高考数学题型全归纳:用函数观点看数列问题(含答案)
- 格式:pdf
- 大小:149.48 KB
- 文档页数:5
高三数学数列试题答案及解析1.对于正项数列,定义为的“光阴”值,现知某数列的“光阴”值为,则数列的通项公式为________【答案】【解析】由题意,,,所以,则时,,两式相减得,,也适合此式,故.【考点】新定义与数列的通项公式.2.已知数列的通项公式an= (n∈N*),求数列前30项中的最大项和最小项.【答案】最大项为a10,最小项为a9【解析】∵an =1+,∴当n≤9时,an随着n的增大越来越小且小于1,当10≤n≤30时,a n 随着n的增大越来越小且大于1,∴前30项中最大项为a10,最小项为a9.3.(本小题满分12分)已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,求适合方程的的值.(Ⅲ)记,是否存在实数M,使得对一切恒成立,若存在,请求出M 的最小值;若不存在,请说明理由。
【答案】,2/9【解析】19. 解:(Ⅰ)当时,,由,得.当时,,,∴,即.∴.∴是以为首项,为公比的等比数列.故.………………6分(Ⅱ),,………………8分………10分解方程,得………………12分(2)解法一:,由错误!不能通过编辑域代码创建对象。
,当,又故存在实数M,使得对一切M的最小值为2/9。
4.把数列的所有项按照从大到小的原则写成如题15图所示的数表,其中的第行有个数,第行的第个数(从左数起)记为则_____________.【答案】【解析】略5.设等差数列的前项和为,若,,则()A.63B.45C.36D.27【答案】B【解析】在等差数列中,成等差数列。
因为,,所以。
故选B。
【考点】等差数列的性质点评:在等差数列中,成等差数列。
6.(本小题满分14分)已知曲线.从点向曲线引斜率为的切线,切点为。
(1)求数列的通项公式;(2)证明:。
【答案】(1);(2)证明见解析。
【解析】(1)设直线:,联立得:,则,∴(舍去),即,∴(2)证明:∵∴由于,可令函数,则,令,得,给定区间,则有,则函数在上单调递减,∴,即在恒成立,又,则有,即。
一、数列的概念选择题1.已知数列{}n a 的通项公式为2n a n n λ=-(R λ∈),若{}n a 为单调递增数列,则实数λ的取值范围是( ) A .(),3-∞B .(),2-∞C .(),1-∞D .(),0-∞2.已知数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=-,则2019a =( ) A .1B .3C .2D .3-3.在数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,则下列结论正确的是( )A .存在正整数0N ,当0n N >时,都有n a n ≤.B .存在正整数0N ,当0n N >时,都有n a n ≥.C .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≤.D .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≥.4.已知数列{}n a 满足11a =),2n N n *=∈≥,且()2cos3n n n a b n N π*=∈,则数列{}n b 的前18项和为( ) A .120B .174C .204-D .37325.在数列{}n a 中,11a =,11n na a n +=++,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,若n S m <对一切正整数n 恒成立,则实数m 的取值范围为( )A .()3,+∞B .[)3,+∞C .()2,+∞D .[)2,+∞6.已知数列{}ij a 按如下规律分布(其中i 表示行数,j 表示列数),若2021ij a =,则下列结果正确的是( )A .13i =,33j =B .19i =,32j =C .32i =,14j =D .33i =,14j =7.数列23451,,,,,3579的一个通项公式n a 是( ) A .21nn + B .23nn + C .23nn - D .21nn - 8.已知数列{}n a 的前n 项和为n S ,且满足1221,1n n a a S a +===-,则下列命题错误的是A .21n n n a a a ++=+B .13599100a a a a a ++++=C .2499a a a a +++=D .12398100100S S S S S ++++=-9.设()f x 是定义在R 上恒不为零的函数,且对任意的实数x 、y R ∈,都有()()()f x f y f x y ⋅=+,若112a =,()()*n a f n n N =∈,则数列{}n a 的前n 项和n S 应满足( ) A .1324n S ≤< B .314n S ≤< C .102n S <≤D .112n S ≤< 10.已知等差数列{}n a 中,13920a a a ++=,则574a a -=( ) A .30B .20C .40D .5011.数列{}n a 满足:12a =,111nn na a a ++=-()*n N ∈其前n 项积为n T ,则2018T =( ) A .6-B .16-C .16D .612.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:()()22221211236n n n n ++++++=)A .1624B .1198C .1024D .156013.已知数列{a n }满足112,0,2121, 1.2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若a 1=35,则a 2019 = ( )A .15B .25C .35D .4514.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .184B .174C .188D .16015.数列{}n a 满足12a =,1111n n n a a a ++-=+,则2019a =( ) A .3-B .12-C .13D .216.已知在数列{}n a 中,112,1n n na a a n +==+,则2020a 的值为( ) A .12020B .12019C .11010D .1100917.数列1111,,,57911--,…的通项公式可能是n a =( ) A .1(1)32n n --+B .(1)32n n -+C .1(1)23n n --+D .(1)23nn -+18.数列12,16,112,120,…的一个通项公式是( ) A .()11n a n n =-B .()1221n a n n =-C .111n a n n =-+ D .11n a n=-19.已知数列{}n a 满足00a =,()11i i a a i +=+∈N ,则201kk a=∑的值不可能是( ) A .2B .4C .10D .1420.删去正整数1,2,3,4,5,…中的所有完全平方数与立方数(如4,8),得到一个新数列,则这个数列的第2020项是( ) A .2072B .2073C .2074D .2075二、多选题21.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =C .135********a a a a a ++++= D .2222123202020202021a a a a a a ++++=22.已知数列0,2,0,2,0,2,,则前六项适合的通项公式为( )A .1(1)nn a =+-B .2cos2n n a π= C .(1)2sin2n n a π+= D .1cos(1)(1)(2)n a n n n π=--+--23.设数列{}n a 满足1102a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .2112a << B .{}n a 是递增数列 C .2020312a <<D .2020314a << 24.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 25.(多选)在数列{}n a 中,若221(2,,n n a a p n n N p *--=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .(){}1n- 是等方差数列C .{}2n是等方差数列.D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 26.设等差数列{}n a 的前n 项和为n S .若30S =,46a =,则( ) A .23n S n n =- B .2392-=n n nSC .36n a n =-D .2n a n =27.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( ) A .2490a a += B .数列{}n S 中最大值的项是25S C .公差0d >D .数列{}na 也是等差数列28.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减D .数列{}n S 有最大值29.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911111a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T <30.设{}n a 是等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论正确的是( ) A .0d < B .70a =C .95S S >D .67n S S S 与均为的最大值31.下列命题正确的是( )A .给出数列的有限项就可以唯一确定这个数列的通项公式B .若等差数列{}n a 的公差0d >,则{}n a 是递增数列C .若a ,b ,c 成等差数列,则111,,a b c可能成等差数列 D .若数列{}n a 是等差数列,则数列{}12++n n a a 也是等差数列 32.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )A .2n S n =B .223n S n n =-C .21n a n =-D .35n a n =-33.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <B .70a >C .{}n S 中5S 最大D .49a a <34.设公差不为0的等差数列{}n a 的前n 项和为n S ,若1718S S =,则下列各式的值为0的是( ) A .17aB .35SC .1719a a -D .1916S S -35.等差数列{}n a 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( ) A .109S S >B .170S <C .1819S S >D .190S >【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.A 解析:A 【分析】由已知得121n n a a n λ+-=+-,根据{}n a 为递增数列,所以有10n n a a +->,建立关于λ的不等式,解之可得λ的取值范围. 【详解】由已知得221(1)(1)21n n a a n n n n n λλλ+-=+-+-+=+-,因为{}n a 为递增数列,所以有10n n a a +->,即210n λ+->恒成立, 所以21n λ<+,所以只需()min 21n λ<+,即2113λ<⨯+=, 所以3λ<, 故选:A. 【点睛】本题考查数列的函数性质:递增性,根据已知得出10n n a a +->是解决此类问题的关键,属于基础题.2.C解析:C 【分析】根据数列{}n a 的前两项及递推公式,可求得数列的前几项,判断出数列为周期数列,即可求得2019a 的值.【详解】数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=- 当1n =时,321322a a a =-=-= 当2n =时,432231a a a =-=-=- 当3n =时,543123a a a =-=--=- 当4n =时,()654312a a a =-=---=- 当5n =时,()765231a a a =-=---= 当6n =时,()876123a a a =-=--= 由以上可知,数列{}n a 为周期数列,周期为6T =而201933663=⨯+ 所以201932a a == 故选:C 【点睛】本题考查了数列递推公式的简单应用,周期数列的简单应用,属于基础题.3.A解析:A 【分析】运用数列的单调性和不等式的知识可解决此问题. 【详解】数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,121n n n n a a a a +++∴≥--,设1n n n d a a +=-,则1n n d d +≥,∴数列{}n d 是递减数列.对于A ,由11a =,20192019a =, 则201911220182019a a d d d =+++=,所以1220182018d d d +++=,又1232018d d d d ≥≥≥≥,所以1122018201820182018d d d d d ≥+++≥,故120181d d ≥≥,2018n ∴≥时,1n d ≤,02019N ∃=,2019n >时, 20192019202012019111n n a a d d d n -=+++≤++++=即存在正整数0N ,当0n N >时,都有n a n ≤,故A 正确;结合A ,故B 不正确;对于C ,当n →+∞,且0n d >时,数列{}n a 为递增数列, 则n a 无最大值,故C 不正确;对于D ,由数列{}n d 是递减数列,当存在0n d <时,则n a 无最小值,故D 不正确; 故选:A 【点睛】本题考查了数列的单调性以及不等式,属于基础题.4.B解析:B 【分析】将题干中的等式化简变形得211n n a n a n --⎛⎫= ⎪⎝⎭,利用累乘法可求得数列{}n a 的通项公式,由此计算出()32313k k k b b b k N *--++∈,进而可得出数列{}nb 的前18项和.【详解】)1,2n a n N n *--=∈≥,将此等式变形得211n n a n a n --⎛⎫= ⎪⎝⎭,由累乘法得22232121211211123n n n aa a n a a a a a n n--⎛⎫⎛⎫⎛⎫=⋅⋅=⨯⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()2cos3n n n a b n N π*=∈,22cos 3n n b n π∴=, ()()222323134232cos 231cos 29cos 233k k k b b b k k k k k k πππππ--⎛⎫⎛⎫∴++=--+--+ ⎪ ⎪⎝⎭⎝⎭592k =-,因此,数列{}n b 的前18项和为()591234566921151742⨯+++++-⨯=⨯-=. 故选:B. 【点睛】本题考查并项求和法,同时也涉及了利用累乘法求数列的通项,求出32313k k k b b b --++是解答的关键,考查计算能力,属于中等题.5.D解析:D 【分析】利用累加法求出数列{}n a 的通项公式,并利用裂项相消法求出n S ,求出n S 的取值范围,进而可得出实数m 的取值范围. 【详解】11n n a a n +=++,11n n a a n +∴-=+且11a =,由累加法可得()()()()12132111232n n n n n a a a a a a a a n -+=+-+-++-=++++=,()122211n a n n n n ∴==-++,22222222222311n S n n n ⎛⎫⎛⎫⎛⎫∴=-+-++-=-< ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 由于n S m <对一切正整数n 恒成立,2m ∴≥,因此,实数m 的取值范围是[)2,+∞.故选:D. 【点睛】本题考查数列不等式恒成立问题的求解,同时也考查了累加法求通项以及裂项求和法,考查计算能力,属于中等题.6.C解析:C 【分析】可以看出所排都是奇数从小到大排起.规律是先第一列和第一行,再第二列和第二行,再第三列第三行,并且完整排完n 次后,排出的数呈正方形.可先算2021是第几个奇数,这个奇数在哪两个完全平方数之间,再去考虑具体的位置. 【详解】每排完n 次后,数字呈现边长是n 的正方形,所以排n 次结束后共排了2n 个数.20211110112-+=,说明2021是1011个奇数. 而22961311011321024=<<=,故2021一定是32行,而从第1024个数算起,第1011个数是倒数第14个,根据规律第1024个数排在第32行第1列,所以第1011个数是第32行第14列,即2021在第32行第14列. 故32,14i j ==. 故选:C. 【点睛】本题考查数列的基础知识,但是考查却很灵活,属于较难题.7.D解析:D 【分析】根据数列分子分母的规律求得通项公式. 【详解】由于数列的分母是奇数列,分子是自然数列,故通项公式为21n na n =-. 故选:D 【点睛】本小题主要考查根据数列的规律求通项公式,属于基础题.8.C解析:C 【分析】21n n S a +=-,则111n n S a -+=-,两式相减得到A 正确;由A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=进而得到B正确;同理可得到C 错误;由21n n S a +=-得到12398S S S S +++⋯+=123451002111......1a a a a a a +-+-+-+-++-=100100.S -进而D 正确. 【详解】已知21n n S a +=-,则111n n S a -+=-,两式相减得到2121n n n n n n a a a a a a ++++=-⇒=+,故A 正确;根据A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=,故B 正确;24698a a a a +++⋯+=2234569697a a a a a a a a ++++++⋯++=1234569697a a a a a a a a ++++++⋯++=97991S a =-,故C 不正确;根据2123981n n S a S S S S +=-+++⋯+=,123451002111......1a a a a a a +-+-+-+-++-= 100100.S -故D 正确. 故答案为C. 【点睛】这个题目考查了数列的应用,根据题干中所给的条件进行推广,属于中档题,这类题目不是常规的等差或者等比数列,要善于发现题干中所给的条件,应用选项中正确的结论进行其它条件的推广.9.D解析:D 【分析】根据题意得出1112n n n a a a a +==,从而可知数列{}n a 为等比数列,确定该等比数列的首项和公比,可计算出n S ,然后利用数列{}n S 的单调性可得出n S 的取值范围. 【详解】取1x =,()y n n N*=∈,由题意可得()()()111112n n n af n f f n a a a +=+=⋅==, 112n n a a +∴=,所以,数列{}n a 是以12为首项,以12为公比的等比数列, 11112211212n n n S ⎛⎫- ⎪⎝⎭∴==--,所以,数列{}n S 为单调递增数列,则11n S S ≤<,即112n S ≤<. 故选:D. 【点睛】本题考查等比数列前n 项和范围的求解,解题的关键就是判断出数列{}n a 是等比数列,考查推理能力与计算能力,属于中等题.10.B解析:B【分析】利用等差数列{}n a 的通项公式代入可得574a a -的值. 【详解】由13920a a a ++=,得131020a d +=,则有5711144(4)631020a a a d a d a d -=+--=+=. 故选:B. 【点睛】考查等差数列通项公式的运用,知识点较为简单.11.A解析:A 【分析】根据递推公式推导出()4n n a a n N *+=∈,且有12341a a a a=,再利用数列的周期性可计算出2018T 的值. 【详解】12a =,()*111++=∈-nn n a a n N a ,212312a +∴==--,3131132a -==-+,411121312a -==+,51132113a +==-,()4n n a a n N *+∴=∈,且()12341123123a a a a ⎛⎫=⨯-⨯-⨯= ⎪⎝⎭,201845042=⨯+,因此,()5042018450421211236T T a a ⨯+==⨯=⨯⨯-=-.故选:A. 【点睛】本题考查数列递推公式的应用,涉及数列周期性的应用,考查计算能力,属于中等题.12.C解析:C 【分析】设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b ,则n c n =,依次用累加法,可求解.【详解】设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b , 设{}n c 的前n 项和为n C ,易得n c n =,()()()111121n n n n n n n C c c c b b b b b b +----=+++=++++-所以11n n b b C +=-,1213b a a -==22n n n C +=,进而得21332n n n nb C ++=+=+, 所以()21133222n n n n b n -=+=-+,()()()()2221111121233226n n n n B n n n n +-=+++-++++=+同理:()()()111112n n n n n n n B b b b a a a a a a +---=+++=+++--11n n a a B +-=所以11n n a B +=+,所以191024a =. 故选:C 【点睛】本题考查构造数列,用累加法求数列的通项公式,属于中档题.13.B解析:B 【分析】根据数列的递推公式,得到数列的取值具备周期性,即可得到结论. 【详解】∵112,02121,12n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩,又∵a 135=,∴a 2=2a 1﹣1=235⨯-115=,a 3=2a 225=, a 4=2a 3=22455⨯=, a 5=2a 4﹣1=245⨯-135=, 故数列的取值具备周期性,周期数是4, 则2019a =50443a ⨯+=325a =, 故选B . 【点睛】本题主要考查数列项的计算,根据数列的递推关系是解决本题的关键.根据递推关系求出数列的取值具备周期性是解决本题的突破口.14.B解析:B 【分析】根据高阶等差数列的知识,结合累加法求得数列的通项公式,由此求得19a . 【详解】3,4,6,9,13,18,24,1,2,3,4,5,6,所以()1112,3n n a a n n a --=-≥=, 所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()1213n n =-+-+++()()()11113322n n n n -+⋅--=+=+.所以19191831742a ⨯=+=. 故选:B 【点睛】本小题主要考查数列新定义,考查累加法,属于基础题.15.B解析:B 【分析】由递推关系,可求出{}n a 的前5项,从而可得出该数列的周期性,进而求出2019a 即可. 【详解】 由1111n n n a a a ++-=+,可得111nn n a a a ++=-,由12a =,可得23a =-,312a =-,413a =,52a =,由15a a =,可知数列{}n a 是周期数列,周期为4, 所以2019312a a ==-. 故选:B.16.C解析:C 【分析】由累乘法可求得2n a n=,即可求出. 【详解】11n n n a a n +=+,即11n n a n a n +=+, 12321123211232121232n n n n n n n a a a a a n n n a a a a a a a n n n --------∴=⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⨯--2n=,20202120201010a ∴==. 故选:C.17.D解析:D 【分析】根据观察法,即可得出数列的通项公式. 【详解】因为数列1111,,,, (57911)--可写成 ()()()()2342322311111,1,1,12,..24.333-⨯-⨯-⨯+⨯+⨯+⨯+-⨯, 所以其通项公式为(1)(1)23213nnn a n n -=-=++⨯. 故选:D.18.C解析:C 【分析】根据选项进行逐一验证,可得答案. 【详解】 选项A. ()11n a n n =-,当1n =时,无意义.所以A 不正确.选项B. ()1221n a n n =-,当2n =时,()211122221126a ==≠⨯⨯⨯-,故B 不正确. 选项C.11122=-,111162323==-⨯,1111123434==-⨯,1111204545==-⨯ 所以111n a n n =-+满足.故C 正确. 选项D. 11n a n =-,当1n =时, 1111012a =-=≠,故D 不正确. 故选:C19.B解析:B 【分析】先由题中条件,得到21221i i i a a a +-=+,由累加法得到202211221k k a a ==-∑,根据00a =,()11i i a a i +=+∈N ,逐步计算出221a 所有可能取的值,即可得出结果.【详解】由11i i a a +=+得()2221121i i i i a a a a +=+=++,则21221i i i a a a +-=+, 所以2221121a a a -=+, 2232221a a a -=+,……,2202022121a a a -=+,以上各式相加可得:()2112022102212 (20202)kk a a a a a a=-=+++++=∑,所以20221211220k k a a a ==--∑,又00a =,所以2120211a a a =++=,则202211221k k a a ==-∑,因为()11i i a a i +=+∈N ,00a =,则0111a a =+=,所以11a =±,则2110a a =+=或2,所以20a =或2±;则3211a a =+=或3,所以31a =±或3±;则4310a a =+=或2或4,所以42a =±或4±或0;则5411a a =+=或3或5,所以51a =±或3±或5±;……,以此类推,可得:211a =±或3±或5±或7±或9±或11±或13±或15±或17±或19±或21±,因此221a 所有可能取的值为222222222221,3,5,7,9,11,13,15,17,19,21,所以221122a -所有可能取的值为10-,6-,2,14,30,50,74,102,134,170,210;则201kk a=∑所有可能取的值为10,6,2,14,30,50,74,102,134,170,210,即ACD 都有可能,B 不可能. 故选:B. 【点睛】 关键点点睛:求解本题的关键在于将题中条件平方后,利用累加法,得到20221211220k k a a a ==--∑,将问题转化为求221a 的取值问题,再由条件,结合各项取值的规律,即可求解.20.C解析:C 【分析】由于数列22221,2,3,2,5,6,7,8,3,45⋯共有2025项,其中有45个平方数,12个立方数,有3个既是平方数,又是立方数的数,所以还剩余20254512+31971--=项,所以去掉平方数和立方数后,第2020项是在2025后的第()20201971=49-个数,从而求得结果. 【详解】∵2452025=,2462116=,20202025<,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉45个平方数,因为331217282025132197=<<=,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉12个立方数,又66320254<<,所以在从数列22221,2,3,2,5,6,7,8,3,45⋯中有3个数即是平方数, 又是立方数的数,重复去掉了3个即是平方数,又是立方数的数, 所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉平方数和立方数后还有20254512+31971--=项,此时距2020项还差2020197149-=项, 所以这个数列的第2020项是2025492074+=, 故选:C. 【点睛】本题考查学生的实践创新能力,解决该题的关键是找出第2020项的大概位置,所以只要弄明白在数列22221,2,3,2,5,6,7,8,3,45⋯去掉哪些项,去掉多少项,问题便迎刃而解,属于中档题.二、多选题 21.BCD 【分析】根据题意写出,,,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,,,故A 不正确; 对B ,,故B 正确; 对C ,由,,解析:BCD 【分析】根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,821a =,620S =,故A 不正确; 对B ,761333S S =+=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得135********a a a a a +++⋅⋅⋅+=,故C 正确;对D ,该数列总有21n n n a a a ++=+,2121a a a =,则()222312321a a a a a a a a =-=-, ()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-, 故2222123202*********a a a a a a +++⋅⋅⋅+=,故D 正确.故选:BCD 【点睛】关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进行变形.22.AC 【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】对于选项A ,取前六项得:,满足条件; 对于选项B ,取前六项得:,不满足条件; 对于选项C ,取前六项得:,解析:AC 【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】对于选项A ,1(1)nn a =+-取前六项得:0,2,0,2,0,2,满足条件;对于选项B ,2cos 2n n a π=取前六项得:0,2,0,2,0,2--,不满足条件; 对于选项C ,(1)2sin2n n a π+=取前六项得:0,2,0,2,0,2,满足条件; 对于选项D ,1cos(1)(1)(2)n a n n n π=--+--取前六项得:0,2,2,8,12,22,不满足条件; 故选:AC23.ABD 【分析】构造函数,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】 由, 设, 则,所以当时,,即在上为单调递增函数, 所以函数在为单调递增函数, 即, 即, 所以 ,解析:ABD 【分析】构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】由()1ln 2n n n a a a +=+-,1102a << 设()()ln 2f x x x =+-, 则()11122xf x x x-'=-=--, 所以当01x <<时,0f x,即()f x 在0,1上为单调递增函数,所以函数在10,2⎛⎫⎪⎝⎭为单调递增函数,即()()102f f x f ⎛⎫<<⎪⎝⎭,即()131ln 2ln ln 1222f x <<<+<+=, 所以()112f x << , 即11(2)2n a n <<≥, 所以2112a <<,2020112a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,112n a <<,所以{}n a 是递增数列,故B 正确; 2112a <<,所以 23132131113ln(2)ln ln 222234a a a e =+->+>+=+> 因此20202020333144a a a ∴<><>,故D 正确 故选:ABD 【点睛】本题考查了数列性质的综合应用,属于难题.【分析】由题意可得数列满足递推关系,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为,故A 正确; 对B ,,故B 正确; 对C ,由,,,……,,可得:.故是斐波那契数列中的第解析:ABCD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.对D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;故选:ABCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换.25.BD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若是等差数列,如,则不是常数,故不是等方差数列,故A 错误; 对于B ,数列中,是常数,是等方差数列,故解析:BD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可.对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}na 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确; 对于C ,数列{}2n中,()()22221112234nn n n n a a ----=-=⨯不是常数,{}2n∴不是等方差数列,故C 错误; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+,{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BD. 【点睛】关键点睛:本题考查了数列的新定义问题和等差数列的定义,解题的关键是正确理解等差数列和等方差数列定义,利用定义进行判断.26.BC 【分析】由已知条件列方程组,求出公差和首项,从而可求出通项公式和前项和公式 【详解】解:设等差数列的公差为, 因为,, 所以,解得, 所以, , 故选:BC解析:BC 【分析】由已知条件列方程组,求出公差和首项,从而可求出通项公式和前n 项和公式 【详解】解:设等差数列{}n a 的公差为d , 因为30S =,46a =,所以113230236a d a d ⨯⎧+=⎪⎨⎪+=⎩,解得133a d =-⎧⎨=⎩,所以1(1)33(1)36n a a n d n n =+-=-+-=-,21(1)3(1)393222n n n n n n n S na d n ---=+=-+=, 故选:BC27.AB【分析】根据已知条件求得的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项.【详解】依题意,等差数列中,即,.对于A 选项,,所以A 选项正确.对于C 选项,,,所以,解析:AB【分析】根据已知条件求得1,a d 的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项.【详解】依题意,等差数列{}n a 中81535a a =,即()()1137514a d a d +=+,1149249,2a d a d =-=-. 对于A 选项,24912490a a a d +=+=,所以A 选项正确. 对于C 选项,1492a d =-,10a >,所以0d <,所以C 选项错误. 对于B 选项,()()149511122n a a n d d n d n d ⎛⎫=+-=-+-=- ⎪⎝⎭,令0n a ≥得51510,22n n -≤≤,由于n 是正整数,所以25n ≤,所以数列{}n S 中最大值的项是25S ,所以B 选项正确. 对于D 选项,由上述分析可知,125n ≤≤时,0n a ≥,当26n ≥时,0n a <,且0d <.所以数列{}na 的前25项递减,第26项后面递增,不是等差数列,所以D 选项错误. 故选:AB【点睛】等差数列有关知识的题目,主要把握住基本元的思想.要求等差数列前n 项和的最值,可以令0n a ≥或0n a ≤来求解.28.ABD【分析】由可判断AB ,再由a1>0,d <0,可知等差数列数列先正后负,可判断CD.【详解】根据等差数列定义可得,所以数列单调递减,A 正确;由数列单调递减,可知数列有最大值a1,故B 正解析:ABD【分析】由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD.【详解】根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确;由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确.故选:ABD.29.AC【分析】将变形为,构造函数,利用函数单调性可得,再结合等差数列与等比数列性质即可判断正确选项【详解】由,可得,令,,所以是奇函数,且在上单调递减,所以,所以当数列为等差数列时,;解析:AC【分析】 将3201911111a a e e +≤++变形为32019111101212a a e e -+-≤++,构造函数()1112x f x e =-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项【详解】 由3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()1112x f x e =-+, ()()1111101111xx x x x e f x f x e e e e --+=+-=+-=++++,所以()1112x f x e =-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()320192*********a a S +=≥; 当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021202110110T a =>.故选:AC【点睛】本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题 30.ABD【分析】由,判断,再依次判断选项.【详解】因为,,,所以数列是递减数列,故,AB 正确;,所以,故C 不正确;由以上可知数列是单调递减数列,因为可知,的最大值,故D 正确.故选:AB解析:ABD【分析】由1n n n S S a --=()2n ≥,判断6780,0,0a a a >=<,再依次判断选项.【详解】因为5665600S S S S a <⇒->⇒>,677670S S S S a =⇒-==,788780S S S S a >⇒-=<,所以数列{}n a 是递减数列,故0d <,AB 正确;()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;由以上可知数列{}n a 是单调递减数列,因为6780,0,0a a a >=<可知,67n S S S 与均为的最大值,故D 正确.故选:ABD【点睛】本题考查等差数列的前n 项和的最值,重点考查等差数列的性质,属于基础题型.31.BCD【分析】根据等差数列的性质即可判断选项的正误.【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知,必是递增数列;C 选项:时,是等差数列,而a = 1,解析:BCD【分析】根据等差数列的性质即可判断选项的正误.【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知0d >,{}n a 必是递增数列;C 选项:1a b c ===时,1111a b c===是等差数列,而a = 1,b = 2,c = 3时不成立; D 选项:数列{}n a 是等差数列公差为d ,所以11112(1)223(31)n n a a a n d a nd a n d ++=+-++=+-也是等差数列;故选:BCD【点睛】本题考查了等差数列,利用等差数列的性质判断选项的正误,属于基础题.32.AC【分析】利用等差数列的前项和公式、通项公式列出方程组,求出,,由此能求出与.【详解】等差数列的前项和为.,,,解得,,.故选:AC .【点睛】本题考查等差数列的通项公式求和公解析:AC【分析】利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出n a 与n S .【详解】等差数列{}n a 的前n 项和为n S .39S =,47a =, ∴31413239237S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩,解得11a =,2d =,1(1)221n a n n ∴+-⨯=-=.()21212n n n S n +-== 故选:AC .【点睛】本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.33.AD【分析】先根据题意得,,再结合等差数列的性质得,,,中最大,,即:.进而得答案.【详解】解:根据等差数列前项和公式得:,所以,,由于,,所以,,所以,中最大,由于,所以,即:解析:AD【分析】先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.【详解】解:根据等差数列前n 项和公式得:()111111102a a S +=>,()112121202a a S +=< 所以1110a a +>,1120a a +<,由于11162a a a +=,11267a a a a +=+,所以60a >,760a a <-<,所以0d <,{}n S 中6S 最大,由于11267490a a a a a a +=+=+<,所以49a a <-,即:49a a <.故AD 正确,BC 错误.故选:AD.【点睛】本题考查等差数列的前n 项和公式与等差数列的性质,是中档题.34.BD【分析】由得,利用可知不正确;;根据可知 正确;根据可知不正确;根据可知正确.【详解】因为,所以,所以,因为公差,所以,故不正确;,故正确;,故不正确;,故正确.故选:BD.解析:BD【分析】由1718S S =得180a =,利用17180a a d d =-=-≠可知A 不正确;;根据351835S a =可知 B 正确;根据171920a a d -=-≠可知C 不正确;根据19161830S S a -==可知D 正确.【详解】因为1718S S =,所以18170S S -=,所以180a =,因为公差0d ≠,所以17180a a d d =-=-≠,故A 不正确;135********()35235022a a a S a +⨯====,故B 正确; 171920a a d -=-≠,故C 不正确;19161718191830S S a a a a -=++==,故D 正确.故选:BD.【点睛】本题考查了等差数列的求和公式,考查了等差数列的下标性质,属于基础题.35.ABD【分析】先根据题意可知前9项的和最小,判断出正确;根据题意可知数列为递减数列,则,又,进而可知,判断出不正确;利用等差中项的性质和求和公式可知,,故正确.【详解】根据题意可知数列为递增解析:ABD【分析】先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质和求和公式可知()01179179172171722a a a S a <+⨯⨯===,()1191019101921919022a a a S a +⨯⨯===>,故BD 正确. 【详解】根据题意可知数列为递增数列,90a <,100a >, ∴前9项的和最小,故A 正确; ()11791791721717022a a a S a +⨯⨯===<,故B 正确; ()1191019101921919022a a a S a +⨯⨯===>,故D 正确; 190a >,181919S S a ∴=-,1819S S ∴<,故C 不正确. 故选:ABD .【点睛】本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。
例谈用函数观点看数列最值问题
在数学中,数列是指按一定规律排列的一系列数的集合。
数列最值问题是在给定的数列中寻找最大值或最小值的问题。
在解决这类问题时,我们可以运用函数观点。
我们可以将数列看作是一个函数的图像。
具体来说,将数列中的第n个数表示为an,则数列可以看作是一个自然数到实数的映射。
可以定义一个函数f(n)=an来表示数列。
通过这个函数,我们可以方便地运用函数的性质和方法来解决数列最值问题。
我们可以通过函数的导数来判断数列的增减性。
通过观察数列函数的导数,我们可以知道数列的增减规律,从而进一步确定数列的最值点。
如果数列是递增的,那么最小值一定在数列的第一个数上;如果数列是递减的,那么最大值一定在数列的第一个数上。
我们还可以通过导数的一阶导数、二阶导数等来判断数列的凹凸性,从而进一步推断数列的最值点。
我们还可以运用函数的极值性质来解决数列最值问题。
对于数列函数f(n),如果它在某个区间上具有极大值或极小值,那么这个极值点也是数列的最值点。
通过求解函数的极值点,我们可以得到数列的最值点,进而找到数列的最值。
我们还可以通过函数的图像来观察数列的变化和趋势。
在数列最值问题中,我们可以将函数图像理解为数列的数值变化,从而更直观地看出数列的最值点。
通过观察数列函数图像的拐点、极值点等特征,我们可以找到数列的最值点。
数列题型一、数列的综合问题【例1】已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值. 解 (1)设等比数列{a n }的公比为q ,因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列,所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3,于是q 2=a 5a 3=14. 又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1 =(-1)n -1·32n .(2)由(1)得S n =1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n ,n 为奇数,1-12n ,n 为偶数,当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56. 当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n ∈N *,总有-712≤S n -1S n≤56. 所以数列{T n }最大项的值为56,最小项的值为-712.【分析】解决等差数列与等比数列的综合问题,既要善于综合运用等差数列与等比数列的相关知识求解,更要善于根据具体问题情境具体分析,寻找解题的突破口.【即时应用】已知数列{a n }是公差不为零的等差数列,其前n 项和为S n ,满足S 5-2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项.(1)求数列{a n },{b n }的通项公式;(2)设T n 是数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和,是否存在k ∈N *,使得等式1-2T k =1b k 成立?若存在,求出k 的值;若不存在,请说明理由.解 (1)设等差数列{a n }的公差为d (d ≠0),∴⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫5a 1+5×42d -2(a 1+d )=25,(a 1+3d )2=a 1(a 1+12d ),解得a 1=3,d =2,∴a n =2n +1.∵b 1=a 1=3,b 2=a 4=9,∴等比数列{b n }的公比q =3,∴b n =3n .(2)不存在.理由如下:∵1a n a n +1=1(2n +1)(2n +3)=12⎝ ⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∴1-2T k =23+12k +3(k ∈N *), 易知数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫12k +3为单调递减数列, ∴23<1-2T k ≤1315,又1b k=13k ∈⎝ ⎛⎦⎥⎤0,13,∴不存在k ∈N *,使得等式1-2T k =1b k成立. 题型二、数列的通项、求和求和要善于分析通项的结构特征,选择合适的求和方法.常用求和方法有:错位相减法、裂项相消法、分组求和法等.【例2】设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a n b n,求数列{c n }的前n 项和T n . (1)解 由题意有⎩⎨⎧10a 1+45d =100,a 1d =2, 即⎩⎨⎧2a 1+9d =20,a 1d =2,解得⎩⎨⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=9,d =29. 故⎩⎨⎧a n =2n -1,b n =2n -1或⎩⎪⎨⎪⎧a n =19(2n +79),b n =9·⎝ ⎛⎭⎪⎫29n -1. (2)解 由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1, 于是T n =1+32+522+723+924+…+2n -12n -1,① 12T n =12+322+523+724+925+…+2n -12n .②①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n ,故T n =6-2n +32n -1. 【分析】用错位相减法解决数列求和的模板第一步:(判断结构)若数列{a n ·b n }是由等差数列{a n }与等比数列{b n }(公比q )的对应项之积构成的,则可用此法求和.第二步:(乘公比)设{a n ·b n }的前n 项和为T n ,然后两边同乘以q .第三步:(错位相减)乘以公比q 后,向后错开一位,使含有q k (k ∈N *)的项对应,然后两边同时作差. 第四步:(求和)将作差后的结果求和,从而表示出T n .【即时应用】设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *.(1)证明:a n +2=3a n ;(2)求S 2n .(1)证明 由条件,对任意n ∈N *,有a n +2=3S n -S n +1+3,因而对任意n ∈N *,n ≥2,有a n +1=3S n -1-S n +3.两式相减,得a n +2-a n +1=3a n -a n +1,即a n +2=3a n ,n ≥2.又a 1=1,a 2=2,所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1,故对一切n ∈N *,a n +2=3a n .(2)解 由(1)知,a n ≠0,所以a n +2a n=3.于是数列{a 2n -1}是首项a 1=1,公比为3的等比数列;数列{a 2n }是首项a 2=2,公比为3的等比数列.因此a 2n -1=3n -1,a 2n =2×3n -1.于是S 2n =a 1+a 2+…+a 2n=(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=(1+3+…+3n -1)+2(1+3+…+3n -1)=3(1+3+…+3n -1)=32(3n -1).题型三、数列的综合应用3.1 数列与函数的综合问题【例3】 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a n b n 的前n 项和T n . 解 (1)由已知,b 7=2a 7,b 8=2a 8=4b 7,有2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2.所以,S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n . (2)函数f (x )=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),它在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2.所以,d =a 2-a 1=1.从而a n =n ,b n =2n ,所以T n =12+222+323+…+n -12n -1+n 2n , 2T n =11+22+322+…+n 2n -1 因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n. 所以,T n =2n +1-n -22n. 热点3.2 数列与不等式的综合问题【例4】 在等差数列{a n }中,a 2=6,a 3+a 6=27.(1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n 3·2n -1,若对于一切正整数n ,总有T n ≤m 成立,求实数m 的取值范围.解 (1)设公差为d ,由题意得:⎩⎨⎧a 1+d =6,2a 1+7d =27,解得⎩⎨⎧a 1=3,d =3,∴a n =3n .(2)∵S n =3(1+2+3+…+n )=32n (n +1),∴T n =n (n +1)2n ,T n +1=(n +1)(n +2)2n +1,∴T n +1-T n =(n +1)(n +2)2n +1-n (n +1)2n=(n +1)(2-n )2n +1,∴当n ≥3时,T n >T n +1,且T 1=1<T 2=T 3=32,∴T n 的最大值是32,故实数m 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.。
一、数列的概念选择题1.函数()2cos 2f x x x =-{}n a ,则3a =( )A .1312πB .54π C .1712πD .76π2.已知数列{}n a 满足1221n n n a a a ++=+,n *∈N ,若1102a <<,则( ) A .8972a a a +< B .91082a a a +> C .6978a a a a +>+D .71089a a a a +>+3.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件 4.已知数列{}n a 满足1n n n a a +-=,则20201a a -=( ) A .20201010⨯B .20191010⨯C .20202020⨯D .20192019⨯5.已知数列{}n a 满足11a =,()*11nn n a a n N a +=∈+,则2020a =( ) A .12018B .12019 C .12020D .120216.在数列{}n a 中,()1111,1(2)nn n a a n a --==+≥,则5a 等于A .32B .53 C .85D .237.数列1,3,6,10,…的一个通项公式是( )A .()21n a n n =-- B .21n a n =-C .()12n n n a +=D .()12n n n a -=8.数列{}n a 中,12a =,121n n a a +=-,则10a =( ) A .511B .513C .1025D .10249.已知数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=-,则2019a =( ) A .1B .3C .2D .3-10.设数列{},{}n n a b 满足*172700,,105n n n n n a b a a b n N ++==+∈若6400=a ,则( ) A .43a a >B .43<b bC .33>a bD .44<a b11.数列{}n a 中,()1121nn n a a n ++-=-,则数列{}n a 的前8项和等于( )A .32B .36C .38D .4012.已知数列265n a n n =-+则该数列中最小项的序号是( )A .3B .4C .5D .613.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20202018a a 等于( ) A .4×20162-1B .4×20172-1C .4×20182-1D .4×2018214.已知在数列{}n a 中,112,1n n na a a n +==+,则2020a 的值为( ) A .12020B .12019C .11010D .1100915.在数列{}n a 中,21n n a n +=+,则{}n a ( ) A .是常数列B .不是单调数列C .是递增数列D .是递减数列16.已知数列{}n a 满足2122111,16,2n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92 B .102C .8182D .11217.数列12,16,112,120,…的一个通项公式是( ) A .()11n a n n =-B .()1221n a n n =-C .111n a n n =-+ D .11n a n=-18.已知数列{}n a 的前n 项和为n S ,已知13n n S +=,则34a a +=( )A .81B .243C .324D .21619.数列{}n a 前n 项和为n S ,若21n n S a =+,则72019a S +的值为( ) A .2B .1C .0D .1-20.已知数列{}n a 的通项公式为()()211nn a n=--,则6a =( )A .35B .11-C .35-D .11二、多选题21.设数列{}n a 满足1102a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( )A .2112a << B .{}n a 是递增数列 C .2020312a <<D .2020314a << 22.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 23.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .01q <<B .681a a >C .n S 的最大值为7SD .n T 的最大值为6T24.在等差数列{}n a 中,公差0d ≠,前n 项和为n S ,则( ) A .4619a a a a >B .130S >,140S <,则78a a >C .若915S S =,则n S 中的最大值是12SD .若2n S n n a =-+,则0a =25.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <.26.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( ) A .2490a a += B .数列{}n S 中最大值的项是25S C .公差0d >D .数列{}na 也是等差数列27.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( ) A .0d < B .120a > C .13n S S ≤D .当且仅当0nS <时,26n ≥28.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )A .1d =-B .413a a =C .n S 的最大值为8SD .使得0n S >的最大整数15n =29.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列B .(){}1n-是等方差数列C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 30.下列命题正确的是( )A .给出数列的有限项就可以唯一确定这个数列的通项公式B .若等差数列{}n a 的公差0d >,则{}n a 是递增数列C .若a ,b ,c 成等差数列,则111,,a b c可能成等差数列 D .若数列{}n a 是等差数列,则数列{}12++n n a a 也是等差数列31.(多选题)等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则下列命题正确的是( )A .若59S S =,则必有14S =0B .若59S S =,则必有7S 是n S 中最大的项C .若67S S >,则必有78S S >D .若67S S >,则必有56S S >32.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中正确的有( )A .若100S =,则280S S +=;B .若412S S =,则使0n S >的最大的n 为15C .若150S >,160S <,则{}n S 中8S 最大D .若78S S <,则89S S <33.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( )A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为2134.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <B .70a >C .{}n S 中5S 最大D .49a a <35.已知{}n a 为等差数列,其前n 项和为n S ,且13623a a S +=,则以下结论正确的是( ). A .10a =0B .10S 最小C .712S S =D .190S =【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.B 解析:B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=-⎪⎝⎭4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】解:∵()2cos 22sin 26f x x x x π⎛⎫=-=-- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈, ∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.2.C解析:C 【分析】由递推公式1221n n n a a a ++=+得出25445n n n a a a ++=+,计算出25,24a ⎛⎫∈ ⎪⎝⎭,利用递推公式推导得出()0,1n a ∈(n 为正奇数),1n a >(n 为正偶数),利用定义判断出数列{}()21n a n N *-∈和{}()2n a n N *∈的单调性,进而可得出结论.【详解】()()113212132221212221n n n n n n a a a a a a ++++===++++,110,2a ⎛⎫∈ ⎪⎝⎭,25,24a ⎛⎫∴∈ ⎪⎝⎭, ()()121259245221545944221454544452121n n n n n n n n n n n n a a a a a a a a a a a a ++++++-+++=====-+++++⨯++,且()2241544545n n n n n n n a a a a a a a +-+-=-=++,()212122121n n n n n n n a a a a a a a +-+-=-=++. 110,2a ⎛⎫∈ ⎪⎝⎭,则101a <<,则()()3590,14445n a a =-∈+, 如此继续可得知()()210,1n a n N *-∈∈,则()22121212141=045n n n n a aa a -+---->+,所以,数列{}()21n a n N *-∈单调递增;同理可知,()21na n N *>∈,数列{}()2na n N *∈单调递减.对于A 选项,78a a <且79a a <,8972a a a ∴+>,A 选项错误; 对于B 选项,89a a >且108a a <,则91082a a a +<,B 选项错误; 对于C 选项,68a a >,97a a >,则6978a a a a +>+,C 选项正确; 对于D 选项,79a a <,108a a <,则71098a a a a +<+,D 选项错误. 故选:C. 【点睛】本题考查数列不等式的判断,涉及数列递推公式的应用,解题的关键就是推导出数列{}()21n a n N *-∈和{}()2n a n N *∈的单调性,考查推理能力,属于难题.3.A解析:A 【分析】根据等差数列的前n 项和公式以及充分条件和必要条件的定义进行判断即可. 【详解】{}n a 是等差数列,且公差d 不为零,其前n 项和为n S ,充分性:1n n S S +>,则10n a +>对任意的n *∈N 恒成立,则20a >,0d ≠,若0d <,则数列{}n a 为单调递减数列,则必存在k *∈N ,使得当n k >时,10n a +<,则1n n S S +<,不合乎题意;若0d >,由20a >且数列{}n a 为单调递增数列,则对任意的n *∈N ,10n a +>,合乎题意.所以,“*n N ∀∈,1n n S S +>”⇒“{}n a 为递增数列”;必要性:设10n a n =-,当8n ≤时,190n a n +=-<,此时,1n n S S +<,但数列{}n a 是递增数列.所以,“*n N ∀∈,1n n S S +>”⇐/“{}n a 为递增数列”.因此,“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的充分而不必要条件. 故选:A. 【点睛】本题主要考查充分条件和必要条件的判断,结合等差数列的前n 项和公式是解决本题的关键,属于中等题.4.B解析:B 【分析】由题意可得211a a -=,322a a -=,433a a -=,……202020192019a a -=,再将这2019个式子相加得到结论. 【详解】由题意可知211a a -=,322a a -=,433a a -=,……202020192019a a -=, 这2019个式子相加可得()20201201912019123 (2019201910102)a a +-=++++==⨯.故选:B. 【点睛】本题考查累加法,重点考查计算能力,属于基础题型.5.C解析:C 【分析】根据数列的递推关系,利用取倒数法进行转化,构造等差数列,结合等差数列的性质求出通项公式即可. 【详解】 解:11nn n a a a +=+,∴两边同时取倒数得11111n n n na a a a ++==+, 即1111n na a ,即数列1n a ⎧⎫⎨⎬⎩⎭是公差1d =的等差数列,首项为111a .则11(1)1nn n a =+-⨯=, 得1n a n=, 则202012020a =, 故选:C 【点睛】本题主要考查数列通项公式的求解,结合数列递推关系,利用取倒数法以及构造法构造等差数列是解决本题的关键.考查学生的运算和转化能力,属于基础题.6.D解析:D 【解析】分析:已知1a 逐一求解2345122323a a a a ====,,,. 详解:已知1a 逐一求解2345122323a a a a ====,,,.故选D 点睛:对于含有()1n-的数列,我们看作摆动数列,往往逐一列举出来观察前面有限项的规律.7.C解析:C 【分析】首先根据已知条件得到410a =,再依次判断选项即可得到答案. 【详解】由题知:410a =,对选项A ,()2444113a =--=,故A 错误;对选项B ,244115a =-=,故B 错误;对选项C ,()4441102a ⨯+==,C 正确;对选项D ,()444162a ⨯-==,故D 错误. 故选:C 【点睛】本题主要考查数列的通项公式,属于简单题.8.B解析:B 【分析】根据递推公式构造等比数列{}1n a -,求解出{}n a 的通项公式即可求解出10a 的值. 【详解】因为121n n a a +=-,所以121n n a a +=-,所以()1121n n a a +-=-, 所以1121n n a a +-=-且1110a -=≠, 所以{}1n a -是首项为1,公比为2的等比数列,所以112n n a --=,所以121n n a -=+,所以91021513a =+=,故选:B. 【点睛】本题考查利用递推公式求解数列通项公式,难度一般.对于求解满足()11,0,0n n a pa q p p q +=+≠≠≠的数列{}n a 的通项公式,可以采用构造等比数列的方法进行求解.9.C解析:C 【分析】根据数列{}n a 的前两项及递推公式,可求得数列的前几项,判断出数列为周期数列,即可求得2019a 的值.【详解】数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=- 当1n =时,321322a a a =-=-= 当2n =时,432231a a a =-=-=- 当3n =时,543123a a a =-=--=- 当4n =时,()654312a a a =-=---=- 当5n =时,()765231a a a =-=---= 当6n =时,()876123a a a =-=--= 由以上可知,数列{}n a 为周期数列,周期为6T =而201933663=⨯+ 所以201932a a == 故选:C 【点睛】本题考查了数列递推公式的简单应用,周期数列的简单应用,属于基础题.10.C解析:C 【分析】 由题意有1328010n n a a +=+且6400=a ,即可求34,a a ,进而可得34,b b ,即可比较它们的大小. 【详解】 由题意知:1328010n n a a +=+,6400=a , ∴345400a a a ===,而700n n a b +=, ∴34300b b ==, 故选:C 【点睛】本题考查了根据数列间的递推关系比较项的大小,属于简单题.11.B解析:B 【分析】根据所给数列表达式,递推后可得()121121n n n a a n ++++-=+.并将原式两边同时乘以()1n-后与变形后的式子相加,即可求得2n n a a ++,即隔项和的形式.进而取n 的值,代入即可求解. 【详解】由已知()1121nn n a a n ++-=-,① 得()121121n n n a a n ++++-=+,②由()1n⨯-+①②得()()()212121nn n a a n n ++=-⋅-++,取1,5,9n =及2,6,10n =,易得13572a a a a +=+=,248a a +=,6824a a +=, 故81234836S a a a a a =++++⋅⋅⋅+=. 故选:B. 【点睛】本题考查了数列递推公式的应用,对数列表达式进行合理变形的解决此题的关键,属于中档题.12.A解析:A 【分析】首先将n a 化简为()234n a n =--,即可得到答案。
2024新高考新试卷结构数列的通项公式的9种题型总结题型解密考点一:已知S n =f n ,求a n利用S n =a 1,n =1S n−Sn −1,n ≥2,注意一定要验证当n =1时是否成立【精选例题】1已知S n 为数列a n 的前n 项和,且S n =2n +1-1,则数列a n 的通项公式为()A.a n =2nB.a n =3,n =12n,n ≥2C.a n =2n -1D.a n =2n +1【答案】B【详解】当n ≥2时,S n -1=2n -1,a n =S n -S n -1=2n +1-1-2n +1=2n ;当n =1时,a 1=S 1=21+1-1=3,不符合a n =2n ,则a n =3,n =12n,n ≥2.故选:B .2定义np 1+p 2+p 3+⋅⋅⋅+p n为n 个正数p 1,p 2,p 3,⋅⋅⋅,p n 的“均倒数”,若已知数列a n 的前n 项的“均倒数”为15n,则a 10等于()A.85B.90C.95D.100【答案】C【详解】因为数列a n 的前n 项的“均倒数”为15n ,所以n a 1+a 2+a 3+⋅⋅⋅+a n =15n⇒a 1+a 2+a 3+⋅⋅⋅+a n =5n 2,于是有a 1+a 2+a 3+⋅⋅⋅+a 10=5×102,a 1+a 2+a 3+⋅⋅⋅+a 9=5×92,两式相减,得a 10=5×(100-81)=95,故选:C3(多选题)定义H n =a 1+2a 2+⋯+2n -1a nn为数列a n 的“优值”.已知某数列a n 的“优值”H n =2n ,前n 项和为S n ,下列关于数列a n 的描述正确的有()A.数列a n 为等差数列B.数列a n 为递增数列C.S 20222022=20252 D.S 2,S 4,S 6成等差数列【答案】ABC【详解】由已知可得H n =a 1+2a 2+⋯+2n -1a nn=2n ,所以a 1+2a 2+⋯+2n -1a n =n ⋅2n ,①所以n ≥2时,a 1+2a 2+⋯+2n -2a n -1=n -1 ⋅2n -1,②得n ≥2时,2n -1a n =n ⋅2n -n -1 ⋅2n -1=n +1 ⋅2n -1,即n ≥2时,a n =n +1,当n =1时,由①知a 1=2,满足a n =n +1.所以数列a n 是首项为2,公差为1的等差数列,故A 正确,B 正确,所以S n =n n +3 2,所以S n n =n +32,故S 20222022=20252,故C 正确.S 2=5,S 4=14,S 6=27,S 2,S 4,S 6不是等差数列,故D 错误,故选:ABC .4设数列a n 满足a 1+12a 2+122a 3+⋅⋅⋅+12n -1a n =n +1,则a n 的前n 项和()A.2n -1B.2n +1C.2nD.2n +1-1【答案】C【详解】解:当n =1时,a 1=2,当n ≥2时,由a 1+12a 2+122a 3+⋅⋅⋅+12n -2a n -1+12n -1a n =n +1得a 1+12a 2+122a 3+⋅⋅⋅+12n -2a n -1=n ,两式相减得,12n -1a n =1,即a n =2n -1,综上,a n =2,n =12n -1,n ≥2 所以a n 的前n 项和为2+2+4+8+⋯+2n -1=2+21-2n -1 1-2=2n ,故选:C .【跟踪训练】1无穷数列a n 的前n 项和为S n ,满足S n =2n ,则下列结论中正确的有()A.a n 为等比数列B.a n 为递增数列C.a n 中存在三项成等差数列D.a n 中偶数项成等比数列【答案】D【详解】解:无穷数列a n 的前n 项和为S n ,满足S n =2n ∴n ≥2,a n =S n -S n -1=2n -2n -1=2n -1,当n =1时,a 1=S 1=21=2,不符合上式,∴a n =2,n =1,2n -1,n ≥2,所以a n 不是等比数列,故A 错误;又a 1=a 2=2,所以a n 不是递增数列,故B 错误;假设数列a n 中存在三项a r ,a m ,a s 成等差数列,由于a 1=a 2=2,则r ,m ,s ∈N *,2≤r <m <s ,所以得:2a m =a r +a s ⇒2×2m -1=2r -1+2s -1∴2m =2r -1+2s -1,则∴1=2r -m -1+2s -m -1,又s -m -1≥0⇒2s -m -1≥1且2r -m -1>0恒成立,故式子1=2r -m -1+2s -m -1无解,a n 中找不到三项成等差数列,故C 错误;∴a 2n =22n -1(n ∈N *),∴a 2(n +1)a n =22n +122n -1=4∴a 2n 是等比数列,即a n 中偶数项成等比数列,故D 正确.故选:D .2对于数列a n ,定义H n =a 1+2a 2+3a 3+⋯+na nn为a n 的“伴生数列”,已知某数列a n 的“伴生数列”为H n =(n +1)2,则a n =;记数列a n -kn 的前n 项和为S n ,若对任意n ∈N *,S n ≤S 6恒成立,则实数k 的取值范围为.【答案】 3n +1;227≤k ≤196.【详解】因为H n =(n +1)2=a 1+2a 2+3a 3+⋯+na nn,所以n ⋅(n +1)2=a 1+2a 2+3a 3+⋯+na n ①,所以当n =1时,a 1=4,当n ≥2时,(n -1)⋅n 2=a 1+2a 2+3a 3+⋯+(n -1)a n -1②,①-②:3n 2+n =na n ,所以a n =3n +1,综上:a n =3n +1,n ∈N *,令b n =a n -kn =(3-k )n +1,则b n +1-b n =3-k ,可知{b n }为等差数列,又因为对任意n ∈N *,S n ≤S 6恒成立,所以S 6-S 5=b 6≥0,S 7-S 6=b 7≤0,则有b 6=3-k ×6+1=19-6k ≥0,b 7=3-k ×7+1=22-7k ≤0, 解得227≤k ≤196.故答案为:3n +1;227≤k ≤196考点二:叠加法(累加法)求通项若数列a n 满足a n +1−a n =f (n )(n ∈N *),则称数列a n 为“变差数列”,求变差数列a n 的通项时,利用恒等式a n =a 1+(a 2−a 1)+(a 3−a 2)+⋅⋅⋅+(a n −a n −1)=a 1+f (1)+f (2)+f (3)+⋅⋅⋅+f (n −1)(n ≥2)求通项公式的方法称为累加法。
数学高考《数列》试题含答案一、选择题1.设函数()mf x x ax =+的导数为()21f x x '=+,则数列()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和是( ) A .1nn + B .21nn + C .21nn - D .()21n n+ 【答案】B 【解析】 【分析】函数()mf x x ax =+的导函数()21f x x '=+,先求原函数的导数,两个导数进行比较即可求出m ,a ,利用裂项相消法求出()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和即可.【详解】Q 1()21m f x mx a x -'=+=+,1a \=,2m =,()(1)f x x x ∴=+,112()()(1)221f n n n n n ==-++, ∴111111122[()()()]2(1)1223111n n S n n n n =-+-++-=-=+++L ,故选:B . 【点睛】本题考查数列的求和运算,导数的运算法则,数列求和时注意裂项相消法的应用.2.等差数列的首项为125,且从第10项开始为比1大的项,则公差d 的取值范围是( ) A .(0,)+∞ B .8,75⎛⎫+∞⎪⎝⎭C .83,7525⎛⎫⎪⎝⎭ D .83,7525⎛⎤⎥⎝⎦ 【答案】D 【解析】 【分析】根据题意可知101a >,91a ≤,把1a 的值代入列不等式解得即可. 【详解】由题意,设数列{}n a 的公差为d ,首项1125a =,则10911a a >⎧⎨≤⎩,即101919181a a d a a d =+>⎧⎨=+≤⎩,解得837525d <≤. 故选:D. 【点睛】本题主要考查了等差数列的通项公式的应用,要熟练记忆等差数列的通项公式.3.数列{}n a :1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.即:21n n n a a a ++=+.记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .201920202S a =+B .201920212S a =+C .201920201S a =-D .201920211S a =-【答案】D 【解析】 【分析】根据递推关系利用裂项相消法探求和项与通项关系,即得结果. 【详解】 因为1233243546521()()()()()n n n n S a a a a a a a a a a a a a a ++=++++=-+-+-+-+-L L 2221n n a a a ++=-=-,所以201920211S a =-,选D. 【点睛】本题考查裂项相消法,考查基本分析判断能力,属中档题.4.已知数列{}n a 的前n 项和为n S ,若2n n S a n =-,则9S =( ) A .993 B .766 C .1013 D .885【答案】C 【解析】 【分析】计算11a =,()1121n n a a -+=+,得到21nn a =-,代入计算得到答案.【详解】当1n =时,11a =;当2n ≥时,1121n n n n a S S a --=-=+,∴()1121n n a a -+=+,所以{}1n a +是首项为2,公比为2的等比数列,即21nn a =-,∴1222n n n S a n n +=-=--,∴1092111013S =-=.故选:C . 【点睛】本题考查了构造法求通项公式,数列求和,意在考查学生对于数列公式方法的灵活运用.5.已知数列{}n a 是正项等比数列,若132a =,3432a a ⋅=,数列{}2log n a 的前n 项和为n S ,则n S >0时n 的最大值为 ( ) A .5 B .6C .10D .11【答案】C 【解析】2525163412132323222log 62n n n n a a a q q q a a n --⋅===⇒=⇒=⨯=⇒=-⇒ max (56)011102n n n S n n +-=>⇒<⇒= ,故选C.6.已知数列{}n a 满足12n n a a +-=,且134,,a a a 成等比数列.若{}n a 的前n 项和为n S ,则n S 的最小值为( )A .–10B .14-C .–18D .–20【答案】D 【解析】 【分析】利用等比中项性质可得等差数列的首项,进而求得n S ,再利用二次函数的性质,可得当4n =或5时,n S 取到最小值.【详解】根据题意,可知{}n a 为等差数列,公差2d =,由134,,a a a 成等比数列,可得2314a a a =,∴1112()4(6)a a a ++=,解得18a =-.∴22(1)981829()224n n n S n n n n -=-+⨯=-=--. 根据单调性,可知当4n =或5时,n S 取到最小值,最小值为20-. 故选:D. 【点睛】本题考查等差数列通项公式、等比中项性质、等差数列前n 项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当4n =或5时同时取到最值.7.已知数列{}n a 中,732,1a a ==,又数列11n a ⎧⎫⎨⎬+⎩⎭是等差数列,则11a 等于( ) A .0 B .12C .23D .1-【答案】B 【解析】 【分析】先根据条件得等差数列11n a ⎧⎫⎨⎬+⎩⎭公差以及通项公式,代入解得11a .【详解】设等差数列11n a ⎧⎫⎨⎬+⎩⎭公差为d ,则731111144,112324d d d a a =-∴=-=++, 从而31115(3)11242424n n n a a =+-⋅=+++ 11111115211242432a a =+=∴=+,选B. 【点睛】本题考查等差数列通项公式,考查基本求解能力,属基本题.8.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A .10 B .7C .8D .4【答案】C 【解析】 【分析】根据等比数列的性质可将已知等式变为12332224a a a S a ++==,解方程求得结果. 【详解】由题意得:13123321231322111124a a a a a S a a a a a a a +++++=+=== 38S ∴= 本题正确选项:C 【点睛】本题考查等比数列性质的应用,关键是能够根据下角标的关系凑出关于3S 的方程,属于基础题.9.等比数列{}n a 的前n 项和为n S ,公比为q ,若639S S =,562S =,则1a =( )A B .2C D .3【答案】B 【解析】 【分析】根据题意,分析可得等比数列{}n a 的公比1q ≠±,进而由等比数列的通项公式可得()()631111911a q a q qq--=⨯--,解可得2q =,又由()5151131621a q Saq-===-,解可得1a 的值,即可得答案.【详解】根据题意,等比数列{}n a 中,若639S S =,则1q ≠±, 若639S S =,则()()631111911a q a q qq--=⨯--,解可得38q=,则2q =,又由562S =,则有()5151131621a q S aq-===-,解可得12a =;故选B . 【点睛】本题考查等比数列的前n 项和公式的应用,关键是掌握等比数列的前n 项和的性质.10.设等差数列{}n a 的前n 项和为n S ,若150S >,160S <,则n S 取最大值时n 的值为( ) A .6 B .7C .8D .13【答案】C 【解析】 【分析】根据题意推导出数列{}n a 为单调递减数列,且当8n ≤时,0n a >,当9n ≥时,0n a <,由此可得出结果. 【详解】()115158151502a a S a +==>Q ,()()116168916802a a S a a +==+<,80a ∴>,90a <,所以,等差数列{}n a 的公差980d a a =-<,则数列{}n a 为单调递减数列. 当8n ≤时,0n a >,当9n ≥时,0n a <, 因此,当8n =时,n S 取最大值. 故选:C. 【点睛】本题考查利用等差数列前n 项和的最值求对应的n 的值,主要分析出数列的单调性,考查分析问题和解决问题的能力,属于中等题.11.在数列{}n a 中,()111,1nn n a a a n +==++-,则2018a 的值为( )A .2017⨯1008B .2017⨯1009C .2018⨯1008D .2018⨯1009【答案】B 【解析】 【分析】根据已知条件()nn 1n a a n 1+-=+-,利用累加法并结合等差数列的前n 项和公式即可得到答案. 【详解】()nn 1n a a n 1+-=+-,()()20182017201720162016201520152014a a 20171,a a 20161,a a 20151,a a 20141,-=+--=+-=+--=+⋅⋅⋅32a a 21-=+,()21a a 11,-=+-将以上式子相加得20181a a 20172016-=++⋅⋅⋅+2, 即2018a 20172016=++⋅⋅⋅+2+1=2017(12017)201710092+=⨯,故选:B. 【点睛】本题考查数列递推关系式的应用和累加法求和,考查等差数列前n 项和公式的应用.12.在数列{}n a 中,1112,1n na a a +=-=-,则2016a 的值为A .-2B .13 C .12 D .32【答案】B 【解析】由111n na a +=-,得2111111111n n n na a a a ++=-=-=--. 所以32111111n n n na a a a ++=-=-=-. 即数列{}n a 以3为周期的周期数列.所以2016311113a a a ===-. 故选B.点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项,本题是通过迭代得到了数列的周期性.13.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( )A .4B .3C.2D .2【答案】D 【解析】 【分析】由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值.【详解】解:11a =Q ,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+. 得2d =或0d =(舍去),21n a n ∴=-,2(121)2n n n S n +-∴==, ∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2.故选:D . 【点睛】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.14.已知数列{}n a 是等比数列,前n 项和为n S ,则“3152a a a >+”是“210n S -<”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】根据等比数列的通项公式与求和公式,即可判断命题间的关系. 【详解】因为数列{}n a 是等比数列,前n 项和为n S 若3152a a a >+,由等比数列的通项公式可得111242a a q a q >+,化简后可得()21210q a -<.因为()2210q -≥所以不等式的解集为10a < 若210n S -<当公比1q ≠±时, 210n S -<则10a <,可得3152a a a >+ 当公比1q =±时, 由210n S -<则10a <,可得3152a a a =+ 综上可知, “3152a a a >+”是“210n S -<”的充分不必要条件 故选:B 【点睛】本题考查了等比数列的通项公式与求和公式的应用,在应用等比数列求和公式时,需记得讨论公比是否为1的情况,属于中档题.15.在各项都为正数的等比数列{}n a 中,若12a =,且1564a a ⋅=,则数列1(1)(1)n n n a a a +⎧⎫⎨⎬--⎩⎭的前n 项和是( ) A .11121n +--B .1121n -+ C .1121n -+ D .1121n -- 【答案】A 【解析】由等比数列的性质可得:2153364,8a a a a ==∴=,则数列的公比:2q ===, 数列的通项公式:112n nn a a q -==,故:()()()()1112111121212121n n n n n n n n a a a +++==-------,则数列()()111n n n a a a +⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和是:1223111111111121212121212121n n n ++⎛⎫⎛⎫⎛⎫-+-++-=- ⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭L . 本题选择A 选项.点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.16.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a =C .1024是三角形数D .123111121n na a a a n +++⋯+=+ 【答案】C 【解析】 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确; 令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦L L 122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.17.已知椭圆221x y m n+=满足条件:,,m n m n +成等差数列,则椭圆离心率为( )A.2B.2C .12D【答案】B 【解析】 【分析】根据满足条件,,m n m n +成等差数列可得椭圆为2212x ym m+=,求出,a c .再求椭圆的离心率即可. 【详解】()22n m m n n m =++⇒=,∴椭圆为2212x y m m+=,22c m m m =-=,得c =又a =c e a ∴==.则椭圆离心率为2,故选B. 【点睛】一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.18.在等差数列{}n a 中,其前n 项和是n S ,若90S >,100S <,则在912129,,,S S S a a a ⋯中最大的是( ) A .11S a B .88S a C .55S a D .99S a 【答案】C 【解析】 【分析】由题意知5600a a >,< .由此可知569121256900...0,0,...0S S S S Sa a a a a ,,,>>><<,所以在912129...S S S a a a ,,,中最大的是55S a . 【详解】 由于191109510569()10()9050222a a a a S a S a a ++====+>,()< ,所以可得5600a a >,<. 这样569121256900...0,0,...0S S S S S a a a a a ,,,>>><<, 而125125S S S a a a ⋯⋯<<<,>>>>0, , 所以在912129...S S S a a a ,,,中最大的是55S a . 故选C .【点睛】本题考查等数列的性质和应用,解题时要认真审题,仔细解答.属中档题.19.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1 CD .2 【答案】B【解析】【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得.【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a是正项等比数列,所以2020a =∴20201a ==.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.20.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A.[;B.(,-∞ C.)+∞D.(,)-∞⋃+∞【答案】D【解析】【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解.【详解】 Q 数列{}n a 为等差数列, ∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--, 当10a >时,1111332222a a d a a ⎛⎫=--=-+≤-= ⎪⎝⎭1a 时等号成立;当10a <时,11322a d a =--≥=1a =立; ∴实数d的取值范围为(,)-∞⋃+∞.故选:D.【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.。
一、数列的概念选择题1.函数()2cos 2f x x x =-{}n a ,则3a =( ) A .1312πB .54π C .1712πD .76π 2.3……,则 ) A .第8项B .第9项C .第10项D .第11项3.已知数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=-,则2019a =( ) A .1B .3C .2D .3-4.已知数列{}ij a 按如下规律分布(其中i 表示行数,j 表示列数),若2021ij a =,则下列结果正确的是( )A .13i =,33j =B .19i =,32j =C .32i =,14j =D .33i =,14j =5.已知数列{}n a ,若()12*Nn n n a a a n ++=+∈,则称数列{}na 为“凸数列”.已知数列{}nb 为“凸数列”,且11b =,22b =-,则数列{}n b 的前2020项和为( ) A .5B .5-C .0D .1-6.已知数列{}n a 满足11a =,()*11nn n a a n N a +=∈+,则2020a =( ) A .12018B .12019 C .12020D .120217.在数列{}n a 中,已知11a =,25a =,()*21n n n a a a n N ++=-∈,则5a 等于( )A .4-B .5-C .4D .58.数列1,3,6,10,…的一个通项公式是( )A .()21n a n n =-- B .21n a n =-C .()12n n n a +=D .()12n n n a -=9.设()f x 是定义在R 上恒不为零的函数,且对任意的实数x 、y R ∈,都有()()()f x f y f x y ⋅=+,若112a =,()()*n a f n n N =∈,则数列{}n a 的前n 项和n S 应满足( )A .1324n S ≤< B .314n S ≤< C .102n S <≤D .112n S ≤< 10.数列1,3,5,7,9,--的一个通项公式为( )A .21n a n =-B .()1(21)nn a n =--C .()11(21)n n a n +=--D .()11(21)n n a n +=-+11.数列{}n a 前n 项和为n S ,若21n n S a =+,则72019a S +的值为( ) A .2B .1C .0D .1-12.已知数列{}n a 的前n 项和为n S ,若*1n S n N n=∈,,则2a =( ) A .12-B .16-C .16D .1213.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20202018a a 等于( )A .4×20162-1B .4×20172-1C .4×20182-1D .4×2018214.已知数列{}n a 满足:11a =,145n n a a +=+,则n a =( ) A .85233n⨯- B .185233n -⨯- C .85433n⨯-D .185433n -⨯- 15.已知数列{}n a满足112n a +=+112a =,则该数列前2016项的和为( ) A .2015B .2016C .1512D .3025216.已知数列{}n a 满足2122111,16,2n n n a a a a a ++===则数列{}n a 的最大项为( )A .92B .102C .8182D .11217.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( )A .201920212S F =+B .201920211S F =-C .201920202S F =+D .201920201S F =-18.意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即()()121F F ==,()()()12F n F n F n =-+- (3n ≥,n *∈N ),此数列在现代物理、化学等方面都有着广泛的应用,若此数列的每一项被2除后的余数构成一个新数列{}n a ,则数列{}n a 的前2020项的和为( ) A .1348B .1358C .1347D .135719.已知数列{}n a 的前n 项和为n S ,已知13n n S +=,则34a a +=( )A .81B .243C .324D .21620.数列{}n a 的前n 项和记为n S ,()*11N ,2n n n a a a n n ++=-∈≥,12018a =,22017a =,则100S =( )A .2016B .2017C .2018D .2019二、多选题21.已知数列{}n a 满足0n a >,121n n n a na a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )A .11a =B .121a a =C .201920202019S a =D .201920202019S a >22.(多选题)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的值不可能为( ) A .2B .5C .3D .423.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小B .130S =C .49S S =D .70a =24.已知S n 是等差数列{}n a (n ∈N *)的前n 项和,且S 5>S 6>S 4,以下有四个命题,其中正确的有( )A .数列{}n a 的公差d <0B .数列{}n a 中S n 的最大项为S 10C .S 10>0D .S 11>025.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .911a a = C .当9n =或10时,n S 取得最大值D .613S S =26.设等差数列{}n a 的前n 项和为n S .若30S =,46a =,则( ) A .23n S n n =- B .2392-=n n nSC .36n a n =-D .2n a n =27.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <.28.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >D .若67S S >则56S S >.29.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( ) A .2490a a += B .数列{}n S 中最大值的项是25S C .公差0d >D .数列{}na 也是等差数列30.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( ) A .25n a n =-B .310na nC .228n S n n =-D .24n S n n =-31.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <32.等差数列{}n a 的首项10a >,设其前n 项和为{}n S ,且611S S =,则( ) A .0d > B .0d <C .80a =D .n S 的最大值是8S 或者9S33.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <34.已知数列{}n a 的前n 项和为,n S 25,n S n n =-则下列说法正确的是( )A .{}n a 为等差数列B .0n a >C .n S 最小值为214-D .{}n a 为单调递增数列35.无穷数列{}n a 的前n 项和2n S an bn c =++,其中a ,b ,c 为实数,则( )A .{}n a 可能为等差数列B .{}n a 可能为等比数列C .{}n a 中一定存在连续三项构成等差数列D .{}n a 中一定存在连续三项构成等比数列【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.B 解析:B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=-⎪⎝⎭4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】解:∵()2cos 22sin 26f x x x x π⎛⎫=-=-- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈, ∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B.本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.2.D解析:D 【解析】 【分析】根据根号下的数字规律,可知为等差数列.利用等差数列性质求得通项公式,即可判断为第几项. 【详解】根据数列中的项,… 由前几项可知,根式下的数列是以5为首项, 4为公差的等差数列 则根式下的数字组成的等差数列通项公式为()51441n a n n =+-⨯=+而=所以4541n =+ 解得11n = 故选:D 【点睛】本题考查了等差数列通项公式的求法及简单应用,属于基础题.3.C解析:C 【分析】根据数列{}n a 的前两项及递推公式,可求得数列的前几项,判断出数列为周期数列,即可求得2019a 的值.【详解】数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=- 当1n =时,321322a a a =-=-= 当2n =时,432231a a a =-=-=- 当3n =时,543123a a a =-=--=- 当4n =时,()654312a a a =-=---=- 当5n =时,()765231a a a =-=---= 当6n =时,()876123a a a =-=--= 由以上可知,数列{}n a 为周期数列,周期为6T = 而201933663=⨯+ 所以201932a a ==【点睛】本题考查了数列递推公式的简单应用,周期数列的简单应用,属于基础题.4.C解析:C 【分析】可以看出所排都是奇数从小到大排起.规律是先第一列和第一行,再第二列和第二行,再第三列第三行,并且完整排完n 次后,排出的数呈正方形.可先算2021是第几个奇数,这个奇数在哪两个完全平方数之间,再去考虑具体的位置. 【详解】每排完n 次后,数字呈现边长是n 的正方形,所以排n 次结束后共排了2n 个数.20211110112-+=,说明2021是1011个奇数. 而22961311011321024=<<=,故2021一定是32行,而从第1024个数算起,第1011个数是倒数第14个,根据规律第1024个数排在第32行第1列,所以第1011个数是第32行第14列,即2021在第32行第14列. 故32,14i j ==. 故选:C. 【点睛】本题考查数列的基础知识,但是考查却很灵活,属于较难题.5.B解析:B 【分析】根据数列的递推关系可求得数{}n b 的周期为6,即可求得数列{}n b 的前2020项和. 【详解】()*21N n n n b b b n ++=-∈,且11b =,22b =-, ∴345673,1,2,3,1,b b b b b =-=-===∴{}n b 是以6为周期的周期数列,且60S =, ∴20203366412345S S b b b b ⨯+==+++=-,故选:B. 【点睛】本题考查数列的新定义、数列求和,考查运算求解能力,求解时注意通过计算数列的前6项,得到数列的周期.6.C解析:C 【分析】根据数列的递推关系,利用取倒数法进行转化,构造等差数列,结合等差数列的性质求出通项公式即可. 【详解】 解:11nn n a a a +=+, ∴两边同时取倒数得11111n n n na a a a ++==+, 即1111n na a ,即数列1n a ⎧⎫⎨⎬⎩⎭是公差1d =的等差数列,首项为111a .则11(1)1nn n a =+-⨯=, 得1n a n=, 则202012020a =, 故选:C 【点睛】本题主要考查数列通项公式的求解,结合数列递推关系,利用取倒数法以及构造法构造等差数列是解决本题的关键.考查学生的运算和转化能力,属于基础题.7.B解析:B 【分析】根据已知递推条件()*21n n n a a a n N ++=-∈即可求得5a【详解】由()*21n n n a a a n N++=-∈知:3214a a a 4321a a a 5435a a a故选:B 【点睛】本题考查了利用数列的递推关系求项,属于简单题8.C解析:C 【分析】首先根据已知条件得到410a =,再依次判断选项即可得到答案.【详解】由题知:410a =,对选项A ,()2444113a =--=,故A 错误;对选项B ,244115a =-=,故B 错误;对选项C ,()4441102a ⨯+==,C 正确; 对选项D ,()444162a ⨯-==,故D 错误. 故选:C 【点睛】本题主要考查数列的通项公式,属于简单题.9.D解析:D 【分析】根据题意得出1112n n n a a a a +==,从而可知数列{}n a 为等比数列,确定该等比数列的首项和公比,可计算出n S ,然后利用数列{}n S 的单调性可得出n S 的取值范围. 【详解】取1x =,()y n n N*=∈,由题意可得()()()111112n n n a f n f f n a a a +=+=⋅==, 112n n a a +∴=,所以,数列{}n a 是以12为首项,以12为公比的等比数列, 11112211212n n n S ⎛⎫- ⎪⎝⎭∴==--,所以,数列{}n S 为单调递增数列,则11n S S ≤<,即112n S ≤<. 故选:D. 【点睛】本题考查等比数列前n 项和范围的求解,解题的关键就是判断出数列{}n a 是等比数列,考查推理能力与计算能力,属于中等题.10.C解析:C 【分析】分别观察各项的符号、绝对值即可得出. 【详解】数列1,-3,5,-7,9,…的一个通项公式()()112nn a n =--. 故选C . 【点睛】本题考查了球数列的通项公式的方法,属于基础题.11.A解析:A 【分析】根据21n n S a =+,求出1a ,2a ,3a ,4a ,⋯⋯,寻找规律,即可求得答案. 【详解】21n n S a =+当1n =,1121a a =+,解得:11a = 当2n =,122221a a a +=+,解得:21a =- 当3n =,32132221a a a a ++=+,解得:31a = 当4n =,4321422221a a a a a +++=+,解得:41a =-⋯⋯当n 奇数时,1n a = 当n 偶数时,1n a =-∴71a =,20191S =故720192a S += 故选:A. 【点睛】本题主要考查了根据递推公式求数列值,解题关键是掌握数列的基础知识,考查了分析能力和计算能力,属于中档题.12.A解析:A 【分析】令1n =得11a =,令2n =得21212S a a =+=可解得2a . 【详解】 因为1n S n =,所以11111a S ===, 因为21212S a a =+=,所以211122a =-=-. 故选:A13.C解析:C【分析】根据“等差比”数列的定义,得到数列1n n a a +⎧⎫⎨⎬⎩⎭的通项公式,再利用202020202019201820192019a a a a a a =⨯求解.【详解】由题意可得:323a a =,211a a = ,32211a a a a -=, 根据“等差比数列”的定义可知数列1n n a a +⎧⎫⎨⎬⎩⎭是首先为1,公差为2的等差数列, 则()111221n na n n a +=+-⨯=-, 所以20202019220191220181a a =⨯-=⨯+,20192018220181aa =⨯-, 所以()()2202020202019201820192019220181220181420181a a a a a a =⨯=⨯+⨯-=⨯-. 故选:C 【点睛】本题考查数列新定义,等差数列,重点考查理解题意,转化思想,计算能力,属于中档题型.14.D解析:D 【分析】 取特殊值即可求解. 【详解】当1n =时,11a =,显然AC 不正确,当2n =时,21459a a =+=,显然B 不符合,D 符合 故选:D15.C解析:C 【分析】通过计算出数列的前几项确定数列{}n a 是以2为周期的周期数列,进而计算可得结论. 【详解】 依题意,112a =,211122a =,3111222a =+=, ⋯从而数列{}n a 是以2为周期的周期数列, 于是所求值为20161(1)151222⨯+=, 故选:C 【点睛】关键点睛:解答本题的关键是联想到数列的周期性并找到数列的周期.16.B解析:B 【分析】本题先根据递推公式进行转化得到21112n n n n a a a a +++=.然后令1n n na b a +=,可得出数列{}n b 是等比数列.即11322nn n a a +⎛⎫= ⎪⎝⎭.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二次函数的知识可得数列{}n a 的最大项. 【详解】解:由题意,可知: 21112n n n na a a a +++=. 令1n n n ab a +=,则112n n b b +=. 21116a b a ==, ∴数列{}n b 是以16为首项,12为公比的等比数列. 111163222n nn b -⎛⎫⎛⎫∴== ⎪⎪⎝⎭⎝⎭.∴11322nn n a a +⎛⎫= ⎪⎝⎭. ∴1211322aa ⎛⎫= ⎪⎝⎭, 2321322a a ⎛⎫= ⎪⎝⎭,111322n n n a a --⎛⎫= ⎪⎝⎭.各项相乘,可得: 12111111(32)222n n na a --⎛⎫⎛⎫⎛⎫=⋯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)2511()22n n n --⎛⎫= ⎪⎝⎭ 2115(1)221122n n n ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭211552212n n n --+⎛⎫= ⎪⎝⎭21(1110)212n n -+⎛⎫= ⎪⎝⎭.令2()1110f n n n =-+,则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值. ()2551151020f =-⨯+=-,()2661161020f =-⨯+=-,()f n ∴的最小值为20-. ∴211(1110)(20)1022101112222n n -+⨯--⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴数列{}n a 的最大项为102.故选:B . 【点睛】本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值;17.B解析:B 【分析】利用迭代法可得21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,可得21n n F S +=+,代入2019n =即可求解.【详解】由题意可得该数列从第三项开始,每项等于其前两相邻两项之和, 则211112n n n n n n n n n n F F F F F F F F F F ++----=+=++=+++1211232nn n n n n n n n F F F F F F F F F -------=+++=++++=123211n n n n F F F F F F ---=+++++++,所以21n n F S +=+,令2019n =,可得201920211S F =-,故选:B 【点睛】关键点点睛:本题的关键点是理解数列新定义的含义得出21n n n F F F ++=+,利用迭代法得出21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,进而得出21n n F S +=+.18.C解析:C 【分析】由题意可知,得数列{}n a 是周期为3的周期数列,前3项和为1102++=,又202067331=⨯+,由此可得答案 【详解】解:由数列1,1,2,3,5,8,13,21,34,55,…,各项除以2的余数,可得数列{}n a 为1,1,0,1,1,0,1,1,0,⋅⋅⋅,所以数列{}n a 是周期为3的周期数列,前3项和为1102++=, 因为202067331=⨯+,所以数列{}n a 的前2020项的和为673211347⨯+= 故选:C19.D解析:D 【分析】利用项和关系,1n n n a S S -=-代入即得解. 【详解】利用项和关系,1332443=54=162n n n a S S a S S a S S -=-∴=-=-,34216a a ∴+=故选:D 【点睛】本题考查了数列的项和关系,考查了学生转化与划归,数学运算能力,属于基础题.20.A解析:A 【分析】根据题意,由数列的递推公式求出数列的前8项,分析可得数列{}n a 是周期为6的数列,且1234560a a a a a a +++++=,进而可得1001234S a a a a =+++,计算即可得答案. 【详解】解:因为12018a =,22017a =,()*11N ,2n n n a a a n n +-=-∈≥,则321201720181a a a =-=-=-,432(1)20172018a a a =-=--=-,543(2018)(1)2017a a a =-=---=-,654(2017)(2018)1a a a =-=---=, 76511(2017)2018a a a a =-=--==, 8762201812017a a a a =-=-==,…,所以数列{}n a 是周期数列,周期为6, 因为12560a a a a ++⋅⋅⋅++=,所以()100125697989910016S a a a a a a a a =++⋅⋅⋅++++++12342016a a a a =+++=.故选:A . 【点睛】本题考查数列的递推公式的应用,关键是分析数列各项变化的规律,属于基础题.二、多选题 21.BC 【分析】根据递推公式,得到,令,得到,可判断A 错,B 正确;根据求和公式,得到,求出,可得C 正确,D 错. 【详解】 由可知,即,当时,则,即得到,故选项B 正确;无法计算,故A 错; ,所以,则解析:BC 【分析】根据递推公式,得到11n n nn n a a a +-=-,令1n =,得到121a a =,可判断A 错,B 正确;根据求和公式,得到1n n nS a +=,求出201920202019S a =,可得C 正确,D 错. 【详解】由121n n n a n a a n +=+-可知2111n n n n n a n n n a a a a ++--==+,即11n n nn n a a a +-=-, 当1n =时,则121a a =,即得到121a a =,故选项B 正确;1a 无法计算,故A 错; 1221321111102110n n n n n n n n n n S a a a a a a a a a a a a +++⎛⎫⎛⎫⎛⎫-=+++=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1n n S a n +=,则201920202019S a =,故选项C 正确,选项D 错误. 故选:BC. 【点睛】 方法点睛:由递推公式求通项公式的常用方法:(1)累加法,形如()1n n a a f n +=+的数列,求通项时,常用累加法求解; (2)累乘法,形如()1n na f n a +=的数列,求通项时,常用累乘法求解; (3)构造法,形如1n n a pa q +=+(0p ≠且1p ≠,0q ≠,n ∈+N )的数列,求通项时,常需要构造成等比数列求解;(4)已知n a 与n S 的关系求通项时,一般可根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解.22.BD 【分析】利用递推关系可得,再利用数列的单调性即可得出答案. 【详解】 解:∵, ∴时,, 化为:,由于数列单调递减, 可得:时,取得最大值2. ∴的最大值为3. 故选:BD . 【点睛】 本解析:BD 【分析】利用递推关系可得1211n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵23n n n S a +=, ∴2n ≥时,112133n n n n n n n a S S a a --++=-=-, 化为:112111n n a n a n n -+==+--,由于数列21n ⎧⎫⎨⎬-⎩⎭单调递减, 可得:2n =时,21n -取得最大值2. ∴1n n a a -的最大值为3. 故选:BD . 【点睛】本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.23.BCD 【分析】由是等差数列及,求出与的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】设等差数列数列的公差为. 由有,即所以,则选项D 正确.选项A. ,无法判断其是否有最小解析:BCD 【分析】由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】设等差数列数列{}n a 的公差为d .由13522,a a S +=有()1112542252a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确. 选项A. ()71176773212S a d a d d ⨯=+=+=-,无法判断其是否有最小值,故A 错误. 选项B. 113137131302a S a a +=⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确. 故选:BCD 【点睛】关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,属于中档题.24.AC 【分析】由,可得,且,然后逐个分析判断即可得答案 【详解】解:因为,所以,且,所以数列的公差,且数列中Sn 的最大项为S5,所以A 正确,B 错误, 所以,,所以C 正确,D 错误, 故选:AC解析:AC 【分析】由564S S S >>,可得650,0a a ,且650a a +>,然后逐个分析判断即可得答案 【详解】解:因为564S S S >>,所以650,0a a ,且650a a +>,所以数列的公差0d <,且数列{}n a 中S n 的最大项为S 5,所以A 正确,B 错误, 所以110105610()5()02a a S a a +==+>,11111611()1102a a S a +==<, 所以C 正确,D 错误, 故选:AC25.ABD 【分析】由题意利用等差数列的通项公式、求和公式可得,结合等差数列的性质,逐一判断即可得出结论. 【详解】∵等差数列的前项和为,, ∴,解得, 故,故A 正确; ∵,,故有,故B 正确; 该数解析:ABD 【分析】由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论. 【详解】∵等差数列{}n a 的前n 项和为n S ,1385a a S +=,∴()111875282a a d a d ⨯++=+,解得19a d =-, 故10190a a d =+=,故A 正确;∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119222n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,故C 错误; 由于61656392S a d d ⨯=+=-,131131213392S a d d ⨯=+=-,故613S S =,故D 正确, 故选:ABD. 【点睛】思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果.26.BC 【分析】由已知条件列方程组,求出公差和首项,从而可求出通项公式和前项和公式 【详解】解:设等差数列的公差为, 因为,, 所以,解得, 所以, , 故选:BC解析:BC 【分析】由已知条件列方程组,求出公差和首项,从而可求出通项公式和前n 项和公式 【详解】解:设等差数列{}n a 的公差为d , 因为30S =,46a =,所以113230236a d a d ⨯⎧+=⎪⎨⎪+=⎩,解得133a d =-⎧⎨=⎩, 所以1(1)33(1)36n a a n d n n =+-=-+-=-,21(1)3(1)393222n n n n n n nS na d n ---=+=-+=, 故选:BC27.ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且,所以公差, 所以,即,根据等差数列的性质可得,又, 所以,,故A 正解析:ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()02a a S +==,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <, 所以50a >,60a <,故A 正确; 对于B :因为412S S =,则1240S S -=,所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >, 所以890,0a a ><, 所以115815815()15215022a a a S a +⨯===>,116891616()16()022a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为115815815()15215022a a a S a +⨯===>,则80a >, 116891616()16()022a a a a S ++===,则890a a +=,即90a <, 所以则{}n S 中8S 最大,故C 错误;对于D :因为89S S <,则9980S a S =->,又10a >, 所以8870a S S =->,即87S S >,故D 正确, 故选:ABD 【点睛】解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题.28.BC 【分析】根据等差数列的前项和性质判断.【详解】A 错:;B 对:对称轴为7;C 对:,又,;D 错:,但不能得出是否为负,因此不一定有.故选:BC .【点睛】关键点点睛:本题考查等差数列解析:BC【分析】根据等差数列的前n 项和性质判断.【详解】A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;B 对:n S 对称轴为n =7;C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC .【点睛】关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()2n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 29.AB【分析】根据已知条件求得的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项.【详解】依题意,等差数列中,即,.对于A 选项,,所以A 选项正确.对于C 选项,,,所以,解析:AB【分析】根据已知条件求得1,a d 的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项.【详解】依题意,等差数列{}n a 中81535a a =,即()()1137514a d a d +=+,1149249,2a d a d =-=-. 对于A 选项,24912490a a a d +=+=,所以A 选项正确. 对于C 选项,1492a d =-,10a >,所以0d <,所以C 选项错误. 对于B 选项,()()149511122n a a n d d n d n d ⎛⎫=+-=-+-=- ⎪⎝⎭,令0n a ≥得51510,22n n -≤≤,由于n 是正整数,所以25n ≤,所以数列{}n S 中最大值的项是25S ,所以B 选项正确. 对于D 选项,由上述分析可知,125n ≤≤时,0n a ≥,当26n ≥时,0n a <,且0d <.所以数列{}na 的前25项递减,第26项后面递增,不是等差数列,所以D 选项错误. 故选:AB【点睛】等差数列有关知识的题目,主要把握住基本元的思想.要求等差数列前n 项和的最值,可以令0n a ≥或0n a ≤来求解.30.AD【分析】设等差数列的公差为,根据已知得,进而得,故,.【详解】解:设等差数列的公差为,因为所以根据等差数列前项和公式和通项公式得:,解方程组得:,所以,.故选:AD.解析:AD【分析】设等差数列{}n a 的公差为d ,根据已知得1145460a d a d +=⎧⎨+=⎩,进而得13,2a d =-=,故25n a n =-,24n S n n =-.【详解】解:设等差数列{}n a 的公差为d ,因为450,5S a ==所以根据等差数列前n 项和公式和通项公式得:1145460a d a d +=⎧⎨+=⎩,解方程组得:13,2a d =-=,所以()31225n a n n =-+-⨯=-,24n S n n =-.故选:AD.31.AD【分析】利用等差数列的通项公式可以求,,即可求公差,然后根据等差数列的性质判断四个选项是否正确.【详解】因为,所以 ,因为,所以,所以等差数列公差,所以是递减数列,故最大,选项A解析:AD【分析】利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确.【详解】因为67S S <,所以7670S S a -=> ,因为78S S >,所以8780S S a -=<,所以等差数列{}n a 公差870d a a =-<,所以{}n a 是递减数列,故1a 最大,选项A 正确;选项B 不正确;10345678910770S S a a a a a a a a -=++++++=>,所以310S S ≠,故选项C 不正确;当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确;故选:AD【点睛】本题主要考查了等差数列的性质和前n 项和n S ,属于基础题.32.BD【分析】由,即,进而可得答案.【详解】解:,所以,,最大,故选:.【点睛】本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题. 解析:BD【分析】由6111160S S S S =⇒-=,即950a =,进而可得答案.【详解】解:1167891011950S S a a a a a a -=++++==,因为10a >所以90a =,0d <,89S S =最大,故选:BD .【点睛】本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题.33.AD【分析】由已知得到,进而得到,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为,可知不一定成立,从而判定C 错误.【详解】由已知得:,结合等差数列的性质可知,,该等差解析:AD【分析】由已知得到780,0a a ><,进而得到0d <,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为160a d +=,可知不一定成立,从而判定C 错误.【详解】由已知得:780,0a a ><,结合等差数列的性质可知,0d <,该等差数列是单调递减的数列,∴A 正确,B 错误,D 正确,310S S =,等价于1030S S -=,即45100a a a ++⋯+=,等价于4100a a +=,即160a d +=, 这在已知条件中是没有的,故C 错误.故选:AD.【点睛】本题考查等差数列的性质和前n 项和,属基础题,关键在于掌握和与项的关系.【分析】利用求出数列的通项公式,可对A ,B ,D 进行判断,对进行配方可对C 进行判断【详解】解:当时,,当时,,当时,满足上式,所以,由于,所以数列为首项为,公差为2的等差数列,因解析:AD【分析】利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列的通项公式,可对A ,B ,D 进行判断,对25,n S n n =-进行配方可对C 进行判断【详解】解:当1n =时,11154a S ==-=-,当2n ≥时,2215[(1)5(1)]26n n n a S S n n n n n -=-=-----=-,当1n =时,14a =-满足上式,所以26n a n =-,由于()122n n a a n --=≥,所以数列{}n a 为首项为4-,公差为2的等差数列, 因为公差大于零,所以{}n a 为单调递增数列,所以A ,D 正确,B 错误, 由于225255()24n S n n n =-=--,而n ∈+N ,所以当2n =或3n =时,n S 取最小值,且最小值为6-,所以C 错误,故选:AD【点睛】此题考查,n n a S 的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n 项和的最值问题,属于基础题35.ABC【分析】由可求得的表达式,利用定义判定得出答案.【详解】当时,.当时,.当时,上式=.所以若是等差数列,则所以当时,是等差数列, 时是等比数列;当时,从第二项开始是等差数列. 解析:ABC【分析】由2n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S a b c ==++.当2n ≥时,()()221112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .所以若{}n a 是等差数列,则0.a b a b c c +=++∴=所以当0c 时,{}n a 是等差数列, 00a cb ==⎧⎨≠⎩时是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列.故选:A B C【点睛】本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题.。
数列综合大题归类目录【题型一】“函数型”裂项求和:基础型【题型二】“函数型”裂项求和:指数函数型【题型三】“函数型”裂项求和:等差裂和型【题型四】“函数型”裂项求和:指数型裂和【题型五】“函数型”裂项求和:同构仿写型【题型六】“函数型”裂项求和:三角函数裂项型【题型七】递推公式:分式型不动点【题型八】插入数型【题型九】数列跳项型【题型十】证明数列不等式【题型十一】新结构第19题型:差分密码型【题型一】“函数型”裂项求和:基础型基础原理:m pq =m q -p 1p -1q,如:12×4=14-212-14;基本题型:①1n n +1 =1n -1n +1;②12n -1 2n +1=1212n -1-12n +1 ;注意(避免掉坑)①分母分解因式:1n 2+3n=1n n +3 =131n -1n +3 ;②系数不相同就提系数:1n 2n +4=12⋅1n n +2 =12⋅121n -1n +2 ;③求和化简时,要写到“前三后二”,并且一定要强调每项加括号,这样容易观察剩余的时首尾项(或正负项)对应.(1)1n n +k=1k 1n -1n +k ;(2)1n +k +n=1k n +k -n ;(3)12n -1 2n +1=1212n -1-12n +1;(4)1n n +1 n +2 =121n n +1 -1n +1 n +2;分式型分子裂差法形如f n a n ⋅a n +1型,如果f n =λa n +1-a n ,则可以分子裂差:f n a n ⋅a n +1=λa n +1-a n a n ⋅a n +1=λ1a n -1a n +11(22·23·龙岩·二模)已知等差数列a n 的首项为1,公差d ≠0,前n 项和为S n ,且S nS 2n为常数.(1)求数列a n 的通项公式;(2)令b n =n a n a n +1-n +1a n +1a n +2,证明:b 1+b 2+b 3+⋯+b n <13.【答案】(1)a n =2n -1(2)证明见解析【分析】(1)由S nS 2n为常数,则n [1+1+(n -1)d ]22n [1+1+(2n -1)d ]2=2-d +nd4-2d +4nd为常数,即d =2,然后结合等差数列的通项公式求解即可;(2)由(1)可得b n =n a n a n +1-n +1a n +1a n +2=n (2n -1)(2n +1)-n +1(2n +1)(2n +3),然后累加求和即可得证.【详解】(1)依题意,得:S 1S 2=S 2S 4,即a 1a 1+a 2=a 1+a 2a 1+a 2+a 3+a 4所以,12+d =2+d4+6d,化简得:d (d -2)=0因为d ≠0,所以d =2所以a n =1+2(n -1)=2n -1经检验:S n S 2n =n 24n 2=14成立(2)因为a n =2n -1所以b n =n (2n -1)(2n +1)-n +1(2n +1)(2n +3)=144n (2n -1)(2n +1)-4(n +1)(2n +1)(2n +3)=1412n -1+12n +1 -12n +1+12n +3=1412n -1-12n +3 ,所以b 1+b 2+b 3+⋯+b n =14[1-15 +13-17 +15-19 +⋯+12n -5-12n -1 +12n -3-12n +1 +12n -1-12n +3 ]=141+13-12n +1-12n +3 =1443-12n +1-12n +3 <13.2(22·23·秦皇岛·模拟预测)设等比数列a n 的前n 项和为S n ,数列b n 为等差数列,且公差d ≠0,a 1=b 1=2,a 3=b 3,S 3=b 5.(1)求数列a n 的通项公式以及前n 项和S n ;(2)数列2n +1n 2b n +4 2的前n 项和为T n ,求证:T n≤19.【答案】(1)a n =2n ,S n =2n +1-2(2)证明见解析【分析】(1)利用等差数列通项公式运算、等比数列通项公式和求和公式运算即可求解.(2)利用裂项相消法求出T n =19×1-1n +1 2,而1-1n +1 2<1,从而得出证明.【详解】(1)设a n 的公比为q ,由题意,可得a 1q 2=b 1+2d a 1+a 1q +a 1q 2=b 1+4d ,解得q =2d =3 ,所以a n =2n,所以S n =2×1-2n 1-2=2n +1-2;(2)由(1)得b n =2+3n -1 =3n -1,所以2n +1n 2b n +4 2=2n +1n 2(3n +3)2=2n +19n 2(n +1)2=191n 2-1(n +1)2,所以T n =b 1+b 2+⋯+b n =19×1-122 +122-132+⋯+1n 2-1(n +1)2=19×1-1n +1 2 ,因为1-1n +12<1,所以T n ≤19,得证.3(2024下·福建·高三校联考开学考试)已知正项数列a n 中,a 1=1,a n +1=a n +2a n +1.(1)求数列a n 的通项公式;(2)记数列b n =2a n +1a n a n +1的前n 项和S n ,求满足S n <99100的正整数n 的集合.【答案】(1)a n =n 2(2)n ∈N *|1≤n ≤8【分析】(1)由题意,可得到数列a n 是公差为1的等差数列,进而得到数列a n 的通项公式;(2)由(1)可得数列b n 的通项公式,利用裂项相消法即可求出S n ,进而解不等式.【详解】(1)由a n +1=a n +2a n +1,有a n +1=a n +1 2,即a n +12=a n +1 2,因为数列a n 是正项数列,所以a n +1=a n +1,即a n +1-a n =1,可得数列a n 是首项为1,公差为1的等差数列,所以a n =a 1+n -1=n ,故数列a n 的通项公式为a n =n 2;(2)由(1)可得b n =2n +1n 2n +1 2=n +1 2-n 2n 2n +1 2=1n 2-1n +12.所以S n =1-122+122-132+⋅⋅⋅+1n 2-1n +1 2 =1-1n +12,故不等式S n <99100可化为1-1n +1 2<99100,解得0<n <9,所以满足S n <99100的正整数n 的集合为n ∈N *|1≤n ≤8 .【题型二】“函数型”裂项求和:指数函数型指数裂项法形如mq n +r +t hq n +b hq n +1+b 型,如果mq n +r +t =λhq n +b -hq n +1+b ,则可以分子裂差:mq n +r +t hq n +b hq n +1+b=λhq n +1+b -hq n +bhqn+b hq n +1+b=λ1hq n +b -1hq n +1+b1(2023·广西玉林·校联考模拟预测)记S n 为数列a n 的前n 项和,已知a 1=2,a n +1=S n +n .(1)证明:当n ≥2时,数列a n +1 是等比数列,并求数列a n 的通项公式;(2)设b n =2n +1a n +1a n +2,数列b n 的前n 项和为T n ,证明:T n <13.【答案】(1)证明见解析,a n =2,n =12n-1,n ≥2(2)证明见解析【分析】(1)令n =1可求得a 2的值,当n ≥2时,由a n +1=S n +n ,可得a n =S n -1+n -1,两式作差,结合等比数列的定义可证得结论成立,据此可求得数列a n 的通项公式;(2)b n =12n +1-1-12n +2-1,利用裂项相消法可证得结论成立.【详解】(1)证明:因为a 1=2,a n +1=S n +n ,S n 为数列a n 的前n 项和,当n =1时,a 2=S 1+1=2+1=3,当n ≥2时,由a n +1=S n +n ①,可得a n =S n -1+n -1②,①-②可得a n +1-a n =a n +1,即a n +1=2a n +1,所以,a n +1+1=2a n +1 ,又因为a 2+1=3+1=4≠2a 1+1 ,则当n ≥2时,数列a n +1 是等比数列,其公比为2,即当n ≥2时,a n +1=a 2+1 ⋅2n -2=4×2n -2=2n ,则a n =2n -1,a 1=2不满足a n =2n -1,所以,a n =2,n =12n -1,n ≥2.(2)证明:b n =2n +1a n +1a n +2=2n +12n +1-1 2n +2-1=12n +1-1-12n +2-1,则T n =b 1+b 2+⋯+b n =122-1-123-1 +123-1-124-1 +124-1-125-1 +⋯+12n +1-1-12n +2-1=13-12n +2-1<13.综上,对任意的n ∈N ∗,T n <13.2(2023上·海南海口·高三校考阶段练习)在数列a n a n ≠0 和b n 中,a 1=1,b 1=2,且a n +1b n 是a n a n +1和a n b n +1的等差中项.(1)设c n =b na n,求证:数列c n -1 为等比数列;(2)若b n =3×2n2n +1,a n 的前n 项和为S n ,求证:S n <3.【答案】(1)证明见解析(2)证明见解析【分析】(1)由等差中项整理得a n b n +1=2a n +1b n -a n a n +1,两边同时除以a n a n +1,得c n +1-1=2(c n -1)即可证明;(2)应用裂项相消法即可求解.【详解】(1)依题a n +1b n 是a n a n +1和a n b n +1的等差中项,则2a n +1b n =a n a n +1+a n b n +1,即a n b n +1=2a n +1b n -a n a n +1,两边同时除以a n a n+1a n≠0,得b n+1a n+1=2⋅b na n-1,即c n+1=2c n-1,则c n+1-1=2(c n-1),由c1-1=b1a1-1=1≠0,所以数列c n-1是以1为首项,2为公比的等比数列.(2)由(1)得c n-1=2n-1,则c n=2n-1+1,则a n=b nc n=3×2n(2n-1+1)(2n+1)=612n-1+1-12n+1,则S n=612-13+13-15+⋯+12n-2+1-12n-1+1+12n-1+1-12n+1=612-1 2n+1=3-62n+1,因为n∈N∗,则62n+1>0,故S n<3.3(2023上·湖南长沙·高二长沙一中校考阶段练习)已知数列a n的首项a1=4,且满足a n+1=3a n -2n∈N*.(1)求证:数列a n-1为等比数列;(2)记b n=3na n⋅a n+1,求数列b n的前n项和S n.【答案】(1)证明见解析(2)S n=18-12⋅3n+1+2【分析】(1)由题设递推式可得a n+1-1=3a n-1n∈N*,根据等比数列的定义,结合已知条件,即可证a n-1为等比数列;(2)由(1)有a n=3n+1,进而求b n,利用裂项相消法求S n.【详解】(1)由a n+1=3a n-2n∈N*得a n+1-1=3a n-1n∈N*,又a1-1=3,所以a n-1是首项为3,公比为3的等比数列.(2)由(1)知,a n-1=3×3n-1=3n,所以a n=3n+1所以b n=3n3n+1⋅3n+1+1=12×13n+1-13n+1+1,S n=b1+b2+b3+⋯+b n=12×131+1-132+1+132+1-133+1+⋯+13n+1-13n+1+1=12×131+1-13n+1+1=18-12⋅3n+1+2.【题型三】“函数型”裂项求和:等差裂和型正负型:等差裂和型形如-1n⋅f na n⋅a n+1型,如果f n =λa n+1-a n,则可以分子裂差:-1 n⋅f na n⋅a n+1=-1n⋅λa n+1-a na n⋅a n+1=-1n⋅λ1a n-1a n+11(2023·河北唐山·三模)设S n 为数列a n 的前n 项和,a n >0,a 2n +2a n +1=4S n .(1)求数列a n 的通项公式;(2)求数列-1n4na n a n +1的前n 项和T n.【答案】(1)a n =2n -1(2)T n =-1+(-1)n12n +1【分析】(1)利用S n 与a n 的关系计算求通项;(2)结合(1)的结论,利用裂项相消法计算即可.【详解】(1)已知a 2n +2a n +1=4S n ①,当n =1时,a 1=1.当n ≥2时,a 2n -1+2a n -1+1=4S n -1②①-②得:a 2n +2a n -a 2n -1-2a n -1=4a n ,即a n +a n -1 a n -a n -1-2 =0.又a n >0,所以a n +a n -1≠0,a n -a n -1=2.所以数列a n 是以1为首项,2为公差的等差数列.所以a n =2n -1.(2)设b n =(-1)n 4n a n a n +1=(-1)n 4n 2n -1 2n +1=(-1)n 12n -1+12n +1 .T n =-1+13 +13+15 -15+17 +⋯+(-1)n 12n -1+12n +1 =-1+(-1)n 12n +1.2(2023·江苏镇江·二模)已知数列a n 满足:a 1=14,a n +1=nn +2a n.(1)求数列a n 的通项公式;(2)若b n =(-1)n (2n +1)a n ,求数列b n 的前n 项和S n .【答案】(1)a n =12n n +1(2)S n =-12+-1 n ⋅12n +2【分析】(1)运用累乘法计算;(2)运用裂项相消法求和.【详解】(1)由题意:a 2a 1=13,a 3a 2=24,a 4a 3=35,a 5a 4=46,⋯,a n +1a n =nn +2 ,∴a 2a 1×a 3a 2×a 4a 3×a 5a 4×⋯×a n +1a n =13×24×35×46×⋯×n n +2=2n +1 n +2,a n +1a 1=2n +1 n +2 ,a n +1=a 1×2n +1 n +2 =12n +1 n +2 ,a n =12n n +1 ,将n =1代入上式也成立,∴a n =12n n +1;(2)b n =-1 n 2n +1 a n =-1 n 2n +12n n +1=-1 n 1n +1n +1 ⋅12,S n =b 1+b 2+b 3+b 4+b 5+⋯+b n =12-1-12+12+13-13-14+⋅⋅⋅+-1 n ⋅1n +-1 n ⋅1n +1=12-1+-1 n ⋅1n +1 =-12+-1 n⋅12n +2.3(2023·湖南永州·三模)记正项数列a n 的前n 项积为T n ,且1=1-4.(1)证明:数列T n 是等差数列;(2)记b n =-1 n ⋅8n +6T n ⋅T n +1,求数列b n 的前2n 项和S 2n .【答案】(1)证明见解析(2)-8n 40n +25【分析】(1)根据题意得到T n T n -1=a n ,由1a n =1-4T n,化简得到T n -T n -1=4,求得T 1=5,结合等差数列的定义,即可求解;(2)由(1)可得T n =4n +1,得到b n =-1 n ⋅14n +1+14n +5,结合裂项法,即可求解.【详解】(1)证明:由题意得T n =a 1a 2⋯a n ,当n ≥2时,可得T n -1=a 1a 2⋯a n -1,可得Tn T n -1=a n ,(n ≥2),因为1a n =1-4T n ,所以T n -1T n =1-4T n,(n ≥2),即T n -1=T n -4(n ≥2),即T n -T n -1=4,(n ≥2),当n =1时,可得T 1=a 1,所以1T 1=1-4T 1,解得T 1=5,所以数列T n 是以5为首项,4为公差的等差数列.(2)解:由(1)可得T n =5+(n -1)×4=4n +1,所以b n =-1 n ⋅8n +6T n ⋅T n +1=-1 n ⋅8n +6(4n +1)(4n +5)=-1 n ⋅14n +1+14n +5 ,所以S 2n =-15+19+19+113 -113+117+⋯-18n -3+18n +1 +18n +1+18n +5 =-15+18n +5=-8n 40n +25.【题型四】“函数型”裂项求和:指数型裂和正负型:指数裂和型形如-1 n⋅mq n +r +t hq n +b hq n +1+b型,如果mq n +r +t =λhq n +b +hq n +1+b ,则可以分子裂和:-1 n ⋅mq n +r +t hq n +b hq n +1+b =-1 n ⋅λhq n +1+b +hq n +b hq n +b hq n +1+b=-1 n ⋅λ1hq n +b +1hq n +1+b1(23·24上·湖北·期中)已知{a n }为等比数列,且a 2+a 3+a 4=14,a 2,a 3+1,a 4成等差数列.(1)求数列{a n }的通项公式;(2)当{a n }为递增数列时,b n =(-1)n 6a n +22n +1 2n +1+1 ,数列{b n }的前n 项和为T n ,若存在n ∈N ∗,m ≥T n ,求m 的取值范围.【答案】(1)a n =2n -1或a n =25-n (2)m ≥-815【分析】(1)运用等差中项的性质和等比数列通项公式基本量运算,解方程即可得到{a n }通项.(2)由{a n }递增可得a n =2n -1,对b n 通项进行裂项展开,当n 为偶数、奇数时分别求出T n 表达式,然后再分别求出T n的范围,由存在n∈N∗,m≥T n,即可求出m的取值范围.【详解】(1)设等比数列{a n}公比为q,由a2+a3+a4=14a2+a4=2a3+1⇒a3=4q=2或a3=4q=12,∴a n=2n-1或a n=25-n.(2)当{a n}为递增数列时,a n=2n-1所以b n=(-1)n3⋅2n+22n+12n+1+1=(-1)n12n+1+12n+1+1当n为偶数时,T n=-12+1+122+1+122+1+123+1+⋯+12n+1+12n+1+1=-13+12n+1+1在n∈N*上单调递减,∴T n∈-13,-29,当n为奇数时,T n=-12+1+122+1+122+1+123+1+⋯-12n+1+12n+1+1=-13-12n+1+1在n∈N*上单调递增,∴T n∈-815,-13,∴m≥-815.2(23·24上·黔东南·阶段练习)已知数列a n满足:a1=1,a n=2a n-1+1n≥2.(1)证明:a n+1是等比数列,并求a n的通项公式;(2)令b n=(-1)n(3n+2)n(n+1)a n+1+1,求b n的前n项和S n.【答案】(1)证明见解析,a n=2n-1(2)S n=(-1)n(n+1)∙2n+1-12【分析】(1)通过构造可证a n+1为等比数列,根据等比数列通项公式可得a n+1,然后可得a n;(2)将数列b n通项公式变形为b n=(-1)n1n∙2n+1(n+1)∙2n+1,直接求和可得.【详解】(1)证明:由a n=2a n-1+1(n≥2),所以a n+1=2a n-1+2=2(a n-1+1),所以{a n+1}是以a1+1=2为首项,公比为2的等比数列,所以a n+1=2n,即a n=2n-1(2)由(1)知:a n+1+1=2n+1,所以b n=(-1)n(3n+2)n(n+1)∙2n+1.又b n=(-1)n1n∙2n+1(n+1)∙2n+1,所以S n=-12+12·22+12·22+13·23-13·23+14·24+⋯+-1 n1n·2n+1n+1·2n+1=(-1)n(n+1)∙2n+1-123(22·23高二下·黑龙江哈尔滨·期中)已知数列a n满足a1=14,a n+1=3a n-4.(1)求a n的通项公式;(2)设b n=(-1)n a n3n+13n+1+1,数列b n的前n项和为T n,若存在n∈N*,使m≥T n,求m的取值范围.【答案】(1)a n=4×3n+2(2)-720,+∞【分析】(1)依题意可得a n+1-2=3a n-2,再结合等比数列的定义即可证明;(2)由(1)可得b n=(-1)n13n+1+1 3n+1+1,再分n为偶数和奇数两类情况并结合裂项求和法讨论即可.【详解】(1)证明:因为a n+1=3a n-4,所以a n+1-2=3a n-2,即a n+1-2a n-2=3n∈N*,因为a1=14,所以a1-2=12,故数列a n-2是以12为首项,3为公比的等比数列,所以a n-2=12×3n-1=4×3n,则a n=4×3n+2.(2)解:由(1)知a n=4×3n+2,所以b n=(-1)n a n3n+13n+1+1=(-1)n4×3n+23n+13n+1+1=(-1)n13n+1+13n+1+1.当n为偶数时,T n=-13+1-1 32+1+132+1+133+1+L+-13n++113n+1+13n+1+13n++1=-13+1+13n+1+1=-14+13n+1+1,因为T n=-14+13n+1+1是单调递减的,所以-14<T n≤-314.当n为奇数时,T n=-13+1-1 32+1+132+1+133+1+⋯+13n++1+13n+1+-13n+113n+1+1=-13+1-13n+1+1=-14-13n+1+1,又T n=-14-13n+1+1是单调递增的,因为13n+1+1>0,所以-720≤T n<-14.要使存在n∈N*,使m≥T n,只需m≥T nmin,即m≥-720,故m的取值范围是-720,+∞.【题型五】“函数型”裂项求和:同构仿写型 仿写规律:t>1①b na n⋅a n+1⋅t n⇒1a n⋅t n-1-1a n+1⋅t n=λb na n⋅a n+1⋅t n(可通分反解λ);②b n⋅t na n⋅a n+1⇒t n+1a n+1-t na n=λb n⋅t na n⋅a n+1(可通分反解λ)1(23·24上·甘南·期中)在数列a n中,a1=2且∀n∈N*,a n+1=3a n+2×3n.(1)求a n的通项公式;(2)设b n=a n+3na n a n+1,若b n的前n项和为S n,证明:S n<14.【答案】(1)a n=2n⋅3n-1,n∈N∗(2)证明见解析【分析】(1)根据题意,化简得到a n+13n+1-a n3n=23,得出数列a n3n为等差数列,结合等差数列的通项公式,进而求得数列a n的通项公式;(2)由a n=2n⋅3n-1,得到b n=121a n-1a n+1,结合裂项法求和,求得S n=14-14(n+1)⋅3n,进而证得S n<1 4.【详解】(1)解:由a n+1=3a n+2×3n,两边同除以3n+1,可得a n+13n+1=a n3n+23,即a n+13n+1-a n3n=23,因为a1=2,可得a13=23,所以数列a n3n是首项为23,公差为23的等差数列,可得a n3n=23+(n-1)×23=2n3,所以a n=2n3×3n=2n⋅3n-1,即数列a n的通项公式为a n=2n⋅3n-1,n∈N∗.(2)解:由a n=2n⋅3n-1,可得b n=a n+3na n a n+1=2n⋅3n-1+3n2n⋅3n-1⋅2(n+1)⋅3n=(2n+3)⋅3n-12n⋅3n-1⋅2(n+1)⋅3n=1212n⋅3n-1-12(n+1)⋅3n=121a n-1a n+1,所以数列b n的前n项和为S n=121a1-1a2+1a2-1a3+⋯+1an-1a n+1=121a1-1a n+1=1212-12(n+1)⋅3n=14-14(n+1)⋅3n,因为4(n+1)⋅3n>0,可得14-14(n+1)⋅3n<14,即S n<14.2(23·24上·合肥·阶段练习)在数1和3之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作T n,令a n=log3T n.(1)求数列a n的通项公式;(2)若b n=n+1⋅2n-1a n a n+1,求数列b n的前n项和S n.【答案】(1)a n=n+22(2)S n=2n+2n+3-43【分析】(1)利用等比数列的基本性质结合倒序相乘法可求得T n,结合对数的运算可得出数列a n的通项公式;(2)计算得出b n=-2n+1n+2+2n+2n+3,利用裂项相消法可求得S n.【详解】(1)解:在数1和3之间插入n个实数,使得这n+2个数构成递增的等比数列,设插入的这n个数分别为c1、c2、⋯、c n,由等比数列的性质可得c1c n=c2c n-1=⋯=c n c1=1×3=3,所以,T n=1⋅c1c2⋯c n⋅3 T n=3⋅c n c n-1⋯c1⋅1,所以,T2n =1⋅3⋅c1c n⋅c2c n-1⋅⋯⋅c n c1⋅1⋅3=3n+2,易知T n>0,所以,T n=3n+22,则an=log3T n=log33n+22=n+22.(2)解:b n =n +1 ⋅2n -1a n a n +1=n +1 ⋅2n -1n +2 n +34=n +1 ⋅2n +1n +2 n +3=2n +2 -n +3 ⋅2n +1n +2 n +3=-2n +1n +2+2n +2n +3,所以,S n =-223+234 +-234+245+⋯+-2n +1n +2+2n +2n +3 =2n +2n +3-43.3(23·24上·昆明·阶段练习)已知数列a n 满足a 1=2,a n +1=2n +1a n n ∈N * .(1)求数列a n 的通项公式;(2)设b n =log 2a 2n -n 2,数列b n +22n +1b n ⋅b n +1 的前n 项和为S n ,求证:38≤S n<12.【答案】(1)a n =2n n +12(2)证明见解析【分析】(1)运用累乘法求出a n 的通项公式;(2)先运用裂项法求出S n 的解析式,再运用缩放法证明.【详解】(1)由已知a 1=2,a n +1a n=2n +1n ∈N * ,所以a n =a n a n -1⋅a n -1a n -2⋯⋯a 2a 1⋅a 1=2n ⋅2n -1⋯⋯22⋅2=2n n +12n ≥2 ,当n =1时,a 1=2满足条件,所以a n =2n n +12;(2)由于b n =log 2a 2n -n 2=n ,所以b n +22n +1b n ⋅b n +1=n +22n +1n n +1 =1n ⋅2n -1n +1 2n +1,所以S n =11×2-12×22+12×22-13×23 +13×23-14×24+⋯+1n ⋅2n 1n +1 2n +,所以S n =11×2-1n +1 2n +1,显然S n 在N *上为增函数,S 1=11×2-12×22=38,∴S n ≥S 1=38,又S n =11×2-1n +12n +1<11×2=12,所以38≤S n <12;综上,a n =2n n +12.【题型六】“函数型”裂项求和:三角函数裂项型常见的三角函数裂项:1.正切型裂项:若a n +1-a n =α,tan α=m (特殊角),则tan α=tan a n +1-a n =tan a n +1-tan a n1+tan a n +1tan a n=m ,b n =tan a n +1tan a n =1mtan a n +1-tan a n -1;2.正余弦和与差公式应用裂项型:b n =sin1cos n cos (n -1)=sin [n -(n -1)]cos n cos (n -1)=sin n cos (n -1)-cos n sin (n -1)cos n cos (n -1)=tan n -tan (n -1)1(2023·山东威海·二模)已知2n +2个数排列构成以q n q n >1 为公比的等比数列,其中第1个数为1,第2n +2个数为8,设a n =log 2q n .(1)证明:数列1a n是等差数列;(2)设b n =tanπa n tan πa n +1,求数列b n 的前100项和S 100.【答案】(1)数列1a n是以公差为23的等差数列.1a n +1-1a n =23(2)-99【分析】(1)根据等比数列的性质分析可得a n =32n +1,再结合等差数列的定义分析证明;(2)根据两角差的正切公式整理得b n =-33tan πa n +1-tan πa n-1,结合裂项相消法运算求解.【详解】(1)由题意可得:q 2n +1n=81=8,且q n >1,可得q n =232n +1,所以a n =log 2232n +1=32n +1,可得1a n =2n +13,则1a n +1-1a n =2n +1 +13-2n +13=23,所以数列1a n是以公差为23的等差数列.(2)由(1)可得πa n +1-πa n =2π3,则tan 2π3=tan πa n +1-πa n=tan πa n +1-tan πan 1+tan πa n +1tan πan=-3,整理得b n =tanπa n tan πa n +1=-33tan πa n +1-tan πa n-1,则S 100=b 1+b 2+⋅⋅⋅+b 100=-33tan πa 2-tan πa 1 -1+-33tan πa 3-tan πa 2-1 +⋅⋅⋅+-33tan πa 101-tan πa 100-1=-33tanπa 2-tan πa 1 +tan πa 3-tan πa 2 +⋅⋅⋅+tan πa 101-tan πa 100-100=-33tan πa 101-tan πa 1-100=-33tan 203π3-tanπ -100=-33tan 68π-π3 -100=33tan π3-100=-99,所以数列b n 的前100项和S 100=-99.2(22·23高三上·山东济宁·期中)已知n ∈N *,抛物线y =-x 2+n 与x 轴正半轴相交于点A ,在点A 处的切线在y 轴上的截距为a n (1)求数列a n 的通项公式;(2)若b n =4n cos n πa n -1 a n +1,求数列b n 的前项和S n .【答案】(1)a n =2n ;(2)S n =-2n +22n +1,n =2k -1-2n 2n +1,n =2k,k ∈N ∗ .【分析】(1)利用导数的几何意义求出切线方程,再求出纵截距作答.(2)由(1)的结论求出b n,再分奇偶利用裂项相消法求解作答.【详解】(1)n∈N∗,抛物线与x轴正半轴的交点坐标为(n,0),由y=-x2+n求导得:y =-2x,因此抛物线在点A处的切线的斜率为-2n,切线方程为y=-2n(x-n),当x=0时,y=2n,所以a n=2n.(2)由(1)知,a n=2n,则b n=4n cos nπ(2n-1)(2n+1)=12n-1+12n+1cos nπ,当n为偶数时,S n=-1+1 3+13+15-15+17+17+19-⋯-12n-3+12n-1+1 2n-1+1 2n+1=-1+12n+1=-2n2n+1,当n为奇数时,S n=S n+1-b n+1=-1+12n+3-12n+1+12n+3=-1-12n+1=-2n+22n+1,S n=-2n+22n+1,n=2k-1-2n2n+1,n=2k,k∈N∗.3(22·23上·芜湖·期末)已知S n是数列a n的前n项和,2S n=n+1a n.且a1=1(1)求a n的通项公式;(2)设a0=0,已知数列b n满足b n=sin1cos a n cos a n-1,求b n的前n项的和T n【答案】(1)a n=n;(2)tan n.【分析】(1)利用给定的递推公式,结合a n=S n-S n-1,n≥2变形,构造数列求解作答.(2)由(1)的结论,利用差角的正弦公式变形,再利用错位相减法求解作答.【详解】(1)因为n∈N*,2S n=n+1a n,当n≥2时,2S n-1=na n-1,两式相减得:2a n=(n+1)a n-na n-1,即(n-1)a n=na n-1,变形得a nn=a n-1n-1,于是得数列a nn是常数列,因此a nn=a11=1,即a n=n,所以数列a n的通项公式是a n=n.(2)由(1)知,a n=n,b n=sin1cos n cos(n-1)=sin[n-(n-1)]cos n cos(n-1)=sin n cos(n-1)-cos n sin(n-1)cos n cos(n-1)=tan n-tan(n-1),所以T n=(tan1-tan0)+(tan2-tan1)+(tan3-tan2)+⋅⋅⋅+[tan n-tan(n-1)]=tan n-tan0=tan n.【题型七】递推公式:分式型不动点已知分式一次型数列递推关系a n+1=Ca n+DAa n+B求通项的问题解法:法一,化归法.当D=0时,递推关系两边取倒数,再裂项构造即可;当D≠0时,为了保持取倒数后分母一致性,通常可以令a n+1+x=Ca n+DAa n+B+x=C+xAa n+D+BxAa n+B,可由1x=C+AxD+Bx解得x的值,即可得到构造方向b n+1=tb nAa n+B,通过这样的转化将问题又化归为D=0的情形再求解.法二,特征根法求解.先构造特征方程x=Cx+DAx+B,解方程得根x1,x2,若x1≠x2,则a n-x2a n-x1为等比数列;若x1=x2,则1a n-x1为等差数列.1(22-23高三·河南·阶段练习)已知数列a n满足a1=0,a n+1=-a n-22a n+3,n∈N∗.(1)证明:数列1a n+1是等差数列;(2)证明:a2 ⋅a3 ⋅a4 ⋅⋅⋅⋅⋅a n+1>12n+1.【答案】(1)证明见解析.(2)证明见解析.【分析】(1)根据条件a1=0,a n+1=-a n-22a n+3,n∈N∗可得1a n+1+1=2+1a n+1,利用等差数列的定义即可证明结论;(2)利用(1)的结论可得a n=-2n+22n-1,即得|a n |=2n-22n-1,(n≥2,n∈N∗),利用作差法可得|a n|=2n-22n-1>2n-32n-2,由此可设S=a2 ⋅a3 ⋅a4 ⋅⋅⋅⋅⋅a n+1,即得S=23⋅45⋅67⋅⋅⋅⋅⋅2n2n+1,且S>12⋅34⋅56⋅⋅⋅⋅⋅2n-12n,两式相乘可证明结论.【详解】(1)证明:根据题意a1=0,a n+1=-a n-22a n+3,n∈N∗,可得a n+1+1=a n+12a n+3,则1a n+1+1=2a n+3a n+1=2+1a n+1,故1a n+1+1-1a n+1=2,1a1+1=10+1=1故数列1a n+1是以1为首项,2为公差的等差数列.(2)由(1)知,1a n+1=1+2(n-1)=2n-1,则a n=12n-1-1=-2n+22n-1,则|a n|=2n-22n-1,(n≥2,n∈N∗),由于2n-22n-1-2n-32n-2=(2n-2)2-(2n-3)(2n-1)(2n-1)(2n-2)=1(2n-1)(2n-2)>0,故|a n|=2n-22n-1>2n-32n-2,(n≥2,n∈N∗)设S=a2⋅a3 ⋅a4 ⋅⋅⋅⋅⋅a n+1,则S=23⋅45⋅67⋅⋅⋅⋅⋅2n2n+1,且S>12⋅34⋅56⋅⋅⋅⋅⋅2n-12n,则S2>23⋅45⋅67⋅⋅⋅⋅⋅2n2n+1⋅12⋅34⋅56⋅⋅⋅⋅⋅2n-12n=12n+1,故S>12n+1,∴a2 ⋅a3 ⋅a4 ⋅⋅⋅⋅⋅a n+1>12n+1.2(2024高三·全国·专题练习)在数列{a n}中,a1=4且a n+1=3a n+2a n+4,求数列{a n}的通项公式.【答案】a n=2n-1+5n-1 5n-1-2n-2【分析】法一,由a n+1+x=3a n+2a n+4+x=(x+3)a n+4x+2a n+4,令1x=x+34x+2,解得x1=-1,x2=2,即在等式两边同减去1,可构造出形式a n+1-1=2(a n-1)a n+4,从而两边再同取倒数可得1a n+1-1=12+52⋅1a n-1,由此配凑常数,可构造等比数列1a n-1+13进而求得等比数列通项,解an可得;法二,利用特征方程x=3x+2x+4有两个不等式根:x1=1,x2=-2,确定构造方向,先构造两个等式,再作比即可构造特殊数列,即可求得特殊数列的通项,再解出a n即可.【详解】法一,由a n+1=3a n+2a n+4两边减去1得,a n+1-1=3a n+2a n+4-1=2(a n-1)a n+4,两边取倒数得,1a n+1-1=a n+42(a n-1)=a n-1+52(a n-1)=12+52⋅1a n-1,两边同加13得,1a n+1-1+13=56+52⋅1a n-1=52⋅1a n-1+13,由a1=4,则1a1-1+13=23≠0,所以有1a n+1-1+131a n-1+13=52,故1a n-1+13是以23为首项,52为公比的等比数列.所以1a n-1+13=23⋅52n-1,故a n-1=3⋅2n-12⋅5n-1+2n-1,解得a n=2n-1+5n-15n-1-2n-2.法二:因为a n+1=3a n+2a n+4,两边同减去1得a n+1-1=3a n+2a n+4-1=2a n-2a n+4①,两边同加上2得a n+1+2=3a n+2a n+4+2=5a n+10a n+4②,由已知a1=4,则a1-1=3≠0,a1+2=6≠0,①②两式相除得,a n+1-1 a n+1+2=2a n-15(a n+2),且a1-1a1+2=12≠0,所以,数列a n-1a n+2是以12为首项,25为公比的等比数列,∴a n-1a n+2=a1-1a1+2·25n-1=12⋅25 n-1,∴a n=2n-1+5n-15n-1-2n-2.3(2023高三·全国·专题练习)已知数列a n满足性质:对于n∈N,a n-1=a n+42a n+3,且a1=3,求{a n}的通项公式.【答案】a n =(-5)n -42+(-5)n【分析】根据特征方程的根,构造数列c n 的通项公式,再得到数列a n 的通项公式.【详解】依定理作特征方程x =x +42x +3,变形得2x 2+2x -4=0,其根为λ1=1,λ2=-2.故特征方程有两个相异的根,使用定理2的第(2)部分,则有c n =a 1-λ1a 1-λ2⋅p -λ1r p -λ2rn -1=3-13+2⋅1-1⋅21+2⋅2n -1,n ∈N ∴c n =25-15n -1,n ∈N .∴a n =λ2c n -λ1c n -1=-2⋅25-15 n -1-125-15n -1-1,n ∈N .即a n =(-5)n -42+(-5)n,n ∈N .【题型八】插入数型插入数型1.插入数构成等差数列在a n 和a n +1之间插入n 个数,使这n +2个数构成等差数列,可通过构造新数列{b n }来求解d nn +2个数构成等差数列,公差记为d n ,所以:b n +2=b 1+(n +2-1)d n ⇔d n =b n +2-b 1(n +2-1)2.插入数构成等比数列在a n 和a n +1之间插入n 个数,使这n +2个数构成等比数列,可通过构造新数列{b n }来求解d nn +2个数构成等比数列,公差记为d n ,所以:b n +2=b 1∙q n (n +2-1)⇔q n (n +2-1)=b n +2b 1⇔ln b n +2b 1=ln q n (n +2-1)=(n +2-1)ln q n3.插入数混合型混合型插入数列,其突破口在于:在插入这些数中,数列a n 提供了多少项,其余都是插入进来的。
用函数观点看数列问题
新教材将数列安排在函数之后学习,强调了数列与函数知识的密切联
系.从函数的观点出发,变动地、直观地研究数列的一些问题,一方面有利于
认识数列的本质,另一方面有利于加深对函数概念的理解.本文拟用函数的观点来认识一些数列问题.
1 数列的本质
数列可看作一个定义域为N*(或它的有限子集{1,2,3,,,n})的函数,用图象表示是一群孤立的点.例如,对于公差不为零的等差数列{a n}来说,它的通项是关于n的一次函数,从图象上看,表示这个数列各点均匀地分布在一
次函数y=ax+b(a≠0)的图象上;它的前n项和S n是关于n的无常数项的二次函数,因此S n/n也是关于n的一次函数.
式是________.
考虑到a n是关于n的一次函数,故pn+q与(n-1)或(2n-1)是同类因式.由待定系数法知:
p+q=0(舍去)或p+2q=0.
例2 等差数列{a n}中,a p=q,a q=p(p≠q)求a p+q.
解由于等差数列的通项a n是关于n的一次函数,故三点(p,q),(q,p),(p+q,ap+q)共线.
解由题设知:公差a≠0.。