基于红外反射循迹小车的传感器布局研究
- 格式:pdf
- 大小:88.46 KB
- 文档页数:1
毕业设计(论文)基于红外传感器的自动寻迹智能小车设计系别专业班级学号姓名指导教师基于红外传感器的自动寻迹智能小车设计摘要介绍了一种自动寻迹智能车的设计,研究了采用红外反射式光电传感器作为路径采集模块实现自动寻迹的软硬件设计方法。
系统采用Freescale 16位单片机MC9S12DG128为核心控制器,利用12个红外光电传感器构成的光电传感器阵列采集路面信息,单片机获得传感器采集的路面信息和车速信息,经过分析后控制智能车的舵机转向,同时对直流电机进行调速,从而实现智能车沿给定的黑线快速平稳地行驶。
介绍了光电传感器的寻迹原理,讨论了光电传感器排列方法、布局等对寻迹结果的影响及速度和转向控制的PID算法的研究和参数整定。
关键字:光电传感器,寻迹,路径识别,PWM,PIDDesign of autonomous tracing smart car based on infrared sensorsAuthor:Xue ChangliangTutor:Gu DeyingAbstractA design of autonomous tracing system in intelligent vehicle is introduced. The software and hardware design method which realizes the autonomous tracing using the infrared Reflective photoelectric sensors as the path recognition module is researched. The system employs Freescale HCS series 16 bit single-chip microcomputer MC9SDG128 as its main controller and an array of photoelectric sensors for recognizing the path information. Single-chip Microcomputer energizes the PWM signal to steer and control the speed of the DC electric motor according to the analysis of the path and speed information from sensors. Consequently, this intelligent vehicle can track the black-guide-line automatically and move forward following the line quickly and smoothly. The autonomous tracing principle of photoelectric sensor is presented. The effects of sensor s’ array method, overall arrangement on the autonomous trace are discussed. And the use of PID algorithm in speed and steering control.Key words : photoelectric sensor ,autonomous tracing, path recognition, PWM,PID目录第1章绪论 (1)1.1 课题的研究背景 (1)1.2 国内外智能车的研究现状 (1)1.3 本文内容及结构安排 (3)第2章红外传感器的寻迹原理及布局对寻迹的影响 (4)2.1红外传感器寻迹原理 (4)2.2传感器布局对路径识别的影响 (6)2.2.1布局相关参数 (6)2.2.2一字型与八字型布局研究 (6)第3章智能车机械结构的调整 (9)3.1 赛车参数 (9)3.2舵机安装方式调整 (10)3.3 前轮定位 (10)3.3.1主销后倾角 (10)3.3.2主销内倾角 (11)3.3.3 前轮外倾角 (12)3.3.4前轮前束 (13)3.4重心位置 (13)3.5 齿轮传动间距调整 (14)3.6后轮差速机构调整 (14)第4章系统硬件设计 (15)4.1 S12控制核心 (16)4.2电源管理模块 (17)4.2.1 单片机稳压电源电路设计 (17)4.2.2 舵机电源模块设计 (19)4.3 电机驱动模块 (20)4.4速度检测模块 (23)4.5 路径识别模块 (25)第5章系统软件设计 (27)5.1 系统的模块化结构 (28)5.1.1 时钟初始化 (28)5.1.2 串口初始化 (28)5.1.3 AD初始化 (29)5.1.4 PWM初始化 (30)5.2 路径信息处理 (32)5.3 数字滤波算法 (33)5.4 小车控制算法 (35)5.4.1 PID算法 (37)5.4.2 舵机控制 (39)5.4.3 电机控制 (39)第6章系统调试 (40)6.1 开发调试工具 (40)6.2 无线调试模块 (42)6.3拨码开关调试 (42)6.4 试验结果分析 (42)结论 (44)致谢 (45)参考文献 (46)附录 (47)附录A 硬件原理图 (47)附录B程序源代码 (49)附录C Sorting out PID controller differences (69)第1章绪论1.1 课题的研究背景汽车工业发展已有100多年的历史。
基于红外传感器的智能循迹小车设计随着科技的不断发展,人们对于智能化的需求也越来越高。
智能循迹小车是目前比较常见的一种智能化机器人,它能够按照指定的路线行驶,从而实现各种功能。
本文将会介绍一种基于红外传感器的智能循迹小车设计方案。
一、设计方案1、硬件方面首先,需要一个可以控制小车运动的主板,Arduino是比较常见的控制器,也是我们使用的控制器之一。
使用Arduino Uno控制器,主要是因为它具有足够的接口,可以进行多种传感器的连接,并且有很好的可编程性,能够满足我们对小车的需求。
同时,还需要使用两个电机来控制小车的行驶方向和速度。
可以选择直流电机,因为它们较为便宜、易于使用和控制。
此外,需要一个电池组来为小车提供电力。
还需要一些红外传感器,以便小车能够进行循迹行驶。
因为地面上的轨迹是黑色的,而其他部分是白色或灰色的,其反射红外线的能力不同,通过将传感器放在小车的底盘下方,当小车行驶在黑色的轨迹上时,可以及时接受反射回来的红外线,从而判断行走的方向。
在我们的设计方案中,我们将使用三个红外传感器来进行循迹行驶,其中两个用于控制小车左右方向的行驶,而另一个则是用于控制小车的前进或后退。
2、软件方面在软件编程方面,主要是通过控制器来进行程序的编写。
我们需要先定义好各个传感器的引脚,以及电机的引脚,然后根据传感器接收到的信号,控制电机的转速和方向,从而让小车沿着指定的路线行走。
当小车行驶到某个特定位置时,也可以添加一些其他的控制程序,比如使小车停下、发出提示音等等。
二、设计流程1、硬件搭建首先,需要将电机与Arduino板上的电机驱动器连接起来,并将电池组的两根电线连接到Arduino的电源管脚上,以为小车提供电力。
接着,需要将红外传感器接到Arduino上,这里需要注意的是,通常情况下,红外传感器会有三根引脚,其中一个是Vcc,一个是GND,还有一个是信号引脚。
Vcc和GND连接到Arduino的对应管脚,而信号引脚则要根据具体情况进行连接。
摘要本实验完成采用红外反射式传感器的自寻迹小车的设计与实现。
采用与白色地面色差很大的黑色路线引导小车按照既定路线前进,在意外偏离引导线的情况下自动回位,并能显示小车停止的时间。
本设计采用单片机STC89C51作为小车检测、控制、时间显示核心,以实验室给定的车架为车体,两直流机为主驱动,附加相应的电源电路下载电路,显示电路构成整体电路。
自动寻迹的功能采用红外对管LTH1550实现,信号经三极管9012放大,经LM339电压比较器比较之后将信号送给单片机,由单片机通过控制驱动芯片L298N驱动电动小车的电机,实现小车的动作。
同时还可以将小车的停留时间通过四位数码管显示。
关键词:STC89C51单片机;红外对管LTH1550;红外传感器;寻迹一、系统设计任务与要求小车从上坡处开始行驶,到达坡顶停留5秒,由数码管显示停留时间,然后继续行驶,到达坡底开始沿黑线行驶,直到终点宽黑线停止。
二、方案分析与论证总体方案设计:根据题目,我们设计了以下方案并进行了综合的比较论证,自动寻迹电动小车系统由小车主体部分、微控制器模块、寻迹传感器模块、电机驱动模块、显示模块、电源模块构成。
2.1 总体方案论证与比较方案一:采用数字电路来组成小车的各部分系统,实现各部分功能。
本方案电路复杂,灵活性不高,效率低,不利于小车智能化的扩展,设计困难。
方案二:采用单片机来作为整机的控制单元。
黑线检测采用红外对管对光源信号进行采集,再经过三极管放大,电压比较使输出转化为数字信号送到单片机系统处理。
此系统比较灵活,采用软件方法来解决复杂的硬件电路部分,使系统硬件简洁化,各类功能易于实现,能很好地满足题目的要求。
方案二简洁、灵活、可扩展性好,能达到题目的设计要求,因此采用方案二来实现。
方案二的基本结构图如下:图1总体系统结构框图2.2 寻迹检测方案的选择方案一:采用CCD传感器。
利用CCD传感器进行自动导航的机器人已得到初步应用。
但CCD传感器价格较高,体积较大,数据处理复杂,不适合本次实验使用。
一、实验目的本次实验旨在设计和实现一款基于电动驱动的循迹小车,通过红外传感器检测地面上的黑线,实现对小车行进路径的自动控制。
通过本次实验,掌握以下技能:1. 红外传感器的原理和应用;2. 单片机的编程和驱动控制;3. 电动小车的组装与调试;4. 掌握电路设计和调试方法。
二、实验原理1. 红外传感器原理:红外传感器通过发射红外线并接收反射回来的红外线来检测物体的存在。
当红外线照射到黑色路线上时,反射回来的红外线强度减弱,传感器检测到变化后,将信号传输给单片机。
2. 单片机控制原理:单片机接收到红外传感器的信号后,根据预设的程序控制小车的前进、后退、转弯等动作。
3. 电机驱动原理:电机驱动电路将单片机的控制信号转换为电机所需的电流,驱动电机旋转,从而实现小车的运动。
三、实验器材1. 电动小车底盘;2. 红外传感器模块;3. 单片机(如Arduino);4. 电机驱动模块(如L298N);5. 电池;6. 连接线;7. 电阻、电容等电子元件;8. 黑色纸带。
四、实验步骤1. 组装电路:将红外传感器模块、单片机、电机驱动模块、电池等元件按照电路图连接起来。
2. 编写程序:根据实验要求,编写单片机的控制程序。
程序主要包括以下功能:- 红外传感器数据采集;- 小车运动控制(前进、后退、转弯);- 电机驱动控制。
3. 调试程序:将编写好的程序烧录到单片机中,连接电池,观察小车是否能够按照预期路径行进。
4. 调整传感器位置:根据红外传感器的实际工作情况,调整传感器位置,确保传感器能够准确检测到地面上的黑线。
5. 调整电机速度:通过调整电机驱动模块的PWM信号,调整电机的转速,使小车运动平稳。
6. 优化程序:根据实验结果,对程序进行优化,提高小车的循迹精度和稳定性。
五、实验结果与分析1. 实验结果:经过调试,小车能够按照地面上的黑线行进,实现自动循迹。
2. 分析:- 红外传感器对光线敏感,容易受到环境光线干扰。
在光线较强或较弱的环境中,需要对传感器进行调整,以确保其正常工作。
基于红外光电传感器的智能车自动寻迹系统设计一、本文概述随着科技的飞速发展,智能化、自动化的技术在各个领域得到了广泛的应用。
在智能交通系统中,智能车自动寻迹系统以其高效、准确的特点,受到了广泛的关注。
本文旨在探讨基于红外光电传感器的智能车自动寻迹系统的设计,以期能为智能交通系统的发展提供有益的参考。
本文将详细介绍红外光电传感器的工作原理及其在智能车自动寻迹系统中的应用。
红外光电传感器作为一种非接触式的测量工具,具有灵敏度高、响应速度快、抗干扰能力强等优点,因此在智能车自动寻迹系统中具有广泛的应用前景。
本文将深入探讨智能车自动寻迹系统的总体设计方案。
包括系统的硬件设计,如红外光电传感器的选型、电路设计、微处理器的选择等,以及软件设计,如路径识别算法、运动控制算法等。
通过对这些关键技术的详细分析,以期能为实际系统的设计提供有益的参考。
本文将通过实例分析,验证所设计的智能车自动寻迹系统的性能。
通过在不同环境下进行实际测试,收集并分析系统的寻迹精度、速度、稳定性等数据,从而评估系统的性能,并提出改进意见。
本文旨在对基于红外光电传感器的智能车自动寻迹系统进行全面、深入的研究,以期能为智能交通系统的发展提供有益的参考。
二、红外光电传感器原理及特性红外光电传感器是一种利用红外线进行非接触式测量的传感器,其基本原理是基于光电效应和红外辐射的特性。
红外光电传感器内部包含一个发射器和一个接收器,发射器发射出特定波长的红外线,当这些红外线遇到物体后,部分会被反射回接收器。
根据物体对红外线的反射程度,接收器可以感知到物体的存在及其与传感器的距离。
红外光电传感器具有多种特性,使其特别适用于智能车自动寻迹系统。
红外光对许多物体的穿透能力较弱,因此传感器能够精确地感知物体表面的细节,这对于智能车寻迹系统中的路径识别非常关键。
红外光电传感器对环境光线的变化不敏感,即使在日光下也能正常工作,这使得系统在各种光线条件下都能保持稳定的性能。
红外反射式传感器在智能循迹小车中的应用在电子设计大赛培训中,我们设计制作了一款智能寻迹小车,基本要求是让小车能沿着既定的路线行驶,比如在地板上随便画一条黑线,小车就能沿黑线行驶。
这里的循迹模块采用的是反射式红外对管ST178H。
ST178H传感器的工作原理与一般的红外传感器一样,一传一感。
ST178H具有一个高发射功率红外发光二极管和一个高灵敏度红外接收管。
当发射管的红外信号经反射被接收管接收后,接收管的电阻会发生变化,在电路上一般以电压的变化形式体现出来,而经过ADC转换或LM393等电路整形后得到处理后的输出结果。
电阻的变化取决于接收管所接收的红外信号强度,常表现在反射面的颜色和反射面接收管的距离两方面.硬件电路原理图如下:通过调节滑动变阻器R4可以调节红外对管的灵敏度,当红外对管检测到白线或黑线却不能送出信号时,可以调节R4来增大其灵敏度。
1、红外对管寻迹:当小车在白色地面行驶时,装在车下的红外发射管发射红外线信号,经白色反射后,被接收管接收,一旦接收管接收到信号,输出端将输出低电平;当小车行驶到黑线时,红外线信号被黑色吸收后,将输出高电平,从而实现了通过红线检测信号的功能。
将检测到的信号送到单片机的I/O 口,当I/O 口检测到的信号为高电平时,表明小车处在黑色的引线上;同理,当I/O 口检测到的信号为低电平时,表明小车行驶在白色地面上。
寻迹模块用了三路采样,中间一个控制轨迹,两侧的用于检测道路的分支、弯道、交叉口等,布置如下:行驶原理:若红外对管2检测到黑线,小车直走;若只有红外管1检测到黑线,小车左拐;若只有红外管3检测到黑线,小车右拐;若三个管都没有检测到黑线,小车保持原来的状态行驶。
当黑线在红外对管下,会给单片机一个高电平。
2、红外对管测速测距:在两个车轮上分别粘贴一小片白纸,在能检测到白纸的位置分别放置一红外对管,车轮在转动时,红外对管检测到白纸输出低电平,单片机计数一次,结合小车轮子的直径和小车行驶的时间就可以计算出小车行驶的速度和路程。
基于红外反射式光电传感器的智能循迹小车闫俊旭1侯超2(1.太原科技大学电子信息工程学院山西太原0300242.太原重型机械厂山西太原030024)摘要:本文介绍了一种智能寻迹小车的设计与实现。
基于红外反射式光电传感器的寻迹原理,采用AT89C52单片机为核心控制器件,通过红外传感器检测路面信息,单片机获取路面信息后,进行分析、处理,最后控制步进电机调节转向和转速。
实验表明:该系统抗干扰能力强、电路结构简单,能够准确实现小车沿给定的黑线快速、平稳行驶。
关键词:AT89C52、反射式光电对管(RPR220)、步进电机Design of Autonomous Tracing System based on single chip microcomputerYan Junxu1Hou Chao2(1. Institute of Electronic and Information; Taiyuan University of Science andTechnology; Taiyuan 030024; China2.Taiyuan Heavy Mavhinery Group Co.,LTD; Taiyuan 030024; China)Abstract: Based on infrared reflective photoelectric sensor tracing principle, a intelligent tracing car which used AT89C52 microcontroller as the core control device was designed. When infrared sensor detects the information of road, the microcontroller analysis, process, and finally control the stepper motor adjust the steering and speed. Experiments show the intelligent tracing car had the feature of the anti-jamming ability and a simple circuit structure, and can achieve a given car black line along the fast, smooth driving accurately.Keywords: AT89C52, reflective photoelectric tube (RPR220), stepper motor引言:智能汽车作为一种智能化的交通工具,体现了车辆工程、人工智能、自动控制、计算机等多个学科领域理论技术的交叉和综合,是未来汽车发展的趋势。