电力系统中的谐振过电压介绍
- 格式:ppt
- 大小:471.00 KB
- 文档页数:55
三种谐振过电压及其对应关系-回复谐振过电压是指在电力系统中,由于电力设备或其他故障引起的电压波动,其频率等于系统谐振频率的电压异常现象。
谐振过电压对电力系统的稳定运行具有重要影响,能够导致设备损坏、线路过载等问题。
本文将分别介绍三种常见的谐振过电压及其对应关系。
一、串联谐振过电压串联谐振过电压是指在电力系统中,线路与电容性负载串联连接时,由于谐振回路发生谐振而产生的过电压现象。
谐振回路由电源、线路和电容性负载构成。
当线路长度与谐振频率相等或者线路长度的整数倍等于谐振频率的一半时,谐振回路产生谐振,电压会急剧增大。
产生串联谐振过电压的原因主要有两个方面:一是线路长度符合谐振条件,使得电源输出的电压和线路中的谐振电压相叠加;二是电容性负载的谐振频率接近或者等于电压谐振频率,从而使得线路上的电压出现大幅度增加。
串联谐振过电压对电力系统的影响非常严重。
首先,电压的突然增大可能导致设备的工作不稳定,从而影响电力系统的正常运行。
其次,过高的电压会使线路出现过载情况,可能引发火灾等安全事故。
因此,在电力系统的设计和运行中,需要注意串联谐振过电压的控制,采取相应的补偿和保护措施。
二、并联谐振过电压并联谐振过电压是指在电力系统中,电容性负载与线路并联连接时,由于谐振回路发生谐振而产生的过电压现象。
谐振回路由电源、线路和电容性负载构成。
当电容性负载谐振频率接近或者等于电压谐振频率时,谐振回路产生谐振,电压会急剧增大。
产生并联谐振过电压的原因主要是由于电容性负载的谐振频率与谐振频率相近或相等,从而使得电容性负载上的电压出现异常增大。
并联谐振过电压对电力系统的影响也是十分严重的。
首先,过高的电压可能导致设备的绝缘破坏,从而引发设备损坏和线路故障。
其次,电压突然增大还可能影响电力系统的稳定运行,引发供电中断等问题。
因此,在电力系统的设计中,需要合理选择电容性负载,控制并联谐振过电压的发生。
三、平行谐振过电压平行谐振过电压是指在电力系统中,当谐振回路的谐振频率接近或者等于系统的谐振频率时,由于负载或者设备改变引起的过电压现象。
浅谈电力系统中的铁磁谐振过电压及消除方法摘要:本文简要分析了电力系统中铁磁谐振产生的原因、现象及对电气设备的危害,并介绍了消除铁磁谐振过电压的常用方法。
关键词:电力系统;铁磁谐振;过电压;电容;电感1 引言电力系统中有许多的电感、电容元件,如变压器、互感器、电抗器、消弧线圈、发电机等的电感,输电线路的对地电容及相间电容,以及各种高压设备的电容。
这些电感,电容元件在特定的参数配合条件下构成振荡回路,当系统进行操作或发生故障时形成谐振现象,从而产生谐振过电压,导致系统中某些电气设备出现严重的过电压而损坏,影响电力系统的安全运行。
2铁磁谐振过电压产生的原因电力系统内,一般的回路都可简化成电阻R、感抗、容抗的串联和并联回路。
铁磁谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。
正常运行条件下,感抗大于容抗,即>,此时电路运行在感性工作状态,不具备线性谐振条件,回路保持稳定状态。
铁磁谐振回路的容抗在频率不变的情况下基本上是个不变的常数,而感抗一般是由带铁芯的线圈产生的,铁芯饱和时感抗会变小。
当电源电压有所升高或电感线圈中出现涌流时,就有可能使铁芯饱和,其感抗值随之减小,当=时,即满足串联谐振条件,于是发生铁磁谐振[4]。
电力系统运行参数具有随机性,其运行方式灵活,构架比较复杂,容易使系统参数发生变化。
在进行操作或者发生故障的条件下,电力系统中的电容和电抗元件很容易形成振荡回路,尤其是主变压器,电压互感器等有绕组及铁芯的设备在一定的激励条件下,最容易产生电磁耦合现象,进而产生串、并联谐振,引发铁磁谐振过电压。
35kV、10kV系统大多采用中性点不接地方式运行,电网结构相对薄弱,加上电力系统操作频繁,运行方式又多变,很容易导致铁磁谐振过电压。
据有关统计,铁磁谐振过电压导致故障概率高达50% ~ 55%。
铁磁谐振过电压导致故障的严重性可见一般。
铁磁谐振过电压本质上是由于非线性励磁电感与电力系统对地电容所构成的铁磁谐振所引发的电网中性点不稳定现象。
关于电力系统中的谐振过电压的产生以及解决方案[导读]什么是谐振过电压?谐振过电压指电力系统中一些电感、电容元件在系统进行操作或发生故障时可形成各种振荡回路,在一定的能源作用下,会产生串联谐振现象,导致系统某些元件出现严重的过电压。
电网运行中,正常时中性点不接地系统PT铁芯饱和易引起谐振过电压;中性点不接地方式发生单相故障可引起谐振过电压。
运维人员操作或事故处理方法不当亦会产生谐振过电压。
另外设备设计选型、参数不匹配也是谐振过电压产生原因。
什么是谐振过电压?谐振过电压指电力系统中一些电感、电容元件在系统进行操作或发生故障时可形成各种振荡回路,在一定的能源作用下,会产生串联谐振现象,导致系统某些元件出现严重的过电压。
电网运行中,正常时中性点不接地系统PT铁芯饱和易引起谐振过电压;中性点不接地方式发生单相故障可引起谐振过电压。
运维人员操作或事故处理方法不当亦会产生谐振过电压。
另外设备设计选型、参数不匹配也是谐振过电压产生原因。
谐振过电压对电网造成危害极大,诸如造成电压互感器熔丝熔断、电压互感器烧毁、电网设备绝缘损毁,甚至造成相间短路、保护装置误动作等。
操作过电压和谐振过电压的区别:操作过电压和谐振过电压都属于内部过电压。
操作过电压,顾名思义,是操作高电压大电感-电容元件(比如合/分空载长线路、变压器、并联电容器、高压感应电动机等)以及故障线路跳闸/重合闸等产生的过度过程。
防止操作过电压的措施根据操作的对象不同而有所不同,一般采用重击穿概率低的断路器或设置金属氧化物避雷器限制操作过电压。
谐振过电压,因系统的电感、电容参数配合不当而引起的各类谐振现象及电压升高。
所以防止谐振过电压的措施即破坏谐振条件,使参数配合避开谐振区,需要对系统有整体的参数预测,从而调整电网参数。
防止谐振过电压的措施(1)提高开关动作的同期性:由于许多谐振过电压是在非全相运行条件下引起的,因此提高开关动作的同期性,防止非全相运行,可以有效防止谐振过电压的发生。
电力系统谐振过电压产生的原因及防范措施摘要电力系统中,厂站因过电压引起故障甚多,特别是谐振过电压,对设备甚至系统安全稳定运行影响大。
分析原因,找出问题,提出防治措施很有必要。
关键词谐振过电压;PT;铁芯饱和;防范措施0 引言我国电力系统分为不同电压等级,35kV及以下配电网采取中性点不接地和经消弧线圈接地方式;110kV及以上配电网采取中性点直接接地方式。
过电压种类多,主要有谐振、雷电和操作过电压;其中谐振过电压较常见,作用时间长、次数频繁、危害大,须采取措施预防。
1 谐振过电压产生原因电网运行中,正常时中性点不接地系统PT铁芯饱和易引起谐振过电压;中性点不接地方式发生单相故障可引起谐振过电压。
运维人员操作或事故处理方法不当亦会产生谐振过电压。
另外设备设计选型、参数不匹配也是谐振过电压产生原因。
2 铁磁谐振为满足电网测量、保护需要,电力系统中配置大量电感电容元件,如:互感器、电抗器等电感元件;电容器、线路对地电容等电容元件。
当进行设备操作或系统故障时,电感电容元件构成振荡回路,在一定条件下产生谐振,损坏设备影响系统。
2.1 原因分析图1某水厂单串接线图,采用接线,110kV系统中性点直接接地,变压器、PT等分相运行,变压器、PT高压绕组接成Y0,该厂多次发生铁磁谐振过电压。
原因:图1 某水电站单串接线图1)故障时产生谐振过电压。
当系统发生单相故障时,因整个电网系统中电感电容元件参数不匹配,两者共同作用,为谐振产生创造条件,最终导致铁磁谐振过电压发生;2)操作时产生谐振过电压。
110kV开关为双断口且并联均压电容,停送电操作时,先拉5012、5013,再拉50126,其他刀闸均接通。
110kV环网通过开关断口电容构成带电磁式PT空母线产生谐振。
2.2 等值电路图该厂输出线路发生单相接地故障,瞬时A相线路产生接地电流,因避雷器参数不匹配,构成谐振回路而产生谐振过电压。
图2 简化电路图如图2,L1是1B一次侧电感,L2是2B一次侧电感,Lm是PT一次侧电感,C0是空长线路对地电容,RL是电阻,k为故障点。
电力系统过电压分类和特点电力系统过电压主要分以下几种类型:大气过电压、工频过电压、操作过电压、谐振过电压。
产生的原因及特点是:大气过电压:由直击雷引起,特点是持续时间短暂,冲击性强,与雷击活动强度有直接关系,与设备电压等级无关。
因此,220KV以下系统的绝缘水平往往由防止大气过电压决定。
工频过电压:由长线路的电容效应及电网运行方式的突然改变引起,特点是持续时间长,过电压倍数不高,一般对设备绝缘危险性不大,但在超高压、远距离输电确定绝缘水平时起重要作用。
操作过电压:由电网内开关操作引起,特点是具有随机性,但最不利情况下过电压倍数较高。
因此30KV及以上超高压系统的绝缘水平往往由防止操作过电压决定。
谐振过电压:由系统电容及电感回路组成谐振回路时引起,特点是过电压倍数高、持续时间长。
变压器中性点接地方式的安排一般如何考虑?变压器中性点接地方式的安排一般如何考虑?答:变压器中性点接地方式的安排应尽量保持变电所的零序阻抗基本不变.遇到因变压器检修等原因使变电所的零序阻抗有较大变化的特殊运行方式时,应根据规程规定或实际情况临时处理.(1)变电所只有一台变压器,则中性点应直接接地,计算正常保护定值时,可只考虑变压器中性点接地的正常运行方式。
当变压器检修时,可作特殊运行方式处理,例如改定值或按规定停用、起用有关保护段。
(2)变电所有两台及以上变压器时,应只将一台变压器中性点直接接地运行,当该变压器停运时,将另一台中性点不接地变压器改为直接接地.如果由于某些原因,变电所正常必须有两台变压器中性点直接接地运行,当其中一台中性点直接接地的变压器停运时,若有第三台变压器则将第三台变压器改为中性点直接接地运行。
否则,按特殊运行方式处理。
(3)双母线运行的变电所有三台及以上变压器时,应按两台变压器中性点直接接地方式运行,并把它们分别接于不同的母线上,当其中一台中性点直接接地变压器停运时、将另一台中性点不接地变压器直接接地。
电力系统中产生铁磁谐振过电压的原因电力系统中的铁磁谐振过电压是指在一些特定的运行条件下,电力系统中的铁磁元件(如变压器、电感器等)由于谐振现象而产生的过电压。
这种过电压会对电力设备和系统的安全稳定运行产生不利影响,因此对于铁磁谐振过电压的产生原因进行深入的研究和分析具有重要意义。
铁磁谐振过电压的产生主要是由于电力系统中的谐振特性和非线性特性的相互作用引起的。
具体而言,以下是造成铁磁谐振过电压的几个主要原因:1. 谐振频率与系统频率接近:电力系统中的铁磁元件具有一定的谐振频率。
当系统频率与铁磁元件的谐振频率接近时,就容易引发谐振现象,从而产生过电压。
这是因为谐振频率附近会出现共振现象,电力系统中的能量在谐振回路中积累,导致过电压的产生。
2. 非线性特性引起的谐波:电力系统中存在各种非线性元件,如变压器的磁化曲线非线性、饱和等。
这些非线性特性会引起系统中谐波的产生和传播,进而导致铁磁谐振过电压的产生。
当谐波频率与铁磁元件的谐振频率相近时,谐波能量会在铁磁元件中积累,导致过电压的产生。
3. 谐振回路的存在:电力系统中的变压器、电感器等铁磁元件与电容器、线路等组成了谐振回路。
当这些元件的参数满足一定的条件时,谐振回路就会形成,从而引起谐振现象和过电压的产生。
4. 突变负载的突发性变化:电力系统中的负载存在突变的情况,例如突然断开大负载或突然接入大负载。
这样的突变负载会导致电力系统中的谐振频率发生变化,从而引起铁磁谐振过电压的产生。
为了避免铁磁谐振过电压对电力系统的影响,可以采取以下几种措施:1. 谐振频率的分析和计算:对于电力系统中的铁磁元件,需要进行谐振频率的分析和计算。
这样可以了解系统中是否存在谐振频率接近的情况,并采取相应的措施来避免谐振现象的发生。
2. 谐振回路的设计和调整:在电力系统的设计和运行过程中,需要合理设计和调整谐振回路。
这包括选择合适的元件参数、合理布置线路等,以降低谐振回路的谐振能力,减少谐振过电压的产生。
电力系统过电压分类和特点电力系统过电压主要分以下几种类型:大气过电压、工频过电压、操作过电压、谐振过电压。
产生的原因及特点是:大气过电压:由直击雷引起,特点是持续时间短暂,冲击性强,与雷击活动强度有直接关系,与设备电压等级无关。
因此,220KV以下系统的绝缘水平往往由防止大气过电压决定。
工频过电压:由长线路的电容效应及电网运行方式的突然改变引起,特点是持续时间长,过电压倍数不高,一般对设备绝缘危险性不大,但在超高压、远距离输电确定绝缘水平时起重要作用。
操作过电压:由电网内开关操作引起,特点是具有随机性,但最不利情况下过电压倍数较高。
因此30KV及以上超高压系统的绝缘水平往往由防止操作过电压决定。
谐振过电压:由系统电容及电感回路组成谐振回路时引起,特点是过电压倍数高、持续时间长。
变压器中性点接地方式的安排一般如何考虑?变压器中性点接地方式的安排一般如何考虑?答:变压器中性点接地方式的安排应尽量保持变电所的零序阻抗基本不变。
遇到因变压器检修等原因使变电所的零序阻抗有较大变化的特殊运行方式时,应根据规程规定或实际情况临时处理.(1)变电所只有一台变压器,则中性点应直接接地,计算正常保护定值时,可只考虑变压器中性点接地的正常运行方式。
当变压器检修时,可作特殊运行方式处理,例如改定值或按规定停用、起用有关保护段。
(2)变电所有两台及以上变压器时,应只将一台变压器中性点直接接地运行,当该变压器停运时,将另一台中性点不接地变压器改为直接接地。
如果由于某些原因,变电所正常必须有两台变压器中性点直接接地运行,当其中一台中性点直接接地的变压器停运时,若有第三台变压器则将第三台变压器改为中性点直接接地运行。
否则,按特殊运行方式处理。
(3)双母线运行的变电所有三台及以上变压器时,应按两台变压器中性点直接接地方式运行,并把它们分别接于不同的母线上,当其中一台中性点直接接地变压器停运时、将另一台中性点不接地变压器直接接地。
谐振过电压1)范围Ⅱ的系统中,当空载线路(或其上接有空载变压器时)由电源变压器断路器合闸、重合闸或由只带有空载线路的变压器低压侧合闸、带电线路末端的空载变压器合闸以及系统解列等情况下,如由这些操作引起的过渡过程的激发使变压器铁芯磁饱和、电感做周期性变化,回路等值电感在2倍工频下的电抗与2倍工频下线路入口容抗接近相等时,可能产生以2次谐波为主的高次谐波谐振过电压。
应尽量避免产生2次谐波谐振的运行方式、操作方式以及防止在故障时出现该种谐振的接线;确实无法避免时,可在变电站线路继电保护装置内增设过电压速断保护,以缩短该过电压的持续时间。
2)范围I的系统中有可能出现下列谐振过电压:①110kV 及220kV系统采用带有均压电容的断路器开断连接有电磁式电压互感器的空载母线,经验算有可能产生铁磁谐振过电压时,宜选用电容式电压互感器。
已装有电磁式电压互感器时,运行中应避免可能引起谐振的操作方式,必要时可装设专门消除此类铁磁谐振的装置。
②由单一电源侧用断路器操作中性点不接地的变压器出现非全相或熔断器非全相熔断时,如变压器的励磁电感与对地电容产生铁磁谐振,能产生2.0pu-3.0pu的过电压;有双侧电源的变压器在非全相分合闸时,由于两侧电源的不同步在变压器中性点上可出现接近于2.0pu的过电压,如产生铁磁谐振,则会出现更高的过电压。
经验算如断路器操作中因操动机构故障出现非全相或严重不同期时产生的铁磁谐振过电压可能危及中性点为标准分级绝缘、运行时中性点不接地的110kV及220kV变压器的中性点绝缘,宜在中性点装设间隙,对该间隙的要求与“工频过电压、2)”条相同。
在操作过程中,应先将变压器中性点临时接地。
有单侧电源的变压器,如另一侧带有同期调相机或较大的同步电动机,也类似有双侧电源的情况。
④3-66kV不接地系统或消弧线圈接地系统偶然脱离消弧线圈的部分,当连接有中性点接地的电磁式电压互感器的空载母线(其上带或不带空载短线路),因合闸充电或在运行时接地故障消除等原因的激发,使电压互感器过饱和则可能产生铁磁谐振过电压。
电力系统中的谐振过电压汇总串联谐振过电压是指当电力系统中的电感元件和电容元件呈串联关系时,由于谐振频率的输入而导致的电压过高的现象。
通常情况下,电力系统中的电感元件包括变压器、线圈等,而电容元件则包括电容器、电缆等。
串联谐振过电压的存在可能会导致电压过高,进而导致设备失效,甚至发生电弧灼伤的危险。
为了解决串联谐振过电压问题,可以采取添加电阻元件或者改变电路结构等方法进行限制。
并联谐振过电压是指在电力系统中,当电容元件和电感元件呈并联关系时,由于谐振频率的输入而导致的电压过高的现象。
并联谐振过电压通常存在于变电站的电容电压互感器、过电压防护器等设备中。
并联谐振过电压的存在可能会导致设备破坏、继电保护功能异常等问题。
为了解决并联谐振过电压问题,可以采取增加电阻元件、加大绝缘距离等方法进行限制。
谐振过电压的产生原因多样,主要包括谐振电路的共振、外部谐振源的干扰等。
谐振电路的共振可以是因为电力系统中元件的电感值和电容值之间的匹配产生谐振频率。
而外部谐振源干扰主要是指其他系统或装置中产生的谐振源通过电力系统传输而导致的谐振过电压。
谐振过电压的存在对电力系统的稳定运行会造成较大的影响,因此,对于谐振过电压的研究和预防十分重要。
为了降低电力系统中的谐振过电压,可以采取以下措施:1.改变电路结构:通过改变电力系统中电感元件和电容元件的连接方式,使其不易形成谐振回路。
2.增加阻尼元件:向谐振回路中加入合适的阻尼元件,可以消耗谐振电流,从而减小过电压的幅值。
3.增加电容补偿:通过增加额外的并联电容,提高电力系统的谐振频率,减小谐振过电压的发生。
4.改变设备参数:通过调整电感元件和电容元件的参数,改变谐振频率,从而降低谐振过电压的幅值。
5.优化绝缘水平:加大设备间的绝缘距离和绝缘强度,提高系统的耐受谐振过电压能力。
总之,电力系统中的谐振过电压是一种常见的问题,对电力系统的正常运行和设备的安全运行都会产生一定的影响。
因此,对于谐振过电压的预防和限制是电力系统运行中的一项重要任务,通过采取合适的措施来解决谐振过电压问题,能够提高电力系统的稳定性和可靠性。
系统谐振电力系统中一些电感、电容元件在系统进行操作或发生故障时可形成各种振荡回路,在一定的能源作用下,会产生串联谐振现象,导致系统某些元件出现严重的过电压,这一现象叫电力系统谐振过电压。
谐振过电压分为以下几种:(1)线性谐振过电压谐振回路由不带铁芯的电感元件(如输电线路的电感,变压器的漏感)或励磁特性接近线性的带铁芯的电感元件(如消弧线圈)和系统中的电容元件所组成。
(2)铁磁谐振过电压谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。
因铁芯电感元件的饱和现象,使回路的电感参数是非线性的,这种含有非线性电感元件的回路在满足一定的谐振条件时,会产生铁磁谐振。
(3)参数谐振过电压由电感参数作周期性变化的电感元件(如凸极发电机的同步电抗在Kd~Kq间周期变化)和系统电容元件(如空载线路)组成回路,当参数配合时,通过电感的周期性变化,不断向谐振系统输送能量,造成参数谐振过电压。
变压器空载运行1、变压器空载运行,二次电流为零;2、一次仅是是变压器的空载励磁电流;3、这时候,变压器的输入功率只是铁心损耗,即铁损,没有铜损;4、这时候,是变压器损耗最小的时候,由于没有输出功率,所以效率为零,功率因数为零;5、一般情况下,不允许变压器空载运行,应该停止运行;PT问题原因分析1.电网系统内部由于非线性负载造成较大的电流谐波分量(3、5次谐波分量较大),而原设计采用的PT.0.5级100VA(不排除PT励磁特性差)在电流谐波的作用下很容易使铁芯进入铁磁深饱和区,励磁电流增大,感抗下降,引发铁磁谐振,会在PT一次绕组出现数安培到十几安培幅值的瞬间涌流,从而烧断PT0.5A高压熔丝。
2.电站10KV系统采用中性点不接地方式,其母线系统上的Y0接线的PT是中性点不接地电网对地的唯一金属通道,因此电网相对地电容的充、放电途径必然通过PT一次绕组,PT的励磁电感和系统对地电容形成L-C回路,从而引发铁磁谐振而出现饱和过电压,并将由通常的工频位移过电压转化为谐波振荡过电压,使PT的励磁电流可达额定励磁电流的几倍到十几倍,造成PT的高压熔丝一相或两相或三相熔断,甚至使PT因严重过热而烧毁。