流以及时间相关流)及其使用方法,还有自定义标量的信息。
☐湍流模型:描述了FLUENT的湍流模型以及使用条件。
☐辐射模型:描述了FLUENT的热辐射模型以及使用条件。
☐化学组分输运和反应流:描述了化学组分输运和反应流的模型及其使用方法,并详细叙述了prePDF 的使用方法。
☐污染形成模型:描述了NOx和烟尘的形成的模型,以及这些模型的使用方法。
第三部分:☐相变模拟:描述了FLUENT的相变模型及其使用方法。
☐离散相变模型:描述了FLUENT的离散相变模型及其使用方法。
☐多相流模型:描述了FLUENT的多相流模型及其使用方法。
☐移动坐标系下的流动:描述单一旋转坐标系、多重移动坐标系、以及滑动网格的使用方法。