2019年浙江省高职单招单考温州市第一次模拟考试《数学》试卷参考答案
- 格式:doc
- 大小:427.50 KB
- 文档页数:5
2019届浙江省温州市高三第一次模拟考试数学试题选择题部分(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1. 设全集错误!未找到引用源。
,则集合错误!未找到引用源。
( )A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
【答案】B【解析】试题分析:如图,错误!未找到引用源。
.故选B .13U :1,2,3,4,5BA考点:集合的运算.2. 已知错误!未找到引用源。
是虚数单位,则满足错误!未找到引用源。
的复数错误!未找到引用源。
在复平面上对应点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A考点:复数的模,复数的几何意义.3. 设实数错误!未找到引用源。
满足错误!未找到引用源。
,则错误!未找到引用源。
的最大值为( )A .错误!未找到引用源。
B .错误!未找到引用源。
C .2D .3【答案】C【解析】试题分析:作出可行域,如图错误!未找到引用源。
内部(含边界),作出直线错误!未找到引用源。
,平移直线错误!未找到引用源。
,当它过点错误!未找到引用源。
时,错误!未找到引用源。
取得最大值2.故选C.考点:简单的线性规划.4. 若错误!未找到引用源。
,则错误!未找到引用源。
()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
或1 D.错误!未找到引用源。
或-1【答案】A考点:三角函数的同角关系.5. 在错误!未找到引用源。
的展开式中,各项系数和与二项式系数和之比为64,则错误!未找到引用源。
的系数为()A.15 B.45 C.135 D.405【答案】C【解析】试题分析:由题意错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
,令错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
.故选C.考点:二项式定理的应用.6. 已知正整数错误!未找到引用源。
2019年浙江省单独考试招生文化考试仿真模拟数学试题卷姓名:___________准考证号:___________本试题卷共3大题,共4页。
满分150分,考试时间120分钟考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
一、单项选择题(本大题共20小题,1-10小题每小题2分,13-20小题每小题3分,共50分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的.错涂、多涂或未涂均不得分)1.若全集R U =,5}-3|{<<x N x A ∈=,0}1|{<-∈=x Z x B ,则 A B C U =()A.{2,3,4}B.{1,2,3,4}C.{1,2,4}D.{0,1,2,3,4}2.函数)2lg(1--=x x y 的定义域是()A.(2,∞+)B.[1,2)∪(2,∞+)C.[1,∞+)D.[1,2)3.下列函数在其定义域内恒为减函数的是()A.x xy +=1 B.xy 21log = C.xy 3= D.64-2++=x x y 4.数列}{a n ,对任意*∈N x ,均满足点),(n S n M 在二次函数2x y =的图像上,则()A.该数列公比为2B.32=SC.该数列中所有奇数项呈公差为4的等差数列D.221+=+n a n 5.在平面直角坐标系中,点(2,3)关于直线032=-+y x 的对称点是()A.(-2,-3)B.(-1,0)C.(1,2)D.(0,-1)6.一椭圆以双曲线122=-y x 的顶点为焦点,焦点为顶点,则下列关于该椭圆的说法错误的是()A.短轴长为2B.离心率为22 C.焦距为2 D.长轴长为短轴长的2倍7.若232cos 232sin =-αα,则αtan ()A.62 B.2196C.23 D.228.已知直线l :0232=-+y x 的倾斜角α,直线l 与x 轴交点为A ,将其绕点A 逆时针旋转α度后得到直线1l ,则1l 的斜率为()A.512- B.34-C.32- D.09.抛物线2x y =图像上任意一点到其焦点的最短距离为()A.21 B.1C.41 D.3110.若方程04)2(222=-++-+m y x m y x 表示一个圆,则m 的取值范围是()A.]4-4[, B.)4-4(, C.),(),(∞+∞44-- D.),,(∞+∞4[]4-- 11.下列不等式中,解集为)[3,1)-(+∞∞ ,的是()A.0)3)(1(≥--x x B.{01-x 03<≥-x C.013≥--x x D.0342>+-x x 12.在一个角为60°的△ABC 中,∠A 、∠B 、∠C 所对的边分别为c b a 、、,则“c b a ,,三边成等差”是“△ABC 为等边三角形”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件13.如图所示,在正方形ABCD 中,两条对角线交点为O ,则下列结论中错误的是()A.AC AB AD =-B.CBCA CD =+C.=+ D.=+第13题图14.6人平均分成3组,且甲、乙必须同组,则不同的分组方案有_________种.()A.48 B.6 C.36 D.315.给出以下四个命题,其中真命题的个数是()①如果两条相交直线均与第三条直线垂直,则这三条直线构成了三个平面②若直线⊥A 平面α,直线B 垂直A ,则α∥B ③若已知平面α,且αα⊆⊆B A ,,则B A ,两条直线共面,反之,则异面④若平面外的一条斜线l 与平面相交,且直线1l 与l 在平面内的的射影垂直,则l l ⊥1A.0个 B.1个 C.2个D.3个16.下列各式不正确的是()A.)cos()cos(ααπ-=+B.)2cos()3sin(απαπ+=+C .απαtan )tan(=- D.)sin()sin(βαβα--=+-AB C CD17.函数)6sin(2)(πω+=x x f 的一个单调区间为]3,32[ππ-,则ω的值为()A.1B.±1C.-1D.±218.点Q 的坐标为)0,30(sin !︒则点Q 所在的位置是()A.第一象限B.第二象限C.第三象限D.坐标轴上19.某年寒假时间为25天,其中雨雪天为15天,则晴天占寒假总天数的概率为()A.53 B.52 C.83 D.8520.在△ABC 中,2sin =Aa,B ∠:C ∠3:2=,则B ∠的度数为()A.30°B.45°C.60°D.75°二.填空题(本大题共7小题,每小题4分,共28分)21.若直线01=--ay x 和02)2(=++-y a ax 互相垂直,则a =__________.22.已知)0(lg )0(42{)1(>x x x x x f ≤+=+,则=-)]3([f f ___________.23.在一等比数列}{n a 中,01>a ,42=a ,则31a a +的取值范围是_____________.24.已知23-sin =α,]23,[ππα∈,则=α2tan _____________.25.某设备购买时价值为100万元,第一年报废了其中的一半,以后每年报废剩余价值的一半,价值低于5万元后视同报废,则__________年后该设备视同报废.26.已知海绵宝宝在盛有足量水的容器中会逐渐长大,受到外界碰撞或容器壁挤压则会破裂,一海绵宝宝呈球形,现有一圆柱形玻璃杯(不计玻璃厚度),底面直径与高相等,侧面积为π92cm ,为使海绵宝宝能“顺利成长”,则应控制其体积不超过______________.27.直线)}{(2常数∈+=b b x y 与双曲线4422=-y x 的图像有_________个交点.三.解答题(本大题8小题,共72分)解答应写出文字说明及演算步骤28.(本题满分7分)求值:πcos 32(2lg 3125lg 2213++++-C P .29.(本题满分8分)已知椭圆短轴上的一个顶点A 与两个焦点1F 、2F 构成一个等腰直角三角形,焦点在x 轴上,原点到直线1AF 的距离为1,直线01=+-y x 与椭圆相交于E 、F 两点,求OEF S ∆.30.(本题满分9分)已知函数x x x f 2cos )1(tan )(+=.(1)求函数的最大值和周期;(2)讨论函数在定义域),(π0上的单调性.31.(本题满分9分)二项式nt x )(+(其中t 为常数)展开后只有第5项的二项式系数最大,且各项系数之和256.(1)求t 的值;(2)求展开后所有偶数项的系数之和.32.(本题满分9分)在如图所示的直三棱柱111C B A ABC -中,62,42211====AC BC AB BB ,求:(1)点1A 到平面11C AB 的距离;(2)平面ABC 与平面11C AB 所成角的正切值.第32题图33.(本题满分10分)已知圆9)2(22=+-y x 与直线02=++-A y Ax (A 为常数)相切.(1)求A 的值;(2)若P 为圆上一动点,求当点P 到直线的距离最大时点P 的坐标.34.(本题满分10分)某地为迎接改革开放40周年,进行绿化建设,打算开发一块长8米、宽6米的矩形空地,为了美化,欲在如图所示的这块空地中挖一块圆形土地,记圆形土地面积为1S ,剩余部分面积为2S .若21S S <,则在圆内种草皮,剩余地块种郁金香;若12S S >,则反之.已知每平方米的草皮价格为320元,郁金香价格为318元.并且,当圆形土地半径为1米时,管理成本为3000元,半径每扩大1米,管理成本增加30元.求:(π取3)(1)所需总费用C 与圆形土地半径r 的函数关系式;(2)请问应如何设计种植,才能使总费用最低?第34题图35.(本题满分10分)在如图所示的坐标轴中,点P 、Q 均从原点出发向右移动,点P 移动的路径为(0,1,3,7,15,31…),点Q 移动的路径为(0,1,3,6,10,15,21…),括号内的数字为每经过1秒所到达的点的位置,在坐标轴中每相邻两点间的距离为一个单位长度.(1)观察这些点的特点,分别写出点P 和点Q 经过t 秒后所到达的点表示的数字;(2)若点Q 经过t 秒后所在的点表示数字为a ,求数列⎭⎫⎩⎨⎧t a 前n 项和.x第35题图1S 2S。
2019浙江单招单考数学1检测时间: 120 分钟 分值: 150 分 命题人:一、选择题(共20大题,1-10小题每题2分,11-20小题每题3分,共50分){}{})(,2,1log 0.13=⋂≤=<<=B A x x B x x A 则集合()(]()(]2,1D 2,1C 2,0B 1,0、、、、A )(的中点,是中在==∆AE ,DC 2B D ,.2AD E ABCAC AB AC AB AC AB AC AB A 6131D 3161C 6131B 3161+--+、、、、)”的(”是“则“设021,.32<-+<∈x x x R xA 、充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件)上是减函数的是(下列函数在R .4xxy y xy x y A 12D 2C ln B ====-、、、、)的值为(平行,则与直线直线a y x y ax 0132012.5=--=-+3D 2C 34B 3、、、、--A)的定义域为(函数)1lg()(.6-=x x f[)()()()()()+∞+∞⋃+∞⋃+∞,1D ,11,0C ,22,1B ,2、、、、A)的短轴长是(椭圆82.722=+y x 24D 4C 22B 2、、、、A=θθsin )43-(.8,则,的终边经过点设角P54D 54C 53B 53、、、、--A )(则且设=+∈-=-)22sin(),23,(,35)sin(.9απππααπ36D 66C 66B 36、、、、--A)的位置关系是(与,则是异面直线,直线设b c a c n m //,.10、异面或相交平行、、异面、相交D A C B)的解集是(则不等式设0)1)((,1.11>---<a x a x a⎭⎬⎫⎩⎨⎧><⎭⎬⎫⎩⎨⎧><⎭⎬⎫⎩⎨⎧<<⎭⎬⎫⎩⎨⎧<<a x a x x a x a x x a x a x a x a x A 或、或、、、1D 1C 1B 1)方案(个学校任教,共有分配位老师分配到将34.12256D 7C 12B 81、、、、A{})是(则满足的一个通项公式,,项为中,前已知数列241263.13n a 5D 3C 23B 42+==⋅=+=n a a a n a A n nn nn n 、、、、)(,则实数的一条渐近线为双曲线===-a x y a y x 212.14224D 3C 2B 2、、、、A)展开式中常数项是()(612.15--x x20D 20C 15B 15、、、、--A)概率为(次恰好出现一次正面的将一枚均匀硬币抛掷2.161D 43C 41B 21、、、、A)是(则角位于第二象限点θθθθ,)cos sin ,(sin .17⋅P、第四象限、第三象限、第二象限、第一象限D C B A)则下列正确的是(函数,1)4(cos 2.182--=πx y 32D 12C 3B 1最大为、周期为最大为、周期为最大为、周期为最大为、周期为ππππA)的值为(则角中,若C B a A b C c ABC ,cos cos cos 2.19+=∆3D 65C 65B 32ππππ、、、、A )则离心率为(且相切于点与圆的直线的左右焦点,过为双曲线,3,1-,.20122221222221MF MF M b y x l F by a x F F ==+=3D 3C 2B 2、、、、A二、填空题(本大题共7小题,每小题4分,共28分)____),3-2B(),3,2(45.210的值为则,直线过点倾斜角为m m A _____))1((1,log 1,2)(.222=⎩⎨⎧≥<=f f x x x x f x ,则函数()()_____221.2322对称的圆的方程为关于直线圆x y y x ==-+-{}______,0,12.245347==-=-S a a a a n 则中,若等差数列_______043.25则该球的体积为积相等,的表面积与此圆锥侧面,若球,底面半径为圆锥的高为______2sin 12cos ,314tan .26=-=⎪⎭⎫ ⎝⎛-αααπ则已知_______12,1log log ,0,0.2722的最小值为则且若yx y x y x +=+>>三、解答题(本大题共8小题,共72分,解答应写出必要的文字说明、演算步骤)28(本题满分7分)1ln 312321log )2019(23sin 8133++⎪⎭⎫ ⎝⎛++πA 计算:29(本题满分8分)64)(为展开中二项式系数之和已知nxm x +分)的值(求4)1n)4(160)2分值,求若常数项为m030105,2)9.(30===∆C A c ABC ,中,分分)的值(和求5)1a b )4(ABC )2分的面积求∆相切与圆过点直线:圆C l y x y x )0,2(,0342C .3122-=+-++分)的圆心和半径(求圆4C )1)5()2分的方程求l分)的正切值()求二面角分)体积()求四棱锥,,为梯形,,底面面中,如图,四棱锥5A CD P 24D 15AD 3BC 4AB PA 90BAD ABCD D .320---=====∠⊥-ABC P ABC PA ABC P个个可以售出元个,若按元已知这种商品进价为个元,其销售量就减少每涨价某种商品在进价基础上分满分500/50/40101)10.(33分)润最大,并求最大值()当售价为多少时,利分)的函数关系(元与利润求当售价为424)1y x)2(60)3分,求最大利润为多少不能超过若xBA 2)0,22(61)10.(342222,交椭圆于:设直线,其中一个焦点的长轴长为已知椭圆:分满分+==+x y l F by a x 分)求椭圆的标准方程(4)1)6()2分的中点坐标和弦长求AB{}{}{}分)(项和前)求数列分)是等比数列(证明若分求且设等差数列333,2)2)4()1.16,2,.35421n n n n a n n n T n b a b b a a a a a n +==+=,。
2019年浙江省高职考单招单考数学试卷(附答案)2019浙江省高职单独考试数学试卷一、单项选择题(本大题共20小题,1―10小题每小题2分,11―20每小题3分,共50分.)1.已知集合A={-1,1},集合B={-3,-1,1,3},则A∩B=()A。
{-1,1}B。
{-1}C。
{1}D。
∅2.不等式x2-4x≤的解集为()A。
[0,4]B。
(0,4)C。
[-4,0)∪(0,4]D。
(-∞,0]∪[4,+∞)3.函数f(f)=ln(f−2)+1/(f−3)的定义域为()A。
(2,+∞)B。
[2,+∞)C。
(-∞,2]∪[3,+∞)D。
(2,3)∪(3,+∞)4.已知平行四边形ABCD,则向量AB→+BC→=()A。
DC→B。
BD→C。
AC→D。
CA→5.下列函数以π为周期的是()A。
y=sin(x−π/8)B。
y=2cos(x)C。
y=sin(x)D。
y=sin(2x)6.本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法的总数是()A。
400B。
380C。
190D。
3807.已知直线的倾斜角为60°,则此直线的斜率为()A.−√3/3B.−√3C.√3D.√3/38.若sinα>0且tanα<0,则角α终边所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.椭圆标准方程为x^2/2t+ y^2/4-t=1,一个焦点为(-3,0),则t的值为()A。
-1B。
0C。
1D。
210.已知两直线l1、l2分别平行于平面β,则两直线l1、l2的位置关系为()A.平行B.相交C.异面D.以上情况都有可能11.圆的一般方程为x^2+y^2-8x+2y+13=0,则其圆心和半径分别为()A。
(4,-1),4B。
(4,-1),2C。
(-4,1),4D。
(-4,1),212.已知100张奖券中共有2张一等奖、5张二等奖、10张三等奖,现从中任取一张,中奖概率为()A。
1/17B。
2019年浙江省高职单招单考温州市第一次模拟考试《数学》试题卷本试卷共三大题.全卷共4页.满分150分,考试时间120分钟.注意事项:1.所有试题均需在答题卷上作答,未在规定区域内答题,每错一个区域扣卷面总分1分,在试题卷和草稿纸上作答无效.2.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题卷上. 3.选择题每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题用黑色字迹的签字笔或钢笔将答案写在答题卷上.4.在答题卷上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑. 一、单项选择题(本大题共20小题,1-10小题每题2分,11-20小题每题3分,共50分) 1.平面直角坐标系中,x 轴上的点构成的集合是( ▲ )A .{(,)|0}x y y =B .}0=|),{(x y xC .}0|),{(=xy y xD .{|0}y y = 2.下列结论正确的是( ▲ )A .若b a >,则22>b aB .若22bc ac >,则b a >C .若b a >,则b a 11<D .若a b c d ><,,则db c a > 3.“3<x ”是“2<||x ”的( ▲ )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.函数2log y x = ▲ )A .}1|{≥x xB .}1|{>x xC .}1|{-≥x xD .}1|{->x x 5.如果函数()f x 在R 上单调递减,且(24)(42)f a f a ->-,则a 的取值范围是( ▲ )A .(),0-∞B .[)2,+∞C .()0,+∞D .(),2-∞6.数列{}n a 中,11221(*)n n a a a n N +==-,∈,则该数列的第六项是( ▲ )A .33B .64C .65D .129 7.2sin 的值一定是( ▲ )A .正数B .负数C .1±D .08.角的终边在函数)0(2<=x x y 图象上,则αcos 的值是( ▲ )A .33-B .33C .55-D .55 9310y +-=的倾斜角大小为( ▲ )A .30︒B .60︒C .120︒D .150︒α10.如图所示为正方体1111D C B A ABCD -,下列四个选项中不正确...的是( ▲ ) A .11B CD ∆是正三角形.B .直线1BC 与直线CD 所成的角是︒90. C .直线1AD 与直线AB 所成的角是︒45. D .直线1BC 与平面ABCD 所成的角是︒45.11.如图,在平行四边形ABCD 中,下列结论中错误..的是( ▲ ) A .AB =DCB .AD +AB =AC C .AB -AD =BDD .AD +CB =012.若m =°219sin ,则cos39︒=( ▲ )A .21m -B .21m --C .mD .m -13.从4张不同的扑克牌中,每次任取一张,有放回地取两次,则两次取得同一张牌的概率是( ▲ )A .21B .14C .13D .1614.已知直线b a //,直线a 上有3个点,直线b 上有2个点,从这5个点中任取3个点,能构成三角形的个数可表示为( ▲ ) A .35CB .35AC .35A -33AD .12232213+C C C C15.二项式nx )12(+展开式各项系数之和为81,则二项式系数最大的项是( ▲ )A .第二项和第三项B .第二项C .第三项D .第四项16.函数2()4(1)+5f x x a x =+-的图像与直线 1y =有两个相异的交点,则a 的取值范围是( ▲ ) A .()2+∞,B .()0-∞,C .()()02+-∞∞,,D .(][)02+-∞∞,,17.圆22+1x y =与圆22222x +y --=()()的关系是( ▲ ) A .内切B .外切C .相交D .相离18.若直线1 l : (3)4350m x y m +++-=与2 l :2 (5)80x m y ++-=互相平行,则m =( ▲ )A .-1或-7B .1或-7C .-1D .-719.已知函数()sin ()f x A x x R ω=∈在一个周期内的图像如图,则(10)f 的值为( ▲ ) A .3B .0C .3-D .320.已知双曲线2213x y m-=的一个焦点与抛物线212y x =的焦点重合,则双曲线的渐近线方程为( ▲ ) A .63y x =± B .2y x =±C .22y x =±D .33y x =±(第11题图)(第10题图)A BCDA 1B 1C 1D 1(第19题图)二、填空题(本大题共7小题,每空格4分,共28分)21.已知28x y +=()00x y >>,,则xy 取到的最大值为 ▲ .22.已知函数231(0)1()()1(0)x+x f x g x x x x ≤⎧==⎨->⎩,,那么[(2)]g f 的值为 ▲ .23.在等比数列{}n a 中,2=+21a a ,12=+43a a ,则=+65a a ▲ . 24.已知552=sin α,π<α2<2π,则α2tan = ▲ .26.已知点),(3a M 在抛物线x y 42=上,则点M 到抛物线焦点的距离=d ▲ . 27.ABC ∆是边长为2cm 的正三角形,将ABC ∆绕AB 旋转一周,则所得旋转体的体积V = ▲ .三、解答题(本大题共8小题,共72分,解答应写出必要的文字说明、演算步骤.)28.(本题满分7分)计算:21log 125410!sin ()1)lg 25692+π---+.29.(本题满分8分)已知函数2()2sin cos 2cos 1f x x x x =⋅+-,.x R ∈(1)求()f x 的最小正周期;(4分)(2)求()f x 的最大值及()f x 取得最大值时对应的x 的集合.(4分)30.(本题满分9分)在ABC ∆中,∠A ,∠B ,∠C 所对的边分别是a ,b ,c .(1)若35a c ==,,120B ∠=︒,求b 的长度;(4分) (2)若cos cos c A a C ⋅=⋅,判断ABC ∆的形状.(5分)31.(本题满分9分)已知圆224240C x y x y +-++=:,直线120l x y -+=:与直线2100l x y +-=:7相交于点P .(1)求圆C 关于点P 对称的圆C′的标准方程;(4分) (2)求过点P ,且与圆C 相切的直线方程.(5分)32.(本题满分9分)如图所示,直三棱柱ABC A B C -'''的底面是直角三角形,︒=∠90ACB ,︒=∠30ABC ,2=AB ,且1='CC .求:(1)三棱柱ABC A B C -'''的体积;(4分) (2)二面角'A BC A --的大小.(5分)33.(本题满分10分)某类产品按质量共分10个档次,同样的工时,产量p (x )与档次x 间的关系如图所示.生产最低档次(第1档)时,每件利润为8元,每天可生产60件.产品每提高一个档次,每件产品的利润增加2元.(1)写出产量p (x )与x 的函数表达式;(5分)(2)求生产第几档产品利润最大,最大利润是多少.(5分)34.(本题满分10分)设等差数列{}n a 的前n 项和为n S ,且244S S =,1+2=12a a .(1)求数列{}n a 的通项公式;(5分)(2)设n an b 2=,求数列{}n b 的前n 项和n T .(5分)35.(本题满分10分)已知椭圆)0(12222>>=+b a by a x 的离心率为23,焦距为23.(1)求椭圆的标准方程;(4分)(2)O 为坐标原点,过点(02)A -,且斜率为3的直线与椭圆相交于P 、Q 两点,求△OPQ 的面积.(6分)(第35题图)(第32题图)(第33题图)。
2019年浙江省单独考试招生文化考试数学试题卷参考答案及评分标准一㊁单项选择题(本大题共20小题,1 10小题每小题2分,11 20小题每小题3分,共50分)1.A2.A3.D4.C5.D6.C7.C8.B9.D 10.D 11.B 12.D 13.A 14.C 15.B 16.A17.A 18.C 19.B 20.B二㊁填空题(本大题共7小题,每小题4分,共28分)21.64 22.s i n θ 23.60x 2y 4 24.27π4 25.> 26.20 27.x 2+y 234=1或y 243+x 2=1三㊁解答题(本大题共8小题,共72分)28.(7分)解:原式=1-3+2ː2-6+5=-2.29.(8分)解:(1)由已知得øA =120ʎ,由正弦定理得23s i n 120ʎ=c s i n 30ʎ,即2332=c 12,c =2.(2)由已知得S әA B N =12S әA B C ,S әA B C =12a c s i n 30ʎ=12ˑ23ˑ2ˑ12=3,S әA B N =32.30.(9分)解:(1)由已知得圆C 的标准方程为(x +1)2+(y -1)2=2.(2)圆心到直线的距离d =|-1+1-1|12+12=22,又因为r =2,所以d <r ,直线和圆相交;设交点为A ㊁B ,则|A B |=2r 2-d 2,|A B |=2(2)2-22æèçöø÷2=6.31.(9分)解:(1)由已知得c o s α=-13,c o s β=-45,c o s (α-β)=c o s αc o s β+s i n αs i n β=415+6215=4+6215.(2)f (x )=-13c o s x -45s i n x =1315s i n (x +φ)s i n φ=-513,c o s φ=-1213().函数f (x )最大值为1315.32.(9分)解:(1)因为焦点为(3,0),所以p =6,故抛物线标准方程为y 2=12x .(2)设M (x 0,y 0),则y 20=12x 0,由已知得x 0>0,x 0+p 2=4,x 0=1,y 0=ʃ23.所以M (1,23)或M (1,-23).33.(10分)解:(1)由已知得S 底=12ˑ4ˑ4ˑs i n 60ʎ=43,取B C 中点G ,联结P G ,则斜高P G =22,S 侧=3ˑ12ˑ4ˑ22=122,所以,S 全=43+122.(2)联结A G ,A G ɘE F =H ,联结DH ,由已知得B C ʅA G ,B C ʅP G B C ʊE F }⇒E F ʅAH ,E F ʅDH ,所以øDHA 是二面角D E F A 的平面角.由已知得P G ʊDH ,故øDHA =øP G A .在әP G A 中,易知P G =22,A G =23,A P =23,由余弦定理得c o s øP G A =(22)2+(23)2-(23)22ˑ22ˑ23=66.所以,c o s øDHA =c o s øP G A =66.34.(10分)解:(1)由已知条件,构造等差数列{a n },满足a 1为第一排座位数,a n =600为最后一排座位数,且公差d =10,根据条件列出方程组:10500=n a 1+n (n -1)2ˑ10600=a 1+(n -1)10{解得a 1=400n =21{或a 1=-390n =100{(舍去).故体育场北区观众席共有21排.(2)由已知得b 1=200,又b n =b n -1+n 2(n =2,3,4,5)所以b 2=204,b 3=213,b 4=229,b 5=254,即第5排有254个座位.35.(10分)解:(1)50+5x =60,x =2,600-30ˑ2=540张,票价为60元时,实际售出540张电影票.(2)由已知得R =(50+5x )(600-30x )=-150x 2+1500x +3ˑ104.由600-30x ȡ0且x ȡ0,x ɪN ,得0ɤx ɤ20,x ɪN ,函数关系式为R =-150x 2+1500x +3ˑ104(0ɤx ɤ20,x ɪN ).(3)建立利润函数L =-150x 2+1500x +3ˑ104-600(20-x )=-150x 2+2100x +18000(0ɤx ɤ20,x ɪN ).易知当x =-b 2a =7,即票价为85元时利润最大.。
2019年11月份温州市普通高中高考适应性测试数学试题参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.11.2i -+ 12.22420x y x y +--= 13.1,1-; 14,8; 15.600; 16.5; 17.{3,5-+. 三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(Ⅰ)由正弦定理,得sin sin 3sin a B b A A ==,则sin sin 4sin A a B A +==sin A =, 又A 为锐角,故3A π=; (Ⅰ因02x π≤≤,故22333x πππ--≤≤,即()f x 的值域为19.(I )证明:分别取PA ,PB 的中点M ,N ,连结AN ,DN ,BM .因DP DB =,N 为PB 的中点, 故PB DN ⊥.同理,PB AN ⊥,BM PA ⊥. 故PB ⊥平面DNA . 故PB AD ⊥.因平面PAD ⊥平面PBA ,平面PAD平面PBA PA =,BM ⊂平面PBA ,BM PA ⊥,故BM ⊥平面PAD . 则BM AD ⊥.又PB ,BM 是平面PBA 中的相交直线, 故AD ⊥平面PBA .(II )法一:设直线AB 和DC 交于点Q ,连结PQ ,则PQ PA ⊥.因ADP ABP ⊥面面,故PQ PAD ⊥面, 则PQD PAD ⊥面面.取PD 的中点G ,连结AG ,QG ,则AG PQD ⊥面,所以AQG ∠就是直线AB 与平面PCD 所成角. 不妨设2AB =,则在Rt AGQ ∆中,4AG AQ =,故sin AG AQG AQ ∠=所以直线AB 与平面PCD法二:由(I )知,AD ABP ⊥面,又BC ∥AD , 故BC PAB ⊥面.如图,以A 为坐标原点,建立空间直角坐标系, 不妨设2AB =,则(0,0,0)A,B,C ,(0,0,2)D ,(2,0,0)P ,则(1,AB =,(1,CD =-,(2,0,2)PD =-. 设(,,)x y z =n 是面PCD 的一个法向量, 则00CD PD ⎧⋅=⎪⎨⋅=⎪⎩,n n,即0220x z x z ⎧-+=⎪⎨-+=⎪⎩,,取=1x ,则(1,0,1)=n .设直线AB 与平面PCD 所成的角为θ,则||sin |cos ,|||||AB AB AB θ⋅=<>==⋅n n n所以直线AB 与平面PCD 所成角的正弦值为4. 20.解答:(I )记d 为{}n a 的公差,则对任意n *∈N ,112222n n n na a a da ++-==,即{2}n a为等比数列,公比20d q =>.由12S +,22S +,32S +成等比数列,得2213(2)(2)(2)S S S +=++, 即22[2(1)2](22)[2(1)2]q q q ++=++++,解得2q =,即1d =. 所以1(1)n aa n d n =+-=,即()n a n n *=∈N ; (II )由(I )1)n n*+<∈N .下面用数学归纳法证明上述不等式. ①当1n =时,不等式显然成立;②假设当()n k k*=∈N1k++<,则当1n k =+1k+++<.因0=<,<+.1k +++<,即当1n k =+时,不等式仍成立.1)nn*+<∈N .所以1)1)n n a n n a *+<∈N . 21.解答:(I )易得直线AB 的方程为1212()2y y y px y y +=+,代入(,0)2p,得2124y y p =-=-,所以2p =; (II )点221212(,)(,)44y y A y B y ,,则1(1,)H y -,直线1:(1)2y PQ y x =--,代入24y x =,得2222111(216)0y x y x y -++=.设3344(,)(,)P x y Q x y ,,则2134214(4)||2y PQ x x y +=++=. 设A B ,到PQ的距离分别为12d d ,,由11:20PQ y x y y +-=,得32311211*********|2(2)||(2)|y y y y y y y y y yy y d d +--+-+--+-+===3112|2|y y y +-311224|2|y y ++==, 因此1211||()2APBQS PQ d d =⋅+=. 设函数256(4)()x f x x +=(0)x>,则24274(4)(6)'()x xf x x +-=,可得,当x ∈时,()f x 单调递减;当)x ∈+∞时,()f x 单调递增,从而当1y =时,S =.22.解答:(I )由()(1)=0ax ax f x a e a a e '=⋅-=-,解得0x =.①若0a >,则当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞内单调递增; 当(,0)x ∈-∞时,()0f x '<,故()f x 在(,0)-∞内单调递减.②若0a <,则当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞内单调递增; 当(,0)x ∈-∞时,()0f x '<,故()f x 在(,0)-∞内单调递减. 综上所述,()f x 在(,0)-∞内单调递减,在(0,)+∞内单调递增. (II )2()(1)2a f x x +≥,即2(1)2ax ae x +≥(﹡). 令0x =,得12a ≥,则122a <≤.当1x =-时,不等式(﹡)显然成立,当(1,)x ∈-+∞时,两边取对数,即2ln(1)ln 2aax x ++≥恒成立. 令函数()2ln(1)ln2aF x x ax =+-+,即()0F x ≤在(1,)-+∞内恒成立. 由22(1)()=011a x F x a x x -+'=-=++,得211x a =->-. 故当2(1,1)x a ∈--时,()0F x '>,()F x 单调递增;当2(1+)x a∈-∞,时,()0F x '<, ()F x 单调递减.因此22()(1)2ln 2ln 2ln 22a aF x F a a aa -=-++=--≤. 令函数()2ln 2a g a a =--,其中122a <≤,则11()10a g a a a -'=-==,得1a =, 故当1(,1)2a ∈时,()0g a '<,()g a 单调递减;当(1,2]a ∈时,()0g a '>,()g a 单调递增.又13()ln 4022g =-<,(2)0g =,故当122a <≤时,()0g a ≤恒成立,因此()0F x ≤恒成立,即当122a<≤时,对任意的[1,)x∈-+∞,均有2()(1)2af x x≥+成立.小课堂:如何培养自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
2019年浙江省温州市一模试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,是由一些相同的小正方形构成的几何体的三视图.这几个几何体中相同的小正方体的个数有()A.4 个B.5 个C.6 个D.7 个2.随机掷一枚均匀的硬币两次,落地后至少有一次正面朝上的概率是()A.34B.23C.12D.143.对于抛物线y=(x-3)2+2与y=2(x-3)2+1,下列叙述错误的是()A.开口方向相同B.对称轴相同C.顶点坐标相同D.图象都在x轴上方4.把ad bc=写成比例式,错误的是()A.a:b=c:d B.b:d=a:c C.b:a=d:c D.b:d=c:a5.关于二次函数y=-12 x2,下列说法不正确的是()A.图像是一条抛物线B.有最大值0C.图像的对称轴是y轴D.图像都在x轴的下方6.下列立体图形中,是多面体的是()7.下列不等式中一定成立的是()A.32x x>B.2x x->-C.34x x-<-D.43 y y >8.若∠1和∠2互为补角,且∠1>∠2,则∠2的余角等于()A.12(∠1-∠2)B.12(∠1+∠2)C.12∠1+∠2 D.∠l-12∠29.下列叙述正确的是()A.5 不是代数式B .一个字母不是代数式C .x 的 5 倍与 y 的14的差可表示为 5x-14y D .2s R π=是代数式10.在算式4-|-3□5|中的□所在位置,填入下列哪种运算符号,计算出来的值最小( ) A .+B .-C .×D .÷11.如图中有五个正方形,在:其中的A 、B 、C 、D 四个正方形内分别填入适当的数,使得在相邻两个正方形中的数互为相反数,则填入正方形A 、B 、C 、D 内的四个数依次是( )A .1,-1,-1,-1B .1,-1,1,-1C .-1,1,1,1D .-1,-1,1,1二、填空题12.某工厂选了一块矩形铁皮加工一个底面半径为20cm ,母线长为60cm 的锥形泥斗, 则栽出的扇形圆心角应是 度.13. 在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示,P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是 米.14.已知△ABC 的面积是56 cm 2,则它的三条中位线围成的三角形的面积是 cm 2. 15.当2x =-122x -的值为 .16.点A 的坐标是(2,-3),则横坐标与纵坐标的和为 .17.三角形中,和顶角相邻的外角的平分线和底边的位置关系是 .18.化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩. 游戏时,每个男生都看见涂 红色的人数是涂蓝色的人数的 2 倍;而每个女生都看见涂蓝色的人数是涂红色的人数的 35,则晚会上男生有生有 人,女生有 人.19.体育课上,教师让全班 54 名同学每人拿一张扑克牌进行打仗游戏,规则是以大吃小.小陈同学拿的是红桃 6,当他与对面一个同学进行交锋时,他牺牲的可能性大呢还是生存的可能性大? ;理由: .20.如图所示,如果四边一形CDEF 旋转后能与正方形ABCD 重合.那么图形所在的平面上可作为旋转中心的点共有 个.21.将一副直角三角板按图示方法放置(直角顶点重合),则∠AOB+∠DOC=__ __. 22.计算:(1)(5)(2)-⨯-= ;(2)136()3÷-= .23.用四舍五入法取l00955的近似数,保留2个有效数字是,保留4个有效数字是.三、解答题24.某市在城市建设中,要折除旧烟囱AB(如图所示),在烟囱正西方向的楼CD的顶端C,测得烟囱的顶端A的仰角为45,底端B的俯角为30,已量得21mDB=.(1)在原图上画出点C望点A的仰角和点C望点B的俯角,并分别标出仰角和俯角的大小.(2)拆除时若让烟囱向正东倒下,试问:距离烟囱东方35m远的一棵大树是否被歪倒的烟囱砸着?请说明理由.25.已知四边形ABCD,对角线AC、BD交于点O.现给出四个条件:①AC⊥BD;②AC平分对角线BD;③AD∥BC;④∠OAD=∠ODA.请你以其中的三个条件作为命题的题设,以“四边形ABCD为菱形”作为命题的结论.(1)写出一个真命题,并证明;(2)写出一个假命题,并举出一个反例说明.26.为了比较甲、乙两种水稻秧苗是否出苗整齐,每种秧苗各取5株并量出每株的长度如下表所示(单位:厘米) .编号12345甲1213151510乙1314161210通过计算平均数和方差,评价哪个品种出苗整齐.27.如图是4个小正方形连在一起,试再拼接2个同样大小的正方形,使它可以折成正方体.请画出两种拼法:28.小强和亮亮想利:用转盘游戏来决定谁今天值日. 如图是一个可以自由转动的转盘(转盘被等分成 8 个扇区),当转盘停止转动时,若指针指向阴影区域,则小强值日;若指针指向白色区域,则亮亮值日. 游戏对双方公平吗?为什么?如果不公平,请重新设计转盘,或重新设计游戏规则,使游戏对双方都公平.29.如图,O是线段AC,BD的交点,并且AC=BD,AB=CD,小刚认为图中的两个三角形全等,他的思考过程是:在△AB0和△DC0中,AC=BD,∠AOB=∠DOC,AB=CD =>△AB0≌△DC0.你认为小刚的思考过程正确吗?如果正确,指出他用的是哪种三角形全等识别法;如果不正确,请你增加一个条件,并说明你的思考过程.30.如图,任意剪一个三角形纸片ABC,设它的锐角为∠A,首先用对折的方法得到高AN,然后按图中所示的方法分别将含有∠B,∠C的部分向里折,找出AB,AC的中点D,E,同时得到两个折痕DF,EG,分别沿折痕DF,EG剪下图中的三角形①,②,并按图中箭头所指的方向分别旋转180°.(1)你能拼成一个什么样的四边形?并说明你的理由.(2)请你利用这个图形,证明三角形的面积公式:12S=⨯⨯底高.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.C4.D5.D6.B7.C8.A9.C10.C11.A二、填空题 12. 12013.0.514.14 cm 215..-117.平行18.9,1619.牺牲的可能性大,大于6的牌数多于小于6的牌数20.321.18022.10,-10823.1.O ×1O 5,1.OlO ×1O 5三、解答题 24.解:(1)略;(2)画CG ⊥AB ,垂足为G ,连结CA ,CB ,在Rt AGC △中,45ACG =∠.()21m AG CG DB ∴===,在Rt BCG △中,)3tan 30tan 3021m 3BG CG DB =⋅=⋅=⨯=,∴烟囱高()()2173m 33.124m AB =+≈,33.12435m m <,∴这棵大树不会被歪倒的烟囱砸着. 25.(1)若①②③成立,则四边形ABCD 为菱形,证明略;(2)假命题:若①②④成立,则四边形ABCD 为菱形,反例略(答案不惟一).26.13==乙甲x x ,2 3.6S =甲,24S =乙,∴甲品种出苗整齐.27.答案不唯一,如28.不公平,白色区域的面积小于阴影区域的面积,因此小强值日的可能性大.可以重新设计转盘为以下类型(有多种):29.不正确,增加一个∠A=∠D(或∠B=∠C)的条件即可通过“AAS ”证明,或增加一个A0=0D(或BO=OC)的条件即可通过“SAS ”证明三角形全等.30.(1)矩形;(2)略。
2019年浙江省高职单招单考温州市第一次模拟考试《外贸类》试题卷本试题卷共十大题。
全卷共6页。
满分180分,考试时间90分钟。
注意事项:1.所有试题均需在答题卷上作答,未在规定区域内答题,或者在试题卷和草稿纸上作答无效。
2.答题前,考生务必将自己的姓名、准考证号用黑色中性笔或钢笔填写在答题卷上。
3.选择题和判断题每小题选出答案后,用2B铅笔把答题卷上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再涂其他答案标号。
4.允许使用不带存储功能的计算器。
第一部分外贸业务协调(满分100分)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错选、多选或未选均无分。
1.温州某进出口公司为调查买方的资信对外发了一封业务函,开头的文句为:“We should be obliged if you would inform us, in confidence, of their financial standing and modes of business.”根据该文句的含义,你认为收信人最有可能的是▲ 。
A.进口商B.相关银行C.进口地海关D.出口地海关2.温州某进出口公司12月10日向外国某客商发盘,限12月15日复到有效,12 月13日接到对方复电称“你10日电接受,以获得进口许可证为准。
”该接受▲ 。
A.相当于还盘B.属于有效接受C.在我方缄默的情况下,视为有效接受D.属于询盘3.所谓“良好平均品质(FAQ)”是指▲ 在某一时期运销的货物的平均品质水平,一般适用于▲ 。
采用FAQ表示品质一般需要同时规定具体的规格要求。
A.装运地工业制成品B.目的地农副产品C.生产地工业制成品D.装运地农副产品4.国外来证规定:“针织布10000千克,每千克4美元;针织衫5000件,每件2美元。
总金额为About USD 50000,禁止分批装运”。
为此,我方出口数量最多应为▲ 。
2019年浙江省温州市第一次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.直线142y x=-与x轴的交点坐标为()A.(0,一4)B.(一4,0)C.(0,8)D.(8,O)2.已知坐标平面内三点A(5,4),B(2,4),C(4,2),那么△ABC的面积为()A.3 B.5 C.6 D.73.如图,图中等腰三角形的个数为()A.2个B.3个C.4个D.5个4.如图,如果 AB∥CD,∠C=60°,那么∠A+∠E=()A.20 B.30°C.40 D.60°5.已知a、b、c是三角形的三条边,那么代数式2222a ab b c-+-的值是()A.小于0 B.等于0 C.大于0 D.不能确定6.下列四个算式中,误用分配律的是()A.111112(2)12212123636⨯-+=⨯-⨯+⨯B.1111(2)1221212123636-+⨯=⨯-⨯+⨯C.111112(2)12212123636÷-+=÷-÷+÷D.1111(2)1221212123636-+÷=÷-÷+÷7.一个数的倒数的相反数是233,那么这个数是()A.113-B.142C.311-D.12二、填空题8.从 1、2、3、4、5 中任选2 个数,两个数都小于4 的概率是 ,两个数的乘积是偶数的概率是 .9.如图,四边形BDEF 是RtΔABC 的内接正方形,若AB =6,BC =4,则DE = . 10.如图中的=x _________.11.课堂上老师用投影仪在屏幕上投影了一蝠风景图,它和原图是 .12.函数22y x x =+-的图象如图所示,当 y>0时,x 的取值范围是 当 y<0 时,x 的取值范围是 .13.写出一个无理数,使它与2的积为有理数: .14.如图,在等腰梯形ABCD 中,AD ∥BC ,AC ,BD 相交于点0,有下列四个结论:①AC=BD ,②梯形ABCD 是轴对称图形,③∠ADB=∠DAC ,④△AOD ≌△AB0,其中正确的是 .15.如图,在边三角形ABC 中,AD 、BE 、CF 分别是△ABC 的角平分线,它们相交于点0,将△ABC 绕点0,至少旋转 度,才能和原来的三角形重合.16.等腰直角三角形的斜边上的中线长为 1,则它的面积是 . 17. 若|21||5|0x y x y -+++-=,则x = , y = . 18.、+ =1x. 19.如图所示,已知∠C=∠B ,AC=AB ,请写出一个与点D 有关的正确结论: .20.比较大小:34-45+;56- 57-;0 |8.2|--;13()24-+ 5||8--三、解答题21.对一批西装质量抽检情 如下表:(1)填写表格中次品的概率;(2)从这批西装中任选一套是次品的概率是多少?(3)若要销售这批西装 2000 件,为了方便购买次品西装的顾客前来调换,至少应进多少件西装?22.已知:如图,在△ABC 中,中线BE ,CD 交于点O ,F ,G 分别是OB ,OC 的中点. 求证:四边形DFGE 是平行四边形.23. 如图,已知直线1l ∥2l ,△ABC 的面积与△DBC 的面积相等吗?若相等请说明理由. 并在直线1l 与2l 之间画出其他与△ABC 面积相等的三角形.抽检件数 200 400 600 800 1000 1200 正品件数 190390576 773 9671160次品的概率24.已知│4x+3y-5│+│x-2y-4│=0,求x ,y 的值.25.若(x m ÷x 2n )3÷x m -n 与4x 2为同类项,且2m+5n=7,求4m 2-25n 2的值.26.计算题:(1))21)(3y x y x --(27.解方程: (1) 23455678x x x x -=-----; (2)16252736x x x x x x x x +++++=+++++28.:如图,已知方格纸中每个小方格都是相同的正方形,∠AOB 画在方格纸上,A0=B0,请在小方格的顶点上标出两个点P l ,P 2:,使P l ,P 2:落在∠AOB 的平分线上.29.13π(结果保留 3个有效数字).30.2(44)(2)a a a-+÷-= .2a-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.A3.D4.D5.A6.C7.C二、填空题8.3 10,7109.12510.211.相似形12.x<-2 或 x>1,-2<x<1.13.如14.①②③15.12016.117.3,218.x 1,0或x 2,x1-或……(答案不唯一) 19.AD=AE 等20.<,<,>,>三、解答题 21. (1)见表格 (2)130(3)12000(1)206930÷-≈(件)22.提示:DE //FG .23.ABC DBC S S ∆∆=,由同底等高的两三角形面积相等可得;在2l 上任意取一点E ,连结BE 、CE ,则BEC ABC S S ∆∆=24.x=2,y=-125.14.26.(2)(3x -2y )2-(3x+2y )2(3))2)(4)(222y x y x y x +--( (4)(2x -1)2+(1-2x )(1+2x ) (1)222327y xy x +-;(2)-24xy ;(3)4224816y y x x +-;(4)-4x+2. 27.(1)3x =或132x =;(2)92x =-28.提示:P l ,P 2到点A ,B 的距离相等即可(不唯一)29.-83.530.2a -。
2019年浙江省高职单招单考温州市第一次模拟考试《数学》试题卷本试卷共三大题.全卷共 4 页.满分150 分,考试时间120 分钟.注意事项:1.所有试题均需在答题卷上作答,未在规定区域内答题,每错一个区域扣卷面总分 1 分,在试题卷和草稿纸上作答无效.2.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题卷上.3.选择题每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题用黑色字迹的签字笔或钢笔将答案写在答题卷上.4.在答题卷上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.一、单项选择题(本大题共20 小题,1-10 小题每题 2 分,11-20 小题每题 3 分,共50 分)1.平面直角坐标系中,x轴上的点构成的集合是(▲)A.{( x, y) | y 0} B.{( x, y) | x = 0} C.{( x, y) | xy 0} D.{ y | y 0}2.下列结论正确的是(▲)A.若a b ,则a2 > b2 B.若ac2 bc2 ,则a bC.若a b ,则1a1bD.若a b,c d ,则acbd3.“x 3”是“| x |< 2 ”的(▲)A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.函数y log2 x x 1 的定义域为(▲)A.{ x | x 1}B.{ x | x 1}C.{ x | x 1}D.{ x | x 1} 5.如果函数 f (x) 在R 上单调递减,且f (2a 4) f (4 2a) ,则a的取值范围是(▲)A.,0 B.2, C.0, D.,2 6.数列{a n} 中,a1 2 ,a n 1 2a n 1(n∈N*) ,则该数列的第六项是(▲)A.33 B.64 C.65 D.1297.sin 2的值一定是(▲)A.正数B.负数C. 1 D.08.角的终边在函数y 2x(x 0) 图象上,则cos 的值是(▲)A.33B.33C.55D.559.直线3x 3y 1 0的倾斜角大小为(▲)A.30 B.60 C.120 D.150《数学》试题卷第1 页共4 页***。