第9章 SPSS 20.0回归分析讲解
- 格式:ppt
- 大小:145.00 KB
- 文档页数:39
第9章SPSS线性回归分析1.线性回归分析概述线性回归分析是一种广泛应用于统计学和数据分析领域的方法,它用于研究自变量与因变量之间的线性关系。
线性回归模型基于一条直线的假设,通过最小化残差平方和来估计各个回归系数,并利用这些系数进行预测和推断。
SPSS是一款强大的统计分析软件,提供了丰富的功能和工具,使得线性回归分析变得更加简单和高效。
2.数据准备在进行线性回归分析之前,需要准备好相关的数据。
SPSS可以导入各种类型的数据文件,包括Excel、CSV等格式。
在导入数据之后,可以对数据进行预处理,如缺失值处理、异常值处理等。
3.构建线性回归模型在SPSS中,构建线性回归模型非常简单。
首先选择“回归”菜单下的“线性”选项,然后将所需要的自变量和因变量选择到相应的框中。
SPSS还提供了多种方法来选择自变量,如逐步回归、逐步回归法等。
选择好自变量之后,点击“确定”按钮,即可得到回归模型结果。
4.分析回归模型在得到回归模型结果之后,需要对模型进行分析。
SPSS提供了丰富的结果输出,包括参数估计值、显著性检验、模型拟合度等。
需要注意的是,线性回归模型的可靠性需要通过一系列统计检验进行验证,如F统计量、t统计量、残差分析等。
5.模型诊断6.预测与推断线性回归模型可以用于预测和推断,SPSS也提供了相应的功能。
在SPSS中可以输入自变量的数值,从而得到相应的因变量预测值。
此外,SPSS还可以进行参数估计的推断,包括置信区间和假设检验等。
7.扩展与应用除了简单的线性回归模型,SPSS还支持复杂的线性回归模型,如多重回归分析、多元回归分析等。
此外,SPSS还可以进行模型的改进和优化,如加入交互项、非线性变换等。
这些扩展功能在实际应用中非常有用,可以提高模型的解释力和预测能力。
总结:本章介绍了SPSS中的线性回归分析方法,包括模型构建、结果分析、模型诊断、预测与推断等。
SPSS提供了丰富的功能和工具,使得线性回归分析变得更加简单和高效。
第九章 SPSS的线性回归分析线性回归分析是一种常用的统计方法,用于探索自变量与因变量之间的线性关系。
在SPSS中,进行线性回归分析可以帮助研究者了解变量之间的关系,并预测因变量的数值。
本文将介绍如何在SPSS中进行线性回归分析,并解释如何解释结果。
一、数据准备。
在进行线性回归分析之前,首先需要准备好数据。
在SPSS中,数据通常以数据集的形式存在,可以通过导入外部文件或手动输入数据来创建数据集。
确保数据集中包含自变量和因变量的数值,并且数据的质量良好,没有缺失值或异常值。
二、进行线性回归分析。
在SPSS中进行线性回归分析非常简单。
首先打开SPSS软件,然后打开已经准备好的数据集。
接下来,依次点击“分析”-“回归”-“线性”,将自变量和因变量添加到相应的框中。
在“统计”选项中,可以选择输出各种统计信息,如残差分析、离群值检测等。
点击“确定”按钮后,SPSS会自动进行线性回归分析,并生成相应的结果报告。
三、解释结果。
线性回归分析的结果报告包括了各种统计信息和图表,需要仔细解释和分析。
以下是一些常见的统计信息和图表:1. 相关系数,线性回归分析的结果报告中通常包括了自变量和因变量之间的相关系数,用来衡量两个变量之间的线性关系强度。
相关系数的取值范围为-1到1,接近1表示两个变量呈正相关,接近-1表示呈负相关,接近0表示无相关。
2. 回归系数,回归系数用来衡量自变量对因变量的影响程度。
回归系数的符号表示自变量对因变量的影响方向,系数的大小表示影响程度。
在结果报告中,通常包括了回归系数的估计值、标准误、t值和显著性水平。
3. 残差分析,残差是因变量的观测值与回归方程预测值之间的差异,残差分析可以用来检验回归模型的拟合程度。
在结果报告中,通常包括了残差的分布图和正态概率图,用来检验残差是否符合正态分布。
4. 变量间关系图,在SPSS中,可以生成自变量和因变量之间的散点图和回归直线图,用来直观展示变量之间的线性关系。
第九章spss的回归分析1、利用习题二第4题的数据,任意选择两门课程成绩作为解释变量和被解释变量,利用SPSS 提供的绘制散点图功能进行一元线性回归分析。
请绘制全部样本以及不同性别下两门课程成绩的散点图,并在图上绘制三条回归直线,其中,第一条针对全体样本,第二和第三条分别针对男生样本和女生样本,并对各回归直线的拟和效果进行评价。
选择fore和phy两门成绩做散点图步骤:图形→旧对话框→散点图→简单散点图→定义→将phy导入X轴、将fore导入Y 轴,将sex导入设置标记→确定图标剪辑器内点击元素菜单→选择总计拟合线→选择线性→确定→再次选择元素菜单→点击子组拟合线→选择线性→确定分析:如上图所示,通过散点图,被解释变量y与fore有一定的线性相关关系。
2、线性回归分析与相关性回归分析的关系是怎样的?线性回归分析是相关性回归分析的一种,研究的是一个变量的增加或减少会不会引起另一个变量的增加或者减少。
3、为什么需要对线性回归方程进行统计检验?一般需要对哪些方面进行检验?线性回归方程能够较好地反映被解释变量和解释变量之间的统计关系的前提是被解释变量和解释变量之间确实存在显著的线性关系。
回归方程的显著性检验正是要检验被解释变量和解释变量之间的线性关系是否显著,用线性模型来描述他们之间的关系是否恰当。
一般包括回归系数的检验,残差分析等。
4、SPSS多元线性回归分析中提供了哪几种解释变量筛选策略?包括向前筛选策略、向后筛选策略和逐步筛选策略。
5、先收集到若干年粮食总产量以及播种面积、使用化肥量、农业劳动人数等数据,请利用建立多元线性回归方程,分析影响粮食总产量的主要因素。
数据文件名为“粮食总产量.sav”。
步骤:分析→回归→线性→粮食总产量导入因变量、其余变量导入自变量→确定结果如图:Variables Entered/Removed bModel Variables Entered Variables Removed Method1 农业劳动者人数(百万人),总播种面积(万公顷), 风灾面积比例(%), 粮食播种面积(万公顷), 施用化肥量(kg/公顷), 年份a. Entera. All requested variables entered.b. Dependent Variable: 粮食总产量(y万吨)ANOVA bModel Sum of Squares df Mean Square F Sig.1 Regression 2.025E9 6 3.375E8 414.944 .000aResidual 2.278E7 28 813478.405Total 2.048E9 34a. Predictors: (Constant), 农业劳动者人数(百万人), 总播种面积(万公顷), 风灾面积比例(%),粮食播种面积(万公顷), 施用化肥量(kg/公顷), 年份b. Dependent Variable: 粮食总产量(y万吨)Coefficients aModel UnstandardizedCoefficients StandardizedCoefficientst Sig.B Std. Error Beta1 (Constant) -613605.817 230903.867 -2.657 .013年份304.688 119.427 .402 2.551 .016粮食播种面积(万公顷) .736 .782 .053 .942 .354总播种面积(万公顷) 1.939 .650 .111 2.984 .006施用化肥量(kg/公顷) 141.077 11.186 .755 12.612 .000风灾面积比例(%) -307.209 51.870 -.174 -5.923 .000-5.121 22.286 -.038 -.230 .820 农业劳动者人数(百万人)a. Dependent Variable: 粮食总产量(y万吨)分析:如以上4个表所示,影响程度来由大到小依次是风灾面积、使用化肥量、总播种面积和年份。
第9章线性回归分析9.1 复习笔记一、回归分析概述(一)回归分析的意义在相关变量间建立预测方程式的统计学方法叫回归分析,包括线性和非线性、一元和多元的回归分析。
回归分析中变量之间的地位是不对等的,分为自变量和因变量。
回归分析是指建立自变量与因变量之间的关系模型,这个模型也叫回归方程。
(二)回归分析的基本逻辑1.回归分析的基本逻辑(1)自变量与因变量的关系首先假设因变量与一个或一些自变量之间具有某种数量关系。
用来表示预测值的平均值,则有y i=f(x1,x2,…,x k)+εi,(公式9-2)(2)回归分析的核心任务回归分析的核心任务是建立因变量与自变量之间的预测关系,即建立它们之间确定的函数关系,并尽可能地评估预测误差的大小。
2.回归分析的基本程序(1)提出假设的回归模型首先确定自变量与因变量。
(2)获取数据资料通过实验或大量的实际观测及调查,取得较为可靠的数据资料。
此项工作是研究者进行回归分析的前提和基础,其数据质量决定回归分析工作的质量。
(3)估计回归方程的函数形式①利用所获取的大量数据资料,先用直观的方式分析变量关系的形态;②根据函数拟合方式,确定应通过何种数学模型来概括回归线。
(4)回归方程的参数估计①“最佳拟合”回归方程最佳拟合原则就是误差平方和达到最小,Q表示误差平方和,在回归分析也称为剩余平方和:②最小二乘法回归分析最核心的任务就是依据观测的实际数据,按照最小原则确定函数中的参数。
(5)回归方程的有效性检验①含义根据样本数据建立起回归方程后,应对其进行各种检验,看其是否真实地反映了因变量与自变量之间的数量关系。
②内容a.回归方程的显著性检验;b.回归方程的拟合优度检验;c.回归系数的显著性检验。
③目的回归方程有效性检验的目的是考察回归方程预测的因变量值与实际观测的因变量值之间相关程度的高低。
相关越高,说明预测值与实际观测值越具有一致性,回归方程越能有效地反映自变量与因变量之间的变化关系。